Table 2.
Modela | Resampling | F1 score | AUCb | Accuracy | Recall | Precision |
Random forestc | SMOTEd | 0.186 | 0.591 | 0.689 | 0.476 | 0.116 |
Extreme gradient boostinge | Random oversampling | 0.179 | 0.591 | 0.614 | 0.563 | 0.106 |
K-nearest neighborsf | Random undersampling | 0.181 | 0.605 | 0.541 | 0.682 | 0.105 |
Naïve Bayesg | SMOTE | 0.184 | 0.602 | 0.596 | 0.609 | 0.108 |
Logistic regression | SMOTE | 0.185 | 0.608 | 0.570 | 0.654 | 0.108 |
aAll models except neural network applied to known predictors only.
bAUC: area under the receiver operator characteristic curve.
cRandom forest hyperparameters: estimators=200, maximum features=8, maximum leaf nodes=300.
dSMOTE: synthetic minority oversampling technique.
eExtreme gradient boosting hyperparameters: booster=gbtree, η=0.9, γ=0, α=1, λ=0.
fK-nearest neighbors: N=500.
gNaïve Bayes: α=0.