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Metabolic syndrome related gene 
signature predicts the prognosis of patients 
with pancreatic ductal carcinoma. A novel 
link between metabolic dysregulation 
and pancreatic ductal carcinoma
Weiyang Cai2†, Wenming Bao3†, Shengwei Chen4, Yan Yang1* and Yanyan Li1*   

Abstract 

Background:  Pancreatic cancer is one of the most common malignancies worldwide. In recent years, specific 
metabolic activities, which involves the development of tumor, caused wide public concern. In this study, we wish to 
explore the correlation between metabolism and progression of tumor.

Methods:  A retrospective analysis including 95 patients with pancreatic ductal adenocarcinoma (PDAC) and PDAC 
patients from The Cancer Genome Atlas (TCGA), the International Cancer Genome Consortium (ICGC), and The Gene 
Expression Omnibus (GEO) database were involved in our study. Multivariate Cox regression analysis was used to con-
struct the prognosis model. The potential connection between metabolism and immunity of PDAC was investigated 
through a weighted gene co-expression network analysis (WGCNA). 22 types of Tumor-infiltrating immune cells 
(TIICs) between high-risk and low-risk groups were estimated through CIBERSORT. Moreover, the potential immune-
related signaling pathways between high-risk and low-risk groups were explored through the gene set enrichment 
analysis (GSEA). The role of key gene GMPS in developing pancreatic tumor was further investigated through CCK-8, 
colony-information, and Transwell.

Results:  The prognostic value of the MetS factors was analyzed using the Cox regression model, and a clinical MetS-
based nomogram was established. Then, we established a metabolism-related signature to predict the prognosis of 
PDAC patients based on the TCGA databases and was validated in the ICGC database and the GEO database to find 
the distinct molecular mechanism of MetS genes in PDAC. The result of WGCNA showed that the blue module was 
associated with risk score, and genes in the blue module were found to be enriched in the immune-related signaling 
pathway. Furthermore, the result of CIBERSORT demonstrated that proportions of T cells CD8, T cells Regulatory, Tregs 
NK cells Activated, Dendritic cells Activated, and Mast cells Resting were different between high-risk and low-risk 
groups. These differences are potential causes of different prognoses of PDAC patients. GSEA and the protein–pro-
tein interaction network (PPI) further revealed that our metabolism-related signature was significantly enriched in 
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Introduction
Pancreatic cancer is considered as one of the most dev-
astating malignancies worldwide [1]. It is the fourth lead-
ing cause of cancer-related mortality in the US and is 
expected to become the second most common cause of 
cancer-related death in the US by 2030 [2]. Epidemiologi-
cal characteristics of pancreatic cancer contain insidious 
onset, invasive fast-growing, high recurrence rate and 
fatality [3]. Among them, pancreatic ductal adenocarci-
noma (PDAC) accounts for > 85% of all pancreatic cancer 
cases [4]. Despite the great progress in diagnoses, therapy 
methods and surgical managements of PDAC recently, 
the long-term survival rate of patients with PDAC is still 
very low. The 5-year overall survival rate of patients with 
PDAC is still less than 10%, which remains static since 
1960s [5]. Previous studies have demonstrated that risk 
factors for PDAC include age, obesity, Diabetes Mellitus 
(DM), smoking, long-term alcohol consumption, family 
history, etc. [6, 7]. Increased body index (BMI) and long-
term DM is reported to be associated with the develop-
ment of PDAC [8–10].

In recent years, the importance of reprogrammed 
metabolism in cancer has received great attention [11]. 
The changes in cell metabolism contribute to the tumor 
initiation and progression. Specific metabolic activities 
can be involved in the transformation process or sup-
port the biological process which participates in tumor 
growth [12]. Plenty of studies have revealed that metab-
olism played an important role in the development of 
PDAC. The alterations of metabolism can promote the 
initiation and metastasis of PDAC by genetic control 
[13–15]. PDAC cells possess extensively reprogrammed 
metabolism including glutamine-dependent metabolism, 
fatty acid metabolism, lipid metabolism, KRAS signal-
ing pathway, etc. [13]. The result shows that the meta-
bolic phenotypes in PDAC vary from patients because 
of the combined action of cell-autonomous pathways 
mediated by oncogenes, interactions with non-cancer 
cells and tumor microenvironment [14]. Metabolism-
related genes, including CLUT, HK, MCT4, KRAS, par-
ticipated in a series of physiological cascade reactions in 
PDAC, and lead to the development of PDAC. Because 
of the difficulty in quantifying the metabolism of patients 
in clinical practice and the rapid development of high 

throughput sequencing technology in precision medi-
cine, we would like to use the metabolism-related genes 
to establish a model for predicting the prognosis of 
PDAC via multivariate COX analysis. Public databases 
ICGC, TCGA and GEO were involved in our studies.

Immune system is closely related with cancer devel-
opment [16]. The immune system can recognize and 
eliminate tumor cells in the tumor microenvironment. 
However, in order to survive and grow, tumor cells can 
adopt different strategies to suppress the human immune 
system, which makes it unable to kill tumor cells nor-
mally. In this case, the tumor cells can survive in vari-
ous stages of the anti-tumor immune response [11, 17]. 
This phenomenon is called tumor immune escape. Early 
analyses suggest that immunophenotype would be more 
powerful in predicting the prognosis of tumors than tra-
ditional AJCC stages [18–20]. CD8+ T cells was reported 
to be associated with the outcome of breast cancer [21], 
Foxp3+ regulatory T cells (Treg cells) was significantly 
associated with poor survival of majority of solid tumors, 
including cervical, renal, melanomas, and breast cancers 
[22]. In addition, previous studies found that subsets of 
TILs, especially CD3+, CD8+ and FoxP3+ T cells were 
strongly associated with long-term oncological out-
comes in patients with PDAC [23]. Due to advances in 
understanding the cancer and its relationship with the 
immune system, more and more researchers are con-
sidering activating host immune defense as an effective 
anti-tumor response [24]. It has recently been proposed 
that increased metabolism was associated with immune 
evasion by tumor cells and is regulated by the chang-
ing tumor microenvironment (TME) [25]. For example, 
Hypoxia enhanced the glycolytic ability of tumor cells 
and increased the lactic acid growth rate. Producing large 
amounts of lactic acid acidifies the tumor microenviron-
ment and affects the recognition and response of tumor 
cells by the immune system. Nutrient deficiency in the 
tumor microenvironment makes various cells compete 
with each other to meet their own needs, while immune 
cells are less adaptable to nutrient deficiency, thus form-
ing an anti-tumor mechanism [26]. Previous studies 
found that metabolic pathway played an important role 
in the development of PDAC, and had essential effect on 
immune response in carcinogenesis of PDAC [27–29]. 

immune‐related biological processes. Moreover, knockdown of GMPS in PDAC cells suppressed proliferation, migra-
tion, and invasion of tumor cells, whereas overexpression of GMPS performed oppositely.

Conclusion:  The results shine light on fundamental mechanisms of metabolic genes on PDAC and establish a reli-
able and referable signature to evaluate the prognosis of PDAC. GMPS was identified as a potential candidate onco-
gene with in PDAC, which can be a novel biomarker and therapeutic target for PDAC treatment.

Keywords:  Metabolism, Pancreatic ductal adenocarcinoma, Immunity, CIBERSORT, GMPS
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However, the dysregulated interaction between the 
immune system and metabolic pathways in PDAC has 
not been thoroughly studied. So, specific mechanisms 
between immune system and tumor metabolism in pan-
creatic cancer were explored through a series of studies 
in our study.

Materials and methods
Patients and clinical outcome assessment
This study utilized data from the First Affiliated Hospital 
of Wenzhou Medical University. We performed a retro-
spective study of PDAC patients from the First Affiliated 
Hospital of Wenzhou Medical University from January 
2010 to January 2016. The inclusion criteria were as fol-
lows: (1) histopathological diagnosis or clinical diagnosis 
of PDAC; (2) all of the data were collected when patients 
diagnosed with PDAC firstly without any therapy. (3) 
Complete pathology, laboratory, and follow-up data. 
Patients with unknown included variables were excluded. 
The following demographic, clinical, and pathology data 
were used: T stage, N stage, M stage, tumor history, labo-
ratory test results [age, gender, body mass index (BMI), 
TG, HDL-C, LDL, CHOL]. Metabolic syndrome was 
internationally defined as included more than three cri-
teria: (1) BMI was greater than 25.0 kg/m2; (2) diagnosed 
with diabetes; (3) diagnosed with hypertension SBP/
DBP > 140/90  mmHg; (4) blood HDL-C < 0.9  mmol/L, 
(5) blood TG > 1.7 mmol/L. Totally, there were 95 eligible 
cases selected in our study. All of these patients were fol-
lowed up, and recurrent and dead patients were recorded 
during the follow-up. The time was cut-off until March 
2021. The study protocols were approved by the Wen-
zhou Medical university Ethics Committee.

Data download and preprocess
Transcriptomic data of PDAC patients with full clinical 
information from TCGA [30], ICGC [31], GSE28735, 
and GSE62452 were collected and analyzed in this 
study. Level 3 data of pancreatic cancer samples from 
TCGA data portal were downloaded from the website 
of National Cancer Institute (https://​cance​rgeno​me.​
nih.​gov/). Corresponding clinical information about 
these patients was obtained from the Cbioportal data-
base (www.​cbiop​ortal.​org/), including age, gender, AJCC 
stage, Histologic Grade, T-stage, N-stage, and follow-up 
information of PDAC. 65 patients from International 
Cancer Genome Consortium Pancreatic Cancer Aus-
tralian (ICGC, PACA-AU) with RNA-sequencing raw 
counts and clinical survival data were included in the 
study. Raw read counts were downloaded through the 
Cbioportal database (www.​cbiop​ortal.​org/). Normal-
ized data of GSE28735 and GSE62452 were downloaded 

from GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) [32]. 125 
patients with survival data were included in the survival 
analysis. GSE28735 and GSE62452 were performed by 
the same research team with identical Platform: GPL6244 
[HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array 
[transcript (gene) version]. Partek Genomic Suite was 
used to remove the batch effect between two sets of data. 
Our analysis was performed based on this combined 
dataset.

Construction of nomogram models
An OS nomogram was constructed based on the prog-
nostic factors derived from multivariate Cox regression 
analysis to predict 1-, 3- and 5-year survival. Each patient 
could sum up each variable score and finally establish 
predictive measures of OS. The nomogram was gener-
ated using ggplot packages of R software. The calibration 
curve for predicting 1-, 3- and 5-year OS indicated that 
the nomogram-predicted survival closely corresponded 
with actual survival outcomes. The survival analysis were 
conducted using rms, survivalROC, survcomp and sur-
vival package. Hazard ratios (HRs) and 95% confidence 
intervals (CIs) were recorded.

Model establishment and survival analyses
Patients with pancreatic cancer from TCGA databases 
were applied to identify a clinically translatable gene sig-
nature. A total of 1466 metabolic genes obtained from 
70 KEGG metabolic gene sets [33] were evaluated by 
univariate Cox regression analysis. The most relevant 20 
genes in prognosis were selected for further study. Mul-
tivariate stepwise Cox regression analysis was then used 
to identify the predictive metabolic-score model. The 
riskscore was calculated as follows:

PDAC patients were divided into a high-risk group 
and a low-risk group based on their median risk score. 
Survival analysis was applied with the R [34] package 
“survminer”, two-sided log-rank tests were applied to 
determine survival differences between high-risk patient 
groups and low-risk patient groups. The receiver operat-
ing characteristic (ROC), which was calculated by the R 
package of “survival ROC”, is used to evaluate the pre-
dicting power of our model. Another 65 PDAC patients 
from ICGC databases and 125 patients from GEO data-
bases were used as two independent validation cohorts.

Riskscore = 0.91203 ∗ expression level of CA12

+ 0.9 ∗ expression level of CDA

+ (−3.38811) ∗ expression level of DGKZ

+ 6.76897 ∗ expression level of GMPS

+ (−6.09824) ∗ expression level of PI4KB.

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://www.cbioportal.org/
http://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/geo/
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Construction of random trees
Cox regression analysis was used to compare the impor-
tance of the clinical information and risk score. The 
results were shown by forest plot via the R package 
“forestplot”.

Module determination
The top 25% of most variant genes were selected to con-
struct a co-expression network with Weighted gene 
co-expression network analysis (WGCNA) [35]. The cor-
relation between modules and clinical features was evalu-
ated by Pearson correlation coefficients.

Function analysis and Hub gene identification
To further demonstrate the mechanism underlying the 
module genes with correlative clinical factors. Genes 
in the interest module were further analyzed by Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) through R packages “ggplots2” and 
“clusterProfiler”. In addition, all Genes in the interest 
module were uploaded to the STRING database (https://​
string-​db.​org/​cgi/​input.​pl) to construct the protein–
protein network (PPI). The Cytohubba-plugin-based 
Cytoscape [36] was applied to analyze the network [37]. 
The top 20 high-degree genes were identified.

GSEA analysis
GSEA is a functional annotation tool applied to under-
stand the biological meaning of specified genes [38]. In 
our study, PDAC patients were firstly separated into the 
high-risk group or low-risk group based on their median 
risk score. Immune-related pathways between high-risk 
group and low-risk group were identified through the 
java software GSEA (http://​www.​broad​insti​tute.​org/​
gsea).

Assessment of immune infiltration
CIBERSORT is a gene expression-based deconvolution 
algorithm that uses gene expression signatures to esti-
mate the immune composition of a tumor biopsy [39]. 
In our study, PDAC patients were divided into differ-
ent groups according to their risk score. The infiltration 
of immune cells of each PDAC patient was calculated 
through CIBERSORT.

Gene expression analysis
Gene expression in normal and tumor tissues was ana-
lyzed through a web server: CEPIA2 (http://​gepia2.​can-
cer-​pku.​cn/) [40]. 179 tumor tissue samples of PDAC 
from cancer genome mapping (TCGA) and 167 normal 
pancreatic tissue genotype tissue expression (GTEx) were 
included in our analysis.

Survival analysis
The predictive performance of the hub genes in PDAC 
patients was further analyzed through the Kaplan–Meier 
survival analysis. The overall survival curves were gener-
ated using the R package “survminer”. Progression-Free 
survival (PFS) is defined as the time between the start of 
randomization and the progression of tumorigenesis (in 
any respect) or death (from any cause). Disease-Free sur-
vival (DFS) is defined as the time between the beginning 
of randomization and the recurrence of disease or death 
(from any cause).

Cell lines
Human PC cell lines PANC-1 and Mia paca-2 were 
obtained the Cell Bank of China Academy of Sciences 
(Shanghai, China) and were cultured in DMEM medium 
(Gibco company, Cat#: 11966025) with 10% fetal bovine 
serum (Gibco company, Cat#: 10099141), 100  U/mL 
Penicillin, and 100 μg/mL Streptomycin (Gibco company, 
Cat#: 10378016). Cells were cultured in an incubator with 
5% CO2 at 37 °C.

CRISPR/Cas 9‑mediated deletion of GMPS
The clustered regularly interspaced short palindromic 
repeats (CRISPR)/Cas9 system was used to knockdown 
GMPS. The CRISPR gene editing has been described pre-
viously [41]. Briefly, the oligos were designed based on 
information available at http://​crispr.​mit.​edu and cloned 
into the lentiCRISPR/Cas9 vector (Add gene, Cat#: 
49535) by following the Zhang laboratory’s protocol: (1) 
digest 5  μg of the lentiviral CRISPR plasmid with 3  μL 
BsmBI (NEB, Cat#: R0739) for 30 min at 37 °C; (2) phos-
phorylate and anneal each pair of oligos with T4 PNK 
Buffer (NEB) and T4 PNK (NEB, Cat#: M0201S) using 
the following parameters: 37 °C 30 min 95 °C 5 min and 
then ramp down to 25 °C at 5 °C/min; (3) dilute annealed 
and phosphorylated oligos from Step 2 at a 1:200 dilution 
into sterile water; (4) 50  ng digested lentiviral CRISPR 
plasmid from step 1, 1 μL diluted oligo duplex from Step 
3, 5 μL 2× Quick Ligase Buffer (NEB), 1 μL Quick Ligase 
(NEB, Cat#: M2200S) and ddH2O were put together to 
set up the ligation reaction and incubated at room tem-
perature for 10  min; (5) the plasmids of sgRNA-GMPS 
were transformed into Escherichia coli DH5alpha and 
were send out for sequencing (Shanghai Sunny Biotech-
nology Co, No. SH5338). The sgRNAs for GMPS were as 
follows:

SgRNA-1-F 5′-CAC​CGG​CCC​CGA​TGG​CTC​TGT​
GCA​A -3′
SgRNA-1-R 5′-AAA​CTT​GCA​CAG​AGC​CAT​CGG​
GGC​C-3′

https://string-db.org/cgi/input.pl
https://string-db.org/cgi/input.pl
http://www.broadinstitute.org/gsea
http://www.broadinstitute.org/gsea
http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
http://crispr.mit.edu
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SgRNA-2-F 5′-CAC​CGC​TTT​GAA​CAG​ATG​ATG​
AAT​A-3′
SgRNA-2-R 5′-AAA​CTA​TTC​ATC​ATC​TGT​TCA​
AAG​C-3′

After 72 h of infection with the lentiCRISPRv2 plasmid, 
PANC-1, and CFPAC-1, cells were selected by 10 μg/mL 
puromycin (Sigma, Cat#: P8833).

Lentivirus infection for the construction 
of GMPS‑overexpression
For overexpression of GMPS, pcDNA 3.1-GMPS (+) was 
constructed and used. Lentivirus was produced in 293T 
cells using the transfection reagent (QIAGEN, Cat#: 
301425) as the manufacturer’s instructions. Supernatant 
containing virus was collected after 48 h transfection.

PANC-1 and CFPAC-1 cells were transfected at the 
confluence between 30 and 50% with Lipofectamine 
3000 (Invitrogen Cat#: L3000008), and selected with 
10  μg/mL Neomycin (Sigma, Cat#: 1405-10-3) after 
48-h-transfection.

Cell proliferation analyses and colony formation assay
According to the manufacturer’s instructions, cell growth 
was evaluated by the Cell Counting Kit-8 assay (Dojindo, 
Japan, Cat#: CK04). PANC-1 and CFPAC-1 were seeded 
in 96-well plates (2000 cells/well, respectively) in a final 
volume of 100  μL. After 0, 24, 48, and 72  h of their 
attachment, 10 μL of CCK-8 reagent was added to each 
well and incubated for 2 h at 37 °C in the cell incubator. 
The absorbance was measured at 450  nm. The assays 
were performed in triplicate. For colony formation assay, 
5000 cells were seeded in 60 mm dishes for 14 days and 
were fixed with 4% paraformaldehyde for 15 min. Then, 
0.1% crystal violet was added, and let the solution stand 
for another 15  min. Clone numbers were measured by 
microscopy, and pictures were obtained.

Cell migration and invasion assays
According to the manufacturer’s instruction, the cell 
migration and invasion assays were performed by Tran-
swell® chambers (8  μm pore size; Millipore, Cat#: 
PIEP12R48). For cell migration assay, 5 × 104 cells were 
suspended in a serum-free medium and were placed in 
the top chambers. Then, a complete medium with 10% 
FBS was added into bottom chambers. The chambers 
were then cultured for 24  h at 37  °C in 5% CO2. Then, 
cells migrated through the Matrigel (Corning, Cat#: 
356234) were fixed with 4% paraformaldehyde for 15 min 
followed by the addition of 0.1% crystal violet for another 
15 min and stained with 0.1% crystal violet. Five fields of 
digital images were taken randomly, and the cells in each 
field were counted. For cell invasion assay, 5 × 104 cells 

were plated in 200  μL of serum-free medium and were 
seeded in top chambers with Matrigel. The culture media 
with 10% FBS was added into lower chambers. After 24 h, 
cells invading the matrix were fixed, stained with 0.1% 
crystal violet, and counted under a microscope.

Western blot assay and immunoprecipitation
The cells were collected and lysed on the ice with 1% 
SDS. Samples were separated by SDS-polyacrylamide 
gel electrophoresis and transferred to PVDF membrane 
(Millipore, Billerica, Cat#: ISEQ00010). Then, blots were 
blocked in 5% milk (5% low-fat milk powder in TBST), 
and then incubated with the appropriate primary anti-
body at 4  °C overnight. GAPDH was used as a loading 
control. The next day, blots were incubated with the sec-
ondary antibodies (1:5000) and labeled with horserad-
ish peroxidase (HRP) for 1  h at room temperature. The 
Fusion FX7 ECL western blot system (Vilber Lourmat, 
France) was used to visualize the protein expression.

Rabbit GMPS (Cat#: 14602S), anti-rabbit antibod-
ies (Cat#: 7074s) and anti-mouse (Cat#: 7076s) were 
purchased from Cell Signaling Technology. GAPDH 
(Cat#: sc-47724) was purchased from Santa-Cruz 
Biotechnology.

All primary antibodies were confirmed to be reactive 
only to manufacturer’s targets and used at 1:1000. Sec-
ondary antibodies were used at 1:5000.

Statistical analysis
Metabolism-related gene sets were extracted from the 
Molecular Signatures Database v5.1 (MSigDB) (http://​
softw​are.​broad​insti​tute.​org/​gsea/​downl​oads.​jsp#​msi-​
gdb), which contained a total of 1466 genes. Univariate 
Cox regression analysis and multivariate Cox regression 
analysis were applied by R package “coxph”. Random for-
est survival analysis was applied by SPSS.21. and demon-
strated by R package “forestplot”. Survival analysis was 
applied with the R package “survminer”. The receiver 
operating characteristic (ROC) was calculated by the R 
package “survival ROC”. Nomogram was calculated and 
visualized through R package “rms”. All the data were 
analyzed by SPSS 21.0 Statistical program GraphPad 
Prism 6 software. P < 0.05 was considered as significant.

Results
Impact of metabolic syndrome on overall survival (OS) 
in patients with PDAC
A total of 95 PDAC patients from the First Affiliated 
Hospital of Wenzhou Medical University were involved 
in our study. As of March of 2021, 57 patients died dur-
ing follow-up, none lost follow-up. The details of clinical 
information were shown in Additional file 1.

http://software.broadinstitute.org/gsea/downloads.jsp#msi-gdb
http://software.broadinstitute.org/gsea/downloads.jsp#msi-gdb
http://software.broadinstitute.org/gsea/downloads.jsp#msi-gdb
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Metabolic syndrome is conferred as central obesity, 
dyslipidemia, hyperglycemia, insulin resistance and 
hypertension. Metabolic disorders were proven to be 
associated with the increased tumor risk. A nomogram 
was constructed to predict 6-month, 1- and 2-year 
overall survival of the PDAC. Total scores were sum-
mations of each variable based on the intersection of 
the vertical line. By using this nomogram, we could 
convert each clinical index to the corresponding point, 
and then calculate the total point, which was used to 
evaluate the 6-month, 1- and 2-year survival rate. We 
found that metabolic syndromes and together with 
other clinical factors played an important role in the 

prognosis of PDAC patients (Fig. 1A). Moreover, deci-
sion curve analysis showed the high accuracy of the 
predictive prognostic of MetS score for 6-month, 1- 
and 2-year OS possibility (Fig. 1B–D).

Identification of metabolism‑related signature in patients 
with PDAC
In order to systematically characterized the distinct 
molecular mechanism of MetS genes in PDAC patients, 
patients from the TCGA database were set as a training 
dataset and applied to establish the Metabolism-related 
Signature. A total of 1466 metabolism-related genes were 
applied to univariate Cox regression analysis. A list of 20 

Fig. 1  Nomogram developed to predict the overall survival of PDAC patients. A Nomogram developed by integrating metabolic syndrome and 
clinical pathological parameters for predicting 6-month and 1-, 2-year survival of PDAC patients; (B–D). Calibration curve for risk of 6-month and 1-, 
2-year survival of metabolic syndrome
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genes associated most with the prognosis was selected 
for further study (P < 0.0001). Through the Multivari-
ate stepwise Cox regression analysis, a 5-gene progno-
sis model was successfully constructed. The riskscore of 
each patient was calculated as follows:

Performance of the risk score in training dataset 
and validation dataset
Patients with PDAC were divided into a high-risk group 
(N = 88) and a low-risk group (N = 88) according to 
their median risk score. The performance of the risk 
score in predicting the prognosis of the PDAC patient 
was firstly verified in the training dataset. The survival 
analysis revealed that the PDAC patients with high-
riskscore had a significantly shorter overall survival 
time than patients in low-riskscore group (P < 0.001, 
Fig. 2A). Receiver operating characteristic (ROC) anal-
ysis was used to describe the discrimination accuracy of 
our model. The area under the ROC curve (AUC) of the 
model was 0.786 in the TCGA data set, which indicates 
that the reliability of our PDAC’s prognosis model. 
(Fig. 2B). As Fig. 2C showed, as the riskscore increased, 
death toll increased and the follow-up time decreased. 
In addition, we found that the overall survival (OS), dis-
ease-free survival (DFS) and progression-free survival 
(DFS) were shortened in the PDAC patients in TCGA 
database with an increasing risk score (P < 0.00001, 
respectively) (Additional file 2: Fig. S1).

Besides, progression-free survival (PFS) and dis-
ease-free survival (DFS) of two groups were compared 
with each other respectively. The results showed that 
patients with high riskscore had a significantly shorter 
PFS, so as DFS, than the patients with low riskscore 
(P < 0.0001, respectively). The area under the ROC 
curve (AUC) for the model was 0.79 and 0.798, respec-
tively (Fig.  3A, B). These results suggest that the risk 
score act as a strong prognostic indicator for PDAC 
patients. Risk score distributions, survival status and 
expression profiles of the 5 genes of patients in ICGC 
dataset and GEO dataset was shown in Additional 
file 3: Fig. S2.

Furthermore, the expression of the model’s constitu-
ent genes between PDAC and normal tissue was inves-
tigated via CEPIA2, a web server. The results showed 
that the expressions of the CDA, GMPS, and PI4KB 

RiskScore = 0.91203 ∗ expression level of CA12

+ 0.9 ∗ expression level of CDA

+ (−3.38811) ∗ expression level of DGKZ

+ 6.76897 ∗ expression level of GMPS

+ (−6.09824) ∗ expression level of PI4KB.

were significantly elevated in PDAC from the TCGA 
dataset compared with normal tissues from the GTEx 
dataset, while CA12 was downregulated in PDAC 
(Fig.  3C). Survival analysis showed that CA12, GMPS, 
and PI4KB were associated with the prognosis of PDAC 
(Fig. 3D).

Moreover, two independent validation cohorts were 
applied to evaluate the robustness of our model in 
PDAC patients. In the ICGC databases, based on the 
formula, PDAC patients were subdivided into high-
risk and low-risk groups according to their median 
risk score. Consistent with training cohort results, we 
found that patients in the high-risk group had a sig-
nificantly shorter OS than patients in the low-risk 
group (P = 0.034, Additional file 4: Fig. S3A). Then, this 
5-gene signature was further applied to the GEO data-
set. In agreement with the TCGA dataset and ICGC 
dataset, the survival analysis showed that patients with 
high riskscore had a worse prognosis than those with 
low riskscore (P = 0.005, Additional file 4: Fig. S3B).

The nomogram prediction model
Multivariate Cox hazard analysis was performed to com-
pare the robustness of risk score with other clinical infor-
mation in predicting the prognosis of PDAC patients. our 
analysis contains clinicopathologic indicators including 
Riskscore, Age, Gender, Histologic Grade, AJCC stage, 
T stage, and N stage. As shown in Fig.  4A, Riskscore 
maintained independence from other clinical indicators 
in predicting the OS of PDAC patients and was the only 
factor that was remarkably correlated with the prognosis 
of PDAC patients in the TCGA dataset [P < 0.0001, HR 
(3.38 (2.125–5.375))]. According to the Cox regression, a 
nomogram was built to predict the prognosis of PDAC 
patients in clinical practice (Fig. 4B).

Construction of a weighted correlation network 
and the identification of target module
The top 25% of most variant genes were selected to con-
struct a co-expression network with Weighted gene co-
expression network analysis (WGCNA) with WGCNA 
R package (Fig. 5A). Clinical data including age, gender, 
DFS time, DFS status, Histologic grade, OS time, OS 
status, T stage, N stage, M stage, and risk score were 
included in our research (Fig. 5B). The power of 8 (scale-
free R2 = 0.88) was selected as the soft-thresholding. A 
total of 15 modules were identified among the patients 
with PDAC and assigned different colors. The associa-
tion between each module and the clinical character was 
then analyzed. The results showed that the blue module 
(Correlation coefficient = − 0.38, P = 4e−04), lightcyan 
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Fig. 2  Performance of the prognostic model in the TCGA dataset. A Survival curve of overall survival between high-risk group and low-risk group 
in TCGA dataset. B Receiver operating characteristic (ROC) curves for 5-year survival in TCGA dataset. C Risk score distributions, survival status and 
expression profiles of the 5 genes of patients in TCGA dataset

(See figure on next page.)
Fig. 3  The performance of the prognostic model in prediction the PFS and DFS in TCGA dataset. A, B Survival curve of PFS and DFS between 
high-risk group and low-risk group in TCGA dataset and relative ROC curve. C Expression of CA12, CDA, DGKZ, GMPS and PI4KB in pancreatic cancer 
and normal pancreatic tissues. The red box represents tumor and grey box represents normal. D Survival analysis of CA12, CDA, DGKZ, GMPS and 
PI4KB in pancreatic cancer and normal pancreatic tissues
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Fig. 3  (See legend on previous page.)
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module (Correlation coefficient = 0.53, P = 3e−07), mid-
night blue module (Correlation coefficient = − 0.49, 
P = 2e−06) and purple module (Correlation coeffi-
cient = 0.42, P = 9e−05) were strongly correlated with the 
risk score of PDAC patients (Fig. 5C). Figure 5D showed 
a scatter plot of genes in blue modules.

Function enrichment analysis
The target module genes were further analyzed by GO 
and KEGG to obtain insights into the function of genes 
in the hub module. GO analysis showed that the genes in 
the blue module were significantly enriched in T cell acti-
vation, leukocyte cell–cell adhesion in biological process 
(BP); external side of plasma membrane, immunological 
synapse, alpha–beta T cell receptor complex in Cellular 
Component (CC); carbohydrate-binding, immune recep-
tor activity, receptor-ligand activity in Molecular Func-
tion (MF) (Fig. 5E). Moreover, hub genes were also highly 
represented in these top 5 KEGG pathways, including 
cytokine-cytokine receptor interaction, viral protein 
interaction with cytokine and cytokine receptor, hemat-
opoietic cell lineage, chemokine signaling pathway, and T 
cell receptor signaling pathway (Fig. 5F).

CIBERSORT analysis of tumor‑infiltrating immune cells 
(TIICs) in pancreatic cancer
The function that chemokines and chemokine recep-
tors can regulate the immune cells’ infiltration in 
tumors caught most of our attention. Furthermore, GO 
and KEGG analysis showed that genes in blue mod-
ule enriched in the immune process, especially in T 
cells’ activities. Thus, we would like to explore whether 
the infiltration of immune cells was different between 
PDAC patients from high-risk and low-risk groups. 
CIBERSORT was applied to analyze the profile of 
tumor-infiltrating immune cells in PDAC. We divided 
the PDAC patients from TCGA into high-risk and low-
risk group according to the median riskscore in our 
previous study. The differences in immune microenvi-
ronment between the high- and low-risk groups were 
investigated further. The TIICs composition of PDAC 
patients from two groups was analyzed by CIBERSORT. 
As shown in Fig.  6A, C, the intergroup proportions of 
the 22 types of TIICs were similar while the intragroup 
proportions were varied. A visualization of the relative 
proportions of 22 TIICs between the high-risk and low-
risk groups was shown by violin diagram (Fig. 6C). The 

Fig. 4  Confirmation of prognostic value of the prognostic model in TCGA dataset. A The clinical significance of risk score in TCGA dataset. CI 
confidence interval; HR. B Nomogram containing risk score with other clinical information was constructed
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Fig. 5  Weighted Gene Co-Expression Network Analysis Identifies risk score related module in patients with PDAC. A Dendrogram of genes 
clustered based on a dissimilarity measure (1-TOM). B The clustering was based on the expression data of expressed genes in PDAC patients. The 
color intensity was proportional to older age, male, longer survival time, higher histologic grade and T, N, M stage. C Heatmap of the correlation 
between module eigengenes and different clinical information of PDAC patients. D The scatter plot of the genes in blue modules and GO 
enrichment and KEGG pathway analysis of the blue module
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results showed that 2 TIICs (T cells CD8, T cells Regu-
latory) were in higher proportions in the low-risk group 
than those in the high-risk group, whereas 3 TIICs 
(Tregs NK cells Activated, Dendritic cells Activated, 
Mast cells Resting) were in higher proportions in the 
high-risk group (P < 0.05, respectively). Moreover, the 
two most common TIICs in PDAC tissues were B and 
T lymphocytes, accounting for approximately 50% of all 
TIICs. Figure  6B showed the correlation between each 
TIIC.

Hub gene identification
Our study identified 693 genes in the blue module that 
correlated highly with the risk score of PDAC patients. 
Furthermore, we uploaded all genes in the blue module 
to the STRING database to construct a network of pro-
tein–protein interactions (PPI). In the PPI network, genes 
with a top 20 connectivity degrees were also defined as 
hub genes (Fig.  6D). The expressions of these 20 genes 
between pancreatic tumor and normal tissue was inves-
tigated via CEPIA2, a web server. The results showed that 
expressions of CCR7, CXCR3, CXCR5, CCL5, CXCR4, 
CCL19, CCL21, CXCL13, CXCR6, SAA1, S1PR4, PONC 
were significantly elevated in pancreatic tumor tissue 
from the TCGA dataset compared with normal tissues 
from the GTEx dataset. (Fig.  6E). In addition, the hub 
genes which expressed differently between pancreatic 
tumor tissue.

Gene set enrichment analysis of the immune status 
between high‑risk and low‑risk group
GSEA analysis was applied to explore the potential 
Immune-related signaling pathways between high-
risk and low-risk groups in TCGA dataset (Fig.  7A–C). 
Immunologic signature gene sets in Molecular Signatures 
Database (MSigDB) which contained 5219 gene sets were 
applied in our study. GSEA revealed that low riskscore 
was significantly associated with peptide injection OT2 
thymocyte up (NES = 1.57, P = 0.002), 24H TLR1 TLR2 
Ligand treated monocyte (NES = 1.58, P = 0.014) and 
PBMC CD4 T cell up (NES = 1.63, P = 0.017). The results 
elucidated that immune-related responses and processes 
played an essential role in the metabolism of PDAC 
patients.

Knockdown of GMPS can significantly represses 
the proliferation and migration ability of pancreatic cancer 
cells
To evaluate the potential function of Guanosine 
Monophosphate Synthetase (GMPS) in PDAC, we 
knocked down GMPS in PANC-1 and CFPAC-1 cells 
through the CRISPR-Cas9 system. The efficiency of 
GMPS knockdown was verified by western blot (Fig. 8A). 
Moreover, the viability of cells was measured by Cell 
Counting Kit-8 (CCK-8) assay, and the result showed that 
GMPS knockdown significantly compromised the growth 
rate of PDAC cells (Fig. 8B). Similarly, the colony forma-
tion assay revealed that the GMPS knockdown markedly 
reduced the number of clones after 14 days of cultivation, 
compared with the control (P < 0.001) (Fig. 8C). Together, 
these results suggest that GMPS plays a positive role in 
the proliferation of PDAC cells in vitro.

Furthermore, Transwell assays were used to assess the 
migration and invasion of PC cells. The results showed 
that the motilities of PANC-1 and CFPAC-1 were sig-
nificantly affected by the expression level of GMPS. The 
migration rate of cells with GMPS depletion was much 
lower than the control cells (Fig. 8D). These results dem-
onstrated that GMPS depletion inhibited the migration 
of PDAC cells.

Overexpression of GMPS significantly enhances 
the proliferation and migration of pancreatic cancer cells
To further assess the oncogenic role of GMPS, GMPS was 
overexpressed in the pancreatic cancer cell lines PANC-1 
and CFPAC-1. Western blot analysis confirmed a signifi-
cant increase in GMPS expression in PANC-1-GMPS and 
CFPAC-1-GMPS cells relative to the expression of GMPS 
in control cells (Fig.  8E). CCK-8 assay showed that the 
overexpression of GMPS increased viability of PANC-1 
and CFPAC-1 cells (Fig.  8F). Moreover, the colony-form-
ing assay showed that PANC-1 and CFPAC-1 cells with 
GMPS overexpression demonstrated a considerable growth 
advantage relative to the respective control cells (Fig. 8G). 
Meanwhile, a distinctly higher migration rate was observed 
in GMPS overexpression cell lines than in the control cells 
through Transwell assay (Fig.  8H). Thus, GMPS overex-
pression significantly enhances the proliferation and migra-
tion ability of pancreatic cancer cells in vitro.

Fig. 6  CIBERSORT analysis of tumor-infiltrating immune cells (TIICs) in pancreatic cancer. A The proportions of the 22 types TIICs in each PDAC 
patients. B Correlation matrix of all 22 immune cell proportions in TCGA dataset. C The proportions of the 22 types TIICs between the high- and 
low-risk groups. D The genes with a top 30 connectivity degree in the PPI network. The color intensity was proportional to higher connectivity 
degree. E Kaplan–Meier survival analysis of top 20 genes from blue module in PDAC patients

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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Discussion
Pancreatic cancer is one of the deadliest cancers world-
wide with a 5-year survival rate dismal at ~ 8% [42]. The 
tumor occurrence is a progressive process under the 
joint action of internal and external pathogenic factors, 
such as environmental factors, genetic factors, dietary 
habits, etc. PDAC is a notable characteristic of dense 
stroma, with appropriate being up to 90% of the tumor 
volume, which contributes to lack of vascularization 
and hypoxia [43]. The hypoxia in the tumor microenvi-
ronment causes cancer cells to undergo metabolic stress 
and nutrient deprivation [44]. As a result, PDAC tumor 
cells reform to the so-called “metabolic reprogramming”, 
an updated hallmark of cancer. In recent years, more 
and more scientists have focused their attention on the 
metabolic changes of tumors. Unlike normal cells, PDAC 
cells have high glycolysis levels, even in the presence of 
oxygen and reduced mitochondrial function, leading to 
power themselves through aerobic glycolysis, also called 
the “Warburg effect” [45]. On the other hand, cancer 
cells induce oxidative stress in the neighboring stromal 
cells by secreting ROS, triggering aerobic glycolysis, and 
production of high energy metabolites, especially lactate 
and pyruvate, which is also called the “reverse Warburg 
effect” [46]. In a word, tumor cells increase glycolysis and 
glucose transport, high glutamine consumption, lipid, 
and amino acid biosynthesis to maintain the homeosta-
sis. The differences in metabolism in PDAC have received 
renewed interest since altered homeostasis has been 
identified as a contributing factor to PADC progression. 
However, its underlying mechanisms remain not com-
pletely understood.

Our study integrated the metabolism-transcriptomics 
approach revealed that PDAC tissues exhibit a repro-
gramming of metabolism in association with an altered 

expression of metabolism-associated genes. We con-
structed on metabolism-related gene signature to predict 
the prognosis of pancreatic cancer based on TCGA data-
bases and was further validated in the ICGC database and 
the GEO database. The results showed that PDAC patients 
with high riskscore would have a worse prognosis than 
patients with low riskscore. Our model contained five 
metabolism-related genes: CA12, CDA, DGKZ, GMPS, 
PI4KB. Carbonic anhydrase 12 (CA12) encodes zinc met-
alloenzyme, which belongs to the family of Carbonic 
anhydrases (CAs) that catalyze the reversible hydration of 
carbon dioxide. They are involved in a variety of biological 
processes, including salivary and gastric acid formation, 
respiration, bone resorption, calcification, etc. Previous 
studies have reported that CA12 is highly expressed in 
many human tumors and is related to the prognosis of 
patients [47, 48]. Narasimha Rao Uda etc., found that 
blocking the enzymatic activity of Carbonic Anhydrase 12 
would decrease tumor proliferation, and CA12 would be a 
novel therapy target for CA12-positive tumor [49]. CA12 is 
overexpressed in breast tumor tissues than normal breast 
tissues and is significantly associated with breast cancer 
prognosis [50]. However, the research about CA12 and 
the progression of PDAC have not been reported. Cytidine 
deaminase (CDA) is reported to participate in pyrimidine 
salvaging. Currently, most of the studies focus on the role 
of CA12 in blood tumors. The silence of CDA in leukemia 
would inhibit tumor growth and promote cell apoptosis in 
Chronic Myeloid Leukemia (CML) cells [51]. Further study 
demonstrated that the prognosis of acute myeloid leuke-
mia (AML) with the treatment of Cytarabine was strongly 
related to the expression of CDA. Patients with lower CDA 
activity would receive a higher response rate and better 
prognosis [52]. Moreover, CDA is reported to be overex-
pressed in pancreatic cancer and closely associated with the 

Fig. 7  GSEA analysis of the immune status between high-risk and low‑risk group
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Fig. 8  the performance of GMPS in PDAC cells in vitro. A GMPS knockdown was confirmed using western blot. B–D Knockdown of GMPS in 
PANC-1 and CFPAC-1 inhibited the proliferation and migration of tumor cells. E The expression of GMPS was confirmed using western blot. F–H 
Overexpression of GMPS in PANC-1 and CFPAC-1 enhanced the proliferation and migration of tumor cells
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effect of Gemcitabine in PDAC [53, 54]. Based on genomic 
approaches, scientists found that CDA participated in the 
conversion of 5hmdC and 5fdC, leading to the accumula-
tion of DNA damage, and resulted in the death of cells [55]. 
DGKZ is reported to act as an oncogene in osteosarcoma 
(OS) and is correlated with poor prognoses of OS patients, 
but the relationship between DGKZ and PDAC is lack-
ing. The research focuses on PI4KB and tumor is lacking. 
The function of PI4KB in PDAC requires further studies. 
Similarly, previous studies have demonstrated that GMPS 
played an important role in the progression of ovarian 
cancer [56], hepatocellular carcinoma [57], myeloid [58] 
etc. The research focused on the role of GMPS in PDAC 
is rare. We found that the GMPS acted as an oncogene in 
PDAC. In the future, more time will be spent on the role 
and the specific mechanism of GMPS in PDAC. So far, we 
established a signature that could successfully predict the 
survival of PDAC. As is known to all, a single gene cannot 
accurately predict the outcome of PDAC patients, and we 
believe that the combination of these five genes based on 
the multivariate Cox analysis could enhance the sensitivity 
and specificity in predicting the outcome of PDAC patients 
and worth popularizing in clinic.

Moreover, the results of the forest plot showed that our 
signature is more powerful in predicting the prognosis 
of PDAC patients than other classic clinical characters. 
Our signature, which combined with clinical characters 
including, age, gender, AJCC stage, etc., made the model 
applicable in clinical practice. Our model provides new 
ideas for the diagnosis and treatment of pancreatic can-
cer in clinical practice.

Previous studies have demonstrated that the interac-
tion between the immune system and tumor metabolism 
plays an important role in tumorigenicity and progression 
of pancreatic cancer [59]. Thus, we applied WGCNA to 
find potential immune-related genes associated with the 
riskscore of PDAC patients. The results showed that the 
blue module was significantly associated with riskscore of 
PDAC patients. The genes in this module were enriched 
in the immune-related signaling pathway. Then a total of 
20 hub genes of the blue module were found through the 
construction of the PPI network. The result showed that 
CCR7, CXCR3, CXCR4, CXCR5, CXCR6, CXCL13, CCL5, 
CCL19, CCL21, SAA1, S1PR4, PONC were significantly 
elevated in pancreatic tumor tissue from TCGA datasets 
compared with normal tissues from GTEx datasets. We 
found that most of these genes belong to the chemokines 
and chemokine receptors family. In recent years, the role 
of chemokines and their receptor families in tumor devel-
opment has attracted great attention [54–61]. Various evi-
dence indicated that they were significantly associated with 
tumor progression. Tumor-related chemokines can not 
only promote the proliferation and inhibit the apoptosis 

of tumor cells, but also control the migration, angiogen-
esis of tumor cells, regulate the infiltration of immune 
cells in tumors, and participate in the selective metastasis 
of tumor cells. Through the presence of cytokines, mono-
cytic cells were recruited to the tumor microenvironment 
and become tumor-associated macrophages (TAMs) [62]. 
Moreover, TAMs can mediate immunosuppression and 
angiogenesis and promote tumor progression by releas-
ing cytokines, which triggers waterfall response for TAMs 
recruitment. Moreover, C-X-C motif chemokine receptors 
also contribute to Gemcitabine resistance, and combina-
tion with a CXCR4 antagonist (AMD3100) or hedgehog 
inhibitor (GDC-0449) with gemcitabine inhibit the growth 
of orthotopic pancreatic tumor-bearing mice [63].

The function that chemokines and chemokine recep-
tors can regulate the infiltration of immune cells in tumors 
caught most of our attention. Furthermore, GO and KEGG 
analyses showed that genes in the blue module enriched in 
immune process, especially in T cells’ activities. Thus, we 
would like to explore whether the infiltration of immune 
cell was different between PDAC patients from high-risk 
group and low-risk group. CIBERSORT was applied to 
analyze the profile of tumor-infiltrating immune cells in 
PDAC. The results showed that that 2 TIICs (T cells CD8 
and T cells regulatory) were in higher proportions in the 
low-risk group than those in the high-risk group, whereas 
3 TIICs (Tregs NK cells activated, Dendritic cells activated 
and Mast cells resting) were in higher proportions in the 
high-risk group than those in the low-risk group. CD8+ T 
cells are the most virulent of T cells, and the number of 
CD8+ T cells around the tumor directly determines the 
damage to the tumor. The researchers found that renal car-
cinoma patients with less than 2.2% of CD8+ T cells had 
a four-fold higher risk of disease progression after surgery 
[64]. During the process of tumor immunity, besides T 
cells, NK cells, Dendritic cells, Mast cells also play criti-
cal roles. NK cells are regulatory cells which can shape the 
anti-tumor immune response by reciprocal interactions 
with dendritic cells, macrophages, T cells, and endothelial 
cells through a combination of cell surface receptors and 
secreted cytokines [65, 66]. PDAC has recently been found 
to impair NK cell tumor cell recognition and function 
by the regulation of several mediators, including trans-
forming growth factor beta (TGF-β), interleukin (IL)-10, 
indoleamine 2,3-dioxygenase (IDO), and matrix metallo-
proteinases (MMPs) [67]. Although it shows an extremely 
low frequency of NK cell infiltration in the microenviron-
ment, it undertakes the function in anti-tumor immune 
responses in PDAC. Dendritic cells played a critical role 
in the T-cell-mediated tumor immunity, which transports 
tumor antigens to T cell and finally activates cytotoxic T 
lymphocytes [68, 69]. Since the 1990s, growing research 
has set dendritic cells as a novel therapy target for cancer 
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treatments and made gratifying progress [70]. As for Mast 
cells, previous studies have demonstrated that mast cells 
play a positive and negative role in tumor development 
[71] and act as a new therapeutic target in tumor treat-
ment [72]. As mentioned above, targeting the metabolic 
aberrations to reprogram the metabolism in immune cells 
might lead to discovering novel therapeutic strategies.

However, firstly, this study was a monocenter prospec-
tive research, some selection, calculation bias and devia-
tions were unavoidable. The outcomes should be validated 
by multicenter prospective information. Moreover, we 
have found that the expression of GMPS was higher in 
PDAC patients compared with normal patients and the 
expression of GMPS was associated with the outcome of 
PDAC patients. Further researches demonstrated that 
GMPS played as an oncogene in PDAC, it promoted pro-
liferation and metastasis of PDAC cells. However, the rela-
tionship between GMPS and immunity system in PDAC 
cell is still unclear and more experiments are needed in the 
future. If possible, further experiments could be perfor-
mance in vivo and in vitro to verify these results.

In conclusion, we established a metabolism-related sig-
nature to predict the prognosis of PDAC patients based 
on TCGA databases and was validated in ICGC databases 
and GEO databases. Future studies demonstrated that 
different of tumor infiltration of immune cells between 
high-risk and low-risk groups might cause the differ-
ent prognoses of PDAC patients. However, experimental 
research on the mechanism between tumor-infiltration of 
immune cells and PDAC are still needed in the future.
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