Skip to main content
. 2021 Dec 6;9(12):e29225. doi: 10.2196/29225

Table 2.

Best supervised learning models.

Modela Resampling F1 score AUCb Accuracy Recall Precision
Random forestc SMOTEd 0.186 0.591 0.689 0.476 0.116
Extreme gradient boostinge Random oversampling 0.179 0.591 0.614 0.563 0.106
K-nearest neighborsf Random undersampling 0.181 0.605 0.541 0.682 0.105
Naïve Bayesg SMOTE 0.184 0.602 0.596 0.609 0.108
Logistic regression SMOTE 0.185 0.608 0.570 0.654 0.108

aAll models except neural network applied to known predictors only.

bAUC: area under the receiver operator characteristic curve.

cRandom forest hyperparameters: estimators=200, maximum features=8, maximum leaf nodes=300.

dSMOTE: synthetic minority oversampling technique.

eExtreme gradient boosting hyperparameters: booster=gbtree, η=0.9, γ=0, α=1, λ=0.

fK-nearest neighbors: N=500.

gNaïve Bayes: α=0.