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Abstract

Current expectation is that projected climate change may have adverse effects on fish habitats and 

survival. The analysis leading to these concerns is typically done at large scale with limited 

possibility to quantify the local biological response and compare with previous conditions. 

Our research investigated the effects of recorded climate conditions on Chinook salmon 

(Oncorhynchus tshawytscha) spawning and rearing habitats and growth responses to the local 

climate and compared those conditions to predicted responses to a climate change. The study 

site was a 7 km long reach of Bear Valley Creek, an important spawning stream for this US 

Endangered Species Act listed species, in the Pacific Northwest of United States. We used 

2D numerical modeling supported by accurate, high-resolution survey data to calculate flow 

hydraulics at various discharges from base to bankfull flows. For past and future conditions, 

computed flow hydraulics were combined with habitat suitability indices (SI) to compute 

spawning and rearing habitat suitability. Information on habitat suitability along with fish density 

and stream water temperature informed a growth model to quantify the potential fish size, an 

index of survival rates and fitness. Our results indicate that yearly-averaged rearing habitat quality 

remains similar to historic, but the timing of high- and low-quality habitat periods shift within the 
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calendar year. Future spawning habitat quality may be significantly reduced during the seasonal 

period to which Chinook have currently adapted their spawning behavior. The growth model 

indicates an increase in anticipated size of Chinook salmon for predicted future climate conditions 

due to water temperature increase. Consequently, future climate conditions may have a substantial 

negative impact on spawning and limited impact on rearing conditions due to flow reduction 

and thus quality and extent of available habitat. However, the expected warmer stream water 

temperatures may benefit rearing, because of increased fish size in these high elevation streams.
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INTRODUCTION

Current projections for climate change indicate that, over the next century, the Earth’s 

atmosphere will experience a warming trend (IPCC, 2014). In the Pacific Northwest (USA), 

air temperatures are predicted to rise 2 to 5 °C in th enext century from current temperatures 

(IPCC, 2014). Within the scientific community, it is accepted that at global and regional 

scales, this rise in air temperature has broad implications for seasonal and annual weather 

patterns, particularly precipitation and stream temperature (Isaak et al., 2018; Luce et al., 

2013). By extension, climate change will also impact the ongoing habitat quality for a 

variety of stream species, both plant and animal (Isaak et al., 2010; Muñoz-Mas et al., 2016; 

Rieman et al., 2007; Santiago et al., 2017), because changes in hydrology will impact stream 

hydraulics, morphology and thermal regimes (Goode et al., 2013; Hamlet and Lettenmaier, 

2007). What is less well understood are the biophysical responses to climate change by 

the various physical and habitat systems and by the species that reside within them. This 

is especially true when considering these responses at sub-region and local scales, because 

previous investigations have focused mainly on regional scales with stream segment and 

watershed resolutions at hundreds of meters and square kilometer (Battin et al., 2007; 

Rieman et al., 2007). For aquatic systems, the specific responses, both physical and biotic, 

depend substantially upon the local environment (Huntsman et al., 2018). High mountain 

headwater streams, for example, are highly morphologically heterogeneous (Montgomery 

and Buffington, 1998) and will almost certainly have a different physical response and 

biotic adaptation to regional climate change than would a low altitude river within the same 

geographic region.

The expected air temperature increases may have profound impact on the precipitation 

regime, which may result in changes in snowmelt peak intensity and timing, transition from 

snow-dominated to rain-snow systems, and more variable spring discharges (Barnett et al., 

2005; Stewart, 2009). Change in precipitation and temperature patterns may impact hillslope 

processes, including wildfire and sediment delivered to streams (Goode et al., 2012). Large 

winter and extended spring discharges may increase scouring events of redds, the egg nest 

of salmonids placed within the streambed gravel, during the incubation period, which may 

disrupt egg survival. Similarly, these large spring discharges may mobilize fine sediments 

and clog or entomb salmon redds, potentially threatening the embryonic development 
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(Maturana et al., 2013). Conversely lower summer flows may reduce spawning habitat, 

which could be further impaired by reduced fine flushing flows, by habitat fragmentation 

and shrinking and reduce stream-floodplain interaction.

Flow regime changes are expected to impact stream thermal regime, food availability and 

fish density. All these variables impact fish development and growth especially for rearing 

salmonids before migrating to the ocean (Crozier et al., 2010). It is expected that body size 

may have a significant effect on fish fitness as larger fish may have higher reproductive 

success, and lower mortality (Kingsolver and Huey, 2008; Sogard, 1997) than smaller 

conspecifics, although not necessarily higher potential of ocean migration success as shown 

from a large population study of Chinook salmon (Oncorhynchus tshawytscha) along the 

dam-regulated Columbia river basin (Zabel and Achord, 2004). Consequently, modeling 

the effects of flow hydraulics on fish habitat distribution and fish biological response is 

crucial for predicting the effect of climate change on fish habitat quality. Analysis of 

past climate change’s effect on fish could be an attractive approach to understand fish 

response. However, it requires past monitored data at a spatial and temporal resolutions 

that are difficult to attain if we aim to include variability at micro-habitat scale (meter or 

sub-meter scale). Since, in most cases, direct experimentation on climate change scenarios 

and the responses to those changes is virtually impossible, the primary tool for climate 

change research is numerical and statistical modeling (Rieman et al., 2007; Wenger et al., 

2011). Aquatic habitat (suitability) models combine hydraulic and biological information 

(Tonina and Jorde, 2013) at different levels, from the popular correlative statistical models or 

suitability index based models (SI-based), like the instream flow incremental methodology, 

IFIM, (Bovee, 1978; Noack et al., 2013), bioenergetic (Fausch, 1984; Hayes et al., 2007; 

Wall et al., 2017, 2016) to individual-based models, IBM (Railsback et al., 2014, 2013, 

1999; Railsback and Rose, 1999). Correlative statical models (Naman et al., 2019) relate 

hydraulic variables to habitat suitability indices (SI), mainly depth, velocity and substrate 

(Tonina and Jorde, 2013), but also temperature (Benjankar et al., 2019), scour and other 

variables, typically expressed as univariate curves or fuzzy logic derived indices, to quantify 

a species-life-stage-specific weighted usable areas (WUA) (Jorde et al., 2000; Noack et al., 

2013). Although this approach has been widely criticized because of its lack of predictivity 

with fish abundance, WUA is actually an index of suitable habitat availability and not an 

index of fish abundance expect when fish are only limited by space, namely they are at 

carrying capacity (Hayes et al., 2016). Thus it cannot be related to fish fitness, although it 

has been reported to be effective in defining the habitat use when supported by accurate 

hydraulic information at the fish scale (Brown and Pasternack, 2009; Ghanem et al., 1996; 

Kammel et al., 2016; Le Pichon et al., 2009; Leclerc et al., 1995; Noack et al., 2013) with 

hydromorphological information predicted with two or three dimensional models (Tonina 

and Jorde, 2013). A key limitation of SI-based approach is WUA sensitivity to the suitability 

indices whose transferability among streams and seasons has been questioned because fish 

presence-absence depend also on food availability, intra- and inter-specific interactions, 

seasonality, and time of the survey and population and its site adaptation (Naman et al., 

2020).

To address some of the limitation of SI-approach and account for the impact of food 

availability and thermal regime on fish growth, bioenergetic models have been proposed 
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based on foraging models (Fausch, 1984). They estimate net rate of energy intake (NREI) 

as the difference between gross rate of energy intake, adjusted for losses to waste products 

and swimming costs (Fausch, 1984; Naman et al., 2020). Their key limitation is information 

on food availability, especially for drift-feeding salmonids, as drift may change spatially 

and temporally (Hayes et al., 2007). Whereas bioenergetic assessments resolve the problem 

of food and thermal regimes, they do not account for fish interaction and their dynamic 

behavior, which is addressed with individual-based salmon models (Railsback et al., 2013). 

An alternative approach to these behavioral models is the use of statistical growth models 

supported by information of habitat availability (Crozier et al., 2010). The statistical growth 

model is based on regression analysis of past information on fish size and environmental 

variables which may include habitat extent, population size stream water temperature to 

predict fish growth. The advantage of this latter approach is that it would not require 

information on food availability, which may be indirectly accounted into the regression 

model.

A common thread of all these approaches is their dependence on accurate morphological 

and hydraulic information, which should describe the fish environment at its micro-scale on 

reaches long enough to capture the natural variability of their habitat. Hydraulic information 

is typically predicted from numerical modeling. 1D modeling is insufficient to this task 

due to its limited ability to provide detailed flow and topographic information. (Ghanem 

et al., 1996) The situation has significantly improved with 2D or 3D flow models, whose 

hydraulic simulations can be used to provide spatially explicit habitat maps (e.g., Brown 

and Pasternack, 2009; Ghanem et al., 1996; Kammel et al., 2016; Leclerc et al., 1995). 

However, to take full advantage of 2D and 3D models, which can then represent usable 

habitat as geographically explicit patches, high-resolution bathymetric data is needed over 

longer reaches than it can be reasonably obtained using conventional surveying techniques 

(McKean et al., 2009). Past studies have limited in their extent, reach lengths that were on 

the order of 100 meters, by difficulties associated with obtaining detailed bathymetric data 

(Boavida et al., 2012; Brown and Pasternack, 2009; Crowder and Diplas, 2000; Leclerc et 

al., 1995; Li et al., 2015). Advances in surveying techniques has recently allowed segment 

(several km) and full (tens of km) river length habitat quality modeling (Carnie et al., 2015; 

Kammel et al., 2016; Tonina and McKean, 2010).

Despite the availability of these different ecohydraulic methods, previous research on 

climate change effects on fish habitat tended to be exclusively focused on either habitat 

hydraulics or on biological responses, with little crossover between the disciplines. Some 

notable studies, though, have incorporated both ecohydraulics and bioenergetics in their 

research methodologies. Jager et al. (1999) used a 1D flow supported PHABSIM model 

(SI-based approach) that was sub-divided into individual habitat units to create a quasi-2D 

model. This was coupled with an individual-based trout population model to simulate the 

effects of climate change driven temperature and flow fluctuations on population mortality 

and persistence in the North Middle-Fork of the Tule River, a Sierra Nevada stream 

in California. Van De Wolfshaar et al. (2010) used a 2D hydrodynamic model and a 

spatially explicit habitat model, combined in a GIS-type analysis, to investigate the effect 

of stream temperatures on the spawning behaviors and young-of-year (YOY) densities of 

roach (Rutilus rutilus), pikeperch (Sander lucioperca), bream (Abramis brama) and bleak 
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(Alburnus alburnus) fish species in floodplain areas of the River Waal, Netherlands. Their 

study considered only the floodplains and not the main channel of the river. Habitat areas 

were defined from biological surveys and not from the hydraulic modeling itself. Yates et 

al. (2008) used the WEP21 water resource management program to investigate the effects of 

climate change induced stream temperature increases and dam operation on the Sacramento 

River in California’s Central Valley on the spawning and rearing productivity of Chinook 

salmon. Thompson et al. (2012) used climate projections from six General Circulation 

Models (GCM), for the period 2010 – 2099, as input into the WEAP model to project 

steam flows and temperatures in Butte Creek, California. These projected values were 

then used as inputs to SALMOD (Bartholow et al., 1997), a spatially explicit salmon 

population-dynamics model to predict the survivability of spring-run Chinook salmon 

populations. Because the hydraulics models used in the Yates and Thompson studies were 

one-dimensional, neither study incorporated spatially explicit hydraulics in their projections.

In the present study, we leveraged the advances in remote sensing and numerical hydraulic 

modeling to investigate the seasonal aquatic habitat quality variability for spawning 

and rearing activities of Chinook salmon under historic and future climate conditions. 

Our goal was to understand the impact of climate variability on fish fitness, which is 

approximated by fish size (Crozier et al., 2010; Lomnicki, 1988), to better constrain and 

interpret the prediction of aquatic habitat changes. To address our goal, we developed 

a scalable approach that combines ecohydraulic modeling, supported by high resolution 

topobathymetric information, with a statistical growth model to quantify future fish fitness. 

We applied it to an important Chinook salmon spawning and rearing stream, Bear Valley 

Creek (Idaho, USA), to model fish growth from the early 1900 to the end of the current 

century. We used a spatially explicit, high-resolution, SI-based, 2D ecohydraulic model 

supported by a meter scale bathymetry, to predict spawning and rearing habitat availability 

for past and future hydrological and thermal conditions predicted through several scenarios 

downscaled with the Variable Infiltration Capacity (VIC) climate change model (Liang et 

al., 1994). We then coupled the ecohydraulic model with the statistical growth model, which 

accounted for redd productivity with respect to fry survival to predict growth potential from 

past to future climate.

MATERIAL AND METHODS

STUDY SITE

Bear Valley Creek is a tributary to the Middle Fork of the Salmon River (Idaho, USA) 

with mean watershed elevation of 2,152 m (Figure 1) (Carnie et al., 2015; Gariglio et al., 

2013; McKean and Tonina, 2013). It is a highly sinuous stream (sinuosity index: 1.5) that 

meanders across glacially carved valley floors connected by narrow canyons. The 7.4 km 

study reach (same as Carnie et al. (2015)) has a mean bankfull width of approximately 

15 m and a mean streambed slope of approximately 0.0035 m m−1 (Gariglio et al., 2013). 

Streambed material is characterized primarily by gravel with median grain size, D50, of 

0.052 m with patches of sand distributed throughout (Maturana et al., 2013; McKean and 

Tonina, 2013).
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The hydrograph is typical of a snowmelt dominated system with peak flow occurring during 

the melt season (April to June). Base flows occur for the remainder of the year (McKean and 

Tonina, 2013). The current base flows for Bear Valley Creek are observed in the late summer 

or early fall (August to September) and average approximately 1 m3 s−1. Snowmelt bankfull 

flows for Bear Valley Creek average approximately 7.0 m3 s−1.

Spring-run Chinook salmon spawn in Bear Valley Creek each year between late July and 

early September. Salmonid species lay and incubate their eggs in the streambed sediment in 

egg nests called redds (Tonina and Buffington, 2009). The rearing life cycle stage begins the 

following spring as fry emerge from their redds. The hatchling Chinook rear in the relatively 

still waters of side channels and main channel margins for 1 to 2 years before migrating to 

the Pacific Ocean (Isaak et al., 2007).

Although the system appears natural, as for many meadow systems in the Pacific Northwest, 

it had mining operation in its headwaters between 1956 and 1959, which may have impaired 

sediment transport, and livestock grazing, from sheep bands till 1920 and cattle afterwards. 

Cattle management started to be regulated for protecting aquatic habitat as early as the 

1960, till it was entirely closed in 2001 (Platts and Nelson, 1975; Stone, 2015). Past timber 

harvest practice, grazing and recreational activities, mainly hunting, camping, canoeing, and 

kayaking, along with grazing supported the development of forest roads along the stream 

from its confluence with Elk Creek, downstream of the study site, to its headwaters.

METHODS

We downscaled 3 future climate scenarios, A1B, B1 and Ensemble Mean (EM) climate, 

predicted by the Global Climate Models (GCMs) in the Fourth Assessment Report AR4 

of IPCC (IPCC, 2007) with VIC macro-scale hydrologic model (Liang et al., 1994). 

Hydrological and air temperature data along with spawning and rearing suitability indices 

were used as input variables for 2D hydraulic, aquatic habitat and fish growth modeling for 

Chinook salmon to study the change in aquatic habitat quality and fish size (as a surrogate 

for fitness) under observed past and predicted future climate conditions. Each numerical 

model, VIC, 2D hydraulic and aquatic habitat model, was validated with measured data.

Historical hydrograph reconstruction

We used more than one gage station for hydrograph reconstruction because there is no 

permanent gage station at the study site. The nearest gauge is approximately 12 km 

downstream of the study site (USGS gauge 13309000: Bear Valley Creek near Cape Horn, 

Idaho), which was decommissioned in 1960. The additional gauge (USGS 13295000: Valley 

Creek at Stanley, Idaho) was used to reconstruct flows at the Bear Valley Creek gauge and 

to extend its period of record (Carnie et al., 2015). These two gauges are close to each 

other (36 km) and their watershed characteristics are similar (Table 1). Following previous 

works in the same study site (McKean and Tonina, 2013), we used linear regression analysis 

between Bear Valley Creek and Valley Creek mean monthly discharges for the overlapping 

period of record (WY 1929 through WY 1960). To improved predictions instead of one liner 

model, we quantified monthly correlation coefficients, whose time series analysis did not 

show any trend, and which were used to estimate the Bear Valley Creek discharge for the 
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ungaged historic period from Valley Creek discharges. These coefficients were kept constant 

through the historic period, with the assumption that changes in climate between 1960 and 

2010 would have similar effects in both watersheds.

After reconstructing the Bear Valley Creek gauge, a basin-area scaling factor was used to 

compute the monthly discharge at the study site. The same basin-area scaling factor was 

applied to future hydrograph predictions from the VIC modeling. Verification of the method 

with several measured daily discharges between 2006 and 2011 showed error within 10% 

of the measured discharge (Figure S1 supporting material) (McKean and Tonina, 2013). We 

used monthly and not daily discharges because monthly values should be more robust values 

than daily in future climate.

Future hydrograph reconstruction

Climate change modeling: To evaluate the impacts of climate changes on hydrology and 

air temperature, statistically downscaled meteorological data from Global Climate Models 

(GCMs) in the Fourth Assessment Report AR4 of IPCC (IPCC, 2007) was used. IPCC Data 

Distribution Center provides simulation results from 24 GCMs for the 21st Century divided 

into six emission groups (A1F, A1B, A1T, A2, B1, and B2) drawn from four families of 

alternative energy technology development, one group each in A2, B1, B2, and three groups 

within the A1 family. Additionally, they provide the ensemble mean, EM, scenario, which 

is the predictions based on the mean of all 24 scenarios. Among the 24 GCMs, the A1B 

and B1 are those typically modeled because considered the most likely to occur. The A1B 

scenario represents a medium emissions scenario associated with increasing greenhouse 

gases through the end of the 21st century. The B1 scenario reflects significant greenhouse 

gas mitigation, which begins to stabilize greenhouse gas concentrations by the end of the 

21st century (Mote and Salathé, 2010). Thus, the A1B and B1 emissions scenarios were 

selected for use in this study along with the ensemble mean scenario EM, which weights the 

effect of all 24 scenarios.

VIC model—The comprehensive hydrologic databases (historical and future) produced for 

the study area are based upon simulations using the VIC macro-scale hydrologic model 

(Liang et al., 1994) implemented at 1/16th degree resolution. The VIC model is a macro 

scale, grid-based water and energy balance model, which has been successfully applied to 

many large river basins with practical results (Abdulla et al., 1996; Maurer et al., 2002; 

Tang and Piechota, 2009). Distinguishing features of the VIC model include the sub grid 

variability in soil moisture, land surface vegetation, precipitation, and topography in use 

of the elevation bands. Surface runoff was generated in the upper two layers by a variable 

infiltration curve, and base flow was produced from the bottom layer (Todini, 1996).

VIC model was validated by comparing observed and simulated monthly average flows for 

the Bear Valley Creek near Cape Horn USGS gauge (13309000). Model results for January 

1931 through December 1959 (n = 348) have good performance with a high R2 value and 

the near unit regression slope (Figure 2). The VIC hydrology model slightly under predicted 

flow magnitude, but the overall fit between modeled and observed flows is good over the 

range of flows experienced in Bear Valley Creek.
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Data Collection

To obtain the detailed topographic data needed for a 2D hydraulic model of the study site, 

the terrestrial-bathymetric Experimental Advanced Airborne Research LiDAR (EAARL) 

was flown over Bear Valley Creek in October 2007 (Carnie et al., 2015). The EAARL 

is a low power, narrow beam, high pulse frequency, green laser that record reflected 

energy from both terrestrial and submerged streambed topography (McKean et al., 2009). 

It is a topobathymetric LiDAR which simultaneously maps submerged (e.g., streambeds) 

and emerged (e.g., floodplain) topographies. The horizontal spacing of the EAARL points 

collected for Bear Valley Creek was approximately 2 m with a vertical uncertainty of ±13 

cm RMSE (McKean et al., 2014). Sensitivity analysis on the effects of this uncertainty on 

2D numerical modeling showed that they have negligible effects on hydraulic modeling 

results (McKean et al., 2014).

Field data also include a map of 249 surveyed patches of homogenous substrate size and 

sand percent cover for the entire study site (Carnie et al., 2015). The observed substrate 

grain sizes range from 2 to 305 mm with sand fraction ranging from 0 to 100%. Sand 

percentages were grouped into four categories that include: greater than 75% (A), 50–75% 

(B), 30–50% (C) and less than 30% (D) (Table 2). Patch boundaries for grain size and 

sand coverage were used for the habitat modeling and to define spatially variable streambed 

roughness (Legleiter et al., 2011). Previous research demonstrated that river morphology is 

stable (McKean and Tonina, 2013) as are grain size patch locations (Maturana et al., 2013), 

we also analyzed sediment mobility based on predicted shear stresses between low and 

bankfull discharges (supporting information).

Hydraulic modeling

The USGS Multi-Dimensional Surface Water Modeling Systems, MD-SWMS (now iRIC), 

was selected to perform 2D hydraulic modeling and to quantify the habitat quality at each 

cell (Nelson et al., 2016). MD-SWMS uses the Flow and Sediment Transport Morphological 

Evolution of Channels (FaSTMECH) model, which solves the Reynolds Averaged Navier-

Stokes (RANS) equations on a curvilinear grid (with s and n the longitudinal and transverse 

coordinates) with a finite element difference method (McDonald et al., 2005). The model 

requires selection of two parameters, which may be spatially and discharge dependent: the 

lateral eddy viscosity, vt, and a drag coefficient (roughness coefficient), Cd. We used the 

validated model of Carnie et al. (2015), who adopted a spatially varying Cd (s, n) as a 

function of the local median grain size, d50, and mean depth h, Cd(s, n) = ∫z0 s, n
ℎ s, n f z, zo dz, 

with z0 = a d50, z the vertical coordinate and f the logarithmic velocity vertical profile. 

Carnie et al. (2015) calibrated the model on a 1.6 km long sub-reach of our study site 

selecting vt = 0.05m2/s and a=0.15 for a low discharge of Q=1 m3/s. Sensitivity analysis 

showed negligible change in velocity and water surface elevation distribution by varying vt 

± 50%, so this parameter was kept spatially and discharge constant (McKean et al., 2014). 

Then the model was validated by comparing its predictions with water surface elevation 

surveyed over the entire study site at a discharge of 1.6 m3 s−1 and velocity measured at 2 

cross-sections in the middle of the study site for a discharge of 1 m3 s−1. This comparison 

reported water surface elevation (RMSE=0.054 m and regression line with slope of 1 and 
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R2=0.99) and velocity (RMSE=0.06 m s−1 and regression line with slope of 0.92 and 

R2=0.84) root mean square errors and R2 within the range reported in literature (Tonina 

and Jorde, 2013). Flow conditions for the calibration and validation discharges were highly 

spatially heterogeneous in this meandering pool-riffle system (Figure 1) with depths and 

velocities ranging between as 0.01 – 1.62 m (mean = 0.32 m) and velocities 0 – 1.4 m s−1 

(mean = 0.25 m s−1) at Q=1 m3 s−1 and 0.01 – 1.73 m (mean = 0.35 m) and velocities 0.0 – 

1.73 m s−1 (mean = 0.35 m s−1) at Q=1.6 m3 s−1. The hydraulic modeling results provided 

a detailed mosaic of depth, velocity, shear stress, and other hydraulic parameters on a scale 

that delineated within-channel habitat suitability for Chinook salmon spawning and rearing 

activities, as exemplified in Figure 1.

Habitat modeling

Hydraulic habitat quality was modeled for both spawning and rearing life stages of Chinook 

salmon with suitability indices (Bjornn and Reiser, 1991; Hampton, 1988; Tonina and 

McKean, 2010) (Figure S1). We used the SI-based approach to constrain the available 

habitat expressed as streambed wetted area to its spatial extent with physical conditions, e.g., 

substrate, velocity, and depth, within those used by Chinook salmon, so not as an index of 

fish abundance or fitness. This use may minimize the limitations reported by others on food 

availability, among and intra species dynamic (Orth, 1987). Spawning habitat quality was 

modeled with univariate suitability indices for water depth, flow velocity, sand coverage and 

substrate grain size and rearing habitat quality with suitability indices for depth and velocity 

(Figure S1). The geometric mean method was used to define a cell habitat quality, CSI, as a 

combined value from each single suitability index (Vadas and Orth, 2001):

CSIi = ∏
l

SIi
1/l

(1)

where SI indicates the suitability index of the i-th predictor and l the number of predictors; l 
is equal of 4 and 2 for spawning and rearing habitats. The habitat quality for the entire study 

site was then estimated using two parameters: Weighted Usable Area (WUA) and Hydraulic 

Habitat Suitability (HHS) as follows (Bovee, 1982):

W UA = ∑
i = 1

NC
CSIiAi

HHS = W UA
AW

(2)

where NC is the number of cells within the wetted area Aw of the stream and Ai is the area 

of the i-th cell. Both parameters, which are function of discharge, provide information on the 

global quality of the habitat at the reach scale. Whereas WUA depends on the size of the 

stream its normalized value, HHS, is expected to be used to compare aquatic habitat quality 

among reaches of different sizes. Rating curves for WUA and HHS values for both Chinook 

spawning and rearing life stages were derived for flow rates between 0.5 and 7 m3/s using 

regression analysis of simultated flows from 1 to 7 m3/s at 1 m3/s increments. Flow greater 
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than the bankfull condition of 7 m3/s were not included because the scope of this study is 

limited to hydraulic conditions within the channel.

Carnie et al. (2015) tested the performance of the aquatic habitat model by comparing 

habitat quality patch prediction with 29 surveyed redd locations mapped in Bear Valley 

Creek in fall 2005 along our study site. Redd locations have horizontal precision of 

approximately 0.3–0.5 m, which is comparable to our spatial resolution. Comparison 

between model predicted spawning habitat patches and redd location showed that 24 of 

the surveyed redds were located within the model-predicted, high-quality patches (CSI>0.8) 

and the rest of the surveyed redds in the second-best quality (CSI>0.6) class. This suggests 

that our biological model accurately predicts habitat quality used by spawning salmonids.

Fish growth model

Data on aquatic habitat quality for juvenile Chinook rearing estimates were used in a 

multiple regression model that predicted inter-annual variation in juvenile Chinook salmon 

length (Figure 3). We based our model on a form used previously by Crozier et al. (2010) in 

which modal fish length for a summer was predicted as:

Y = b0 + b1D + b2T + b3J + b4DxT + ε (3)

where: Y = fish length, b0 = Y-intercept, b1 = parameter estimate associated with fish 

density (D, expressed as ln (parr density)), b2 = parameter estimate associated with stream 

temperature (T), b3 = parameter estimate associated with Julian Day (J), b4 = parameter 

estimate associated with the interaction between density and temperature (DxT) and ε = 

residual error (Table 2). In this high elevation meadows, it is unlikely that historic stream 

water temperatures even in warm years exceeded the optimum range (as shown in Crozier et 

al., 2010) and stream water temperature are sufficiently high (higher than 17.8 C) to reduce 

growth and survival in this systems (Maret et al., 2005). To explore this possibility, we added 

two additional models with a quadratic temperature term, one with the interaction term T x 

D,

Y = b0 + b1D + b2T + b2, 2T 2 + b3J + b4DxT + ε (4)

and without.

Length of juvenile salmon in this reach of Bear Valley from 1997 – 2011 were obtained 

from a long-term monitoring program (Achord et al., 2007). Fish collection and PIT-tagging 

began in late July and ended in early August for each year. Thus, Julian day was included 

as a predictor in the model to adjust for nuisance variation associated with interannual 

differences in dates that fish lengths were recorded (Crozier et al., 2010). We quantified 

juvenile density by dividing the number of Chinook salmon redds from the previous fall 

(nredds) (redds are counted each year in this reach (Isaak et al., 2007)) by the WUA 

estimate the following summer, WUAs. We assumed that each redd contained 5,594 eggs, 

ne, (expressing female fecundity) and that survival was sh= 3.9% from eggs to parr, such the 

density is quantified as D= ln (sh se nr/WUAs) (noticed that D as the natural log). Conversely 

from Crozier et al. (2010) who used the mean temperatures from April (hatching period) 
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until September, we used mean summer temperature between July 15th to September 15th 

because of their availability from the NorWeST website (Isaak et al., 2017), which hosts a 

regional stream temperature database and climate scenarios for historical summer periods 

for streams across the Northwest U.S. (Isaak et al., 2017). Stream water temperatures were 

recorded between July 15th and September 15th (summer period) for 46 years at 18 unique 

sites (some sites sampled more than one summer) on this reach of Bear Valley Creek. 

These data were used to calibrate the NorWeST model and derive historical scenarios (for 

years when measurements are not available). We used this collected data along with daily 

mean air temperature, Tair, information and stream discharge to develop a linear regression 

equation to predict daily mean stream water temperature, Tstream, during the summer from 

air temperature and flow discharge:

Tstream = 0.4166 Tair − 0.0598 Q + 7.449 r2 = 0.79; p < 0.05 (5)

with unit of degree Celsius for temperature and discharge in m3 s−1. We also used this 

equation to predict stream water temperature from climate change modeled air temperature 

predictions and in-stream flows from the VIC model.

The fully parameterized form, model 1 (equation 3), of the fish growth model was compared 

to 3 additional forms with reduced sets of predictors (Table 2) as some parameters may 

not be important. The relative performance among models was assessed based on Akaike’s 

Information Criterion (AIC) corrected for small sample size (Table 3). The final model was 

used to develop response curves showing fish length relative to temperature and density and 

to compare fish lengths between the historical and future scenarios.

Habitat conditions for the historical scenario were quantified by applying the climate change 

and hydrological models during the historic period from 1929– 2010. Habitat conditions in 

the future scenario came from the global recirculation climate change and VIC models for 

the scenario A1, A1B and EM. For the response curves and scenarios, fish densities were 

calculated over a range of redd numbers (10 – 500) and assuming the same female fecundity 

ne, and survival rates as described above for 3 mean stream water summer temperatures. The 

fecundity, ne, and survival rates, sh, may change with spawning fitness, e.g., ne may increase 

with spawner size, and embryonic development, depending on interstitial flow conditions 

(Martin et al., 2017), which we assume remain constant. However, clogging by fines or 

scouring of redds by high winter discharges may reduce sh value.

RESULTS

Climate modeling and hydrology

During the near future period (NF, 2011–2050), mean monthly discharge is predicted to 

increase for all months from November through the following April, for all climate scenarios 

(A1B Table S1, B1 Table S2, EM Table S3) compared to historic stream hydrology (Table 

S4). Decreases in mean monthly discharge are predicted during the May – October months 

for all scenarios. Peak snowmelt flows for all climate scenarios are predicted to occur in 

April or May, as opposed to the historical peak discharges observed during May or June 

(c.f., Table S4 with Table S1, Table S2, and Table S3). The magnitude of peak discharges 
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is predicted to decrease for all climate scenarios (average monthly peak discharges ranging 

from 7.5 m3 s−1 for B1 in April to 7.9 m3 s−1 for EM in April) compared to the historical 

observations (average monthly peak discharge of 9.9 m3 s−1 in May). Far Future (FF, 

2051–2090) climate scenarios also predict lower base flows during the August to October 

months (minimum average monthly flow of 0.67 m3 s−1 for A1B in September) compared 

to historical observations (minimum average monthly flow of 1.1 m3 s−1 in September). 

Variability in mean monthly flows is predicted to be greater during the months of November 

– May for all climate scenarios compared to the historical flow observations. Decreased 

variability in mean monthly flows is predicted during the months of June – August for all 

climate scenarios compared to historical flow observations. Variability during September 

and October is similar between the climate scenarios and historical observations.

During the FF period, mean monthly discharge is predicted to increase during the November 

– April months for all climate scenarios (Tables S1–S4). Decreases in mean monthly 

discharge are predicted during the May – October months for all climate scenarios, matching 

the pattern observed for the NF time window. Peak snowmelt flows are shifted earlier in 

the year when compared to the NF predictions and historical observations. Peak snowmelt 

flows are predicted to occur in March or April, which is much earlier than the historical 

observation of peak flows occurring in May or June. Similar to the NF time window, mean 

peak discharges are predicted to decrease for all climate scenarios (average monthly peak 

discharges ranging from 7.1 m3 s−1 for EM and B1 in March to 7.6 m3 s−1 for A1B in 

March) compared to the historical observations (average monthly peak discharge of 9.9 m3 

s−1 in May). Lower base flows during August to October were again predicted during the FF 

time window and match the pattern that was observed for the NF predictions. Variability in 

mean monthly flows is predicted to be greater during the months of November – April for 

all climate scenarios compared to the historical flow observations. Decreased variability in 

mean monthly discharges is predicted during the months of June – August, again matching 

the pattern observed for the NF time window when comparing to historical observations. 

Variability during the May and September – October months was similar for the FF time 

window compared to historical observations.

Compared to the historical hydrograph, all climate scenarios predict increased mean flows 

during the months of January, February, March, April, November, and December for both 

the NF and FF periods as exemplified by Figure 5 for the EM case. The reduction of high 

flows near bankfull discharge, 7 m3 s−1, indicates that flooding of the meadow plain will 

be much reduced spatially in extent and water depths and nearly 50% temporally, from 2 

months of current conditions to 1 month in FF.

Habitat modeling results

All of the examined climate change scenarios have similar effects on rearing HHS 

and wetted areas and consequently on WUA for the entire water years (Supplementary 

Information Figure S4). Consequently, we focus only on the EM climate scenario to 

compare aquatic habitat quality changes between historic and future climatic conditions.

Climate change models indicate that peak runoff in the Bear Valley Creek is likely to occur 

at least one month earlier and convey approximately 30 percent less runoff at that peak as 
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compared to the past 80 years. We calculated WUA and HHS parameters for the spawning 

and rearing life stages for past and future conditions. Assuming that the timing of spawning 

activity will not change over the period of interest, a comparison of the spawning WUA 

values for past monthly averages and future monthly averages suggest some downward 

pressure on Chinook spawning productivity (Figure 6). Monthly averages for spawning 

WUA drop approximately 32% during the beginning of spawning season between the past 

and future conditions (Table 4). Monthly averages for spawning WUA drop approximately 

23% at the end of the spawning season between past and future conditions. As such, the 

future condition spawning season starts with significantly less spawning area and drops to 

the baseline a full month earlier than in past conditions. Monthly averages for rearing WUA 

drop approximately 23% at the beginning of the spring emergence and remained low until 

the end of the spring increasing by 37%, 70% and 7% in May, June, and July, respectively 

(Table 4). However, besides May, June and July, all other months show a decrease in rearing 

habitat in future compared to historic scenarios (Figure 7). Spawning and rearing HHS show 

similar percentage changes to the WUA values (Table 4). The future condition graph (Figure 

6) indicates that the peak annual HHS values occur approximately one month earlier in 

the future conditions and the time span of peak value will decline by approximately one 

month. Intra annual variability of spawning WUA and HHS decreases in the predicted future 

scenario compared to historic data. Shorter box plots in the future scenario as compared 

to historic suggests that the low spawning habitat extent and quality will persist among 

years (Figure 6). Conversely for rearing habitat, the data show a potentially larger monthly 

variability for all months but similar to historic in the months from July to October (Figure 

7).

Fish growth model

The fish growth models were developed based on 15 available years of data and their 

statistical analysis indicated that model 2 is the most likely based on lowest ΔAIC and R2 

similar to the full model (Table 2 and 3). The models with the quadratic term (model 5 

and 6) had large ΔAIC, uncertainty on the coefficients and p-values with similar R2 of the 

simpler model 2. Model 2 accounts for stream water temperature, density and Julian day and 

predicts an increase in fish mode length of 5 %, for the FF scenario, assuming 100 redds 

density in the stream reach and setting the same Julian day at 210 (Figure 8a). This is an 

average increase of nearly 5 mm, which is larger than the estimated standard error (2.6 mm) 

of model 2. Fish length shows no trend until 1980 but then a statistically significant increase 

of 0.04 mm per year (Y =0.04*NYear+61.4, r2=0.45, p<0.01, with Nyear the number of years 

from the 1990) after that. Whereas the interannual variability remained similar (fish length 

variance in both periods was 1.2 mm2).

Fish size increase is due to the increase of summer stream water temperature, whose mean 

values are expected to increase almost 2 °C degree by the end of the century (Figure 

9). Application of model 3, which is based only on density and Julian day, results in a 

negligible decrease in length of 0.3% due to reduce rearing habitat (Figure 9). Temperature 

are projected to be always below critical values even in the predicted warmest years.
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DISCUSSION

The general trends for all climate scenario A1B, B1 and EM are similar, which suggests 

that the conditions imposed on Bear Valley Creek should follow a well-defined trajectory 

under various climate scenarios. The air temperature projections also align with trend in 

measured air temperatures in the region (Isaak et al., 2012; Mantua et al., 2010). All 

climate change scenarios predict reduced mean peak flows, earlier timing of snowmelt, 

increased duration of the runoff event, reduced base flows, and an overall increase in flow 

variability during the year. This hydrologic pattern is broadly similar to those predicted 

in other watersheds within the Pacific Northwest (Hamlet et al., 2005; Leppi et al., 2012; 

Luce and Holden, 2009; Mantua et al., 2010; Mote et al., 2005; Mote and Salathé, 2010). 

Although, the specifics can vary from stream to stream depending on watershed morphology 

and geology, the general pattern is that streams are running off sooner as accumulated 

snowpacks melt earlier with each successive decade, for peak flows to be smaller because 

a larger proportion of precipitation falls as rain rather than snow, and for summer flows 

to be lower. The timing and duration of spring runoff is likely to be highly variable from 

year-to-year with the largest flow near bankfull rather than higher as in historic conditions. 

The river-floodplain interaction will be drastically reduced to shorter periods and smaller 

extent with important implication for floodplain and riparian vegetation growth. Conversely, 

discharges are generally predicted to be higher during winter months and lower during 

summer flows as compared to the historic record, following the trend observed by others 

(Luce and Holden, 2009).

In many stream systems, the influence of higher spring flows and the transition from 

a snow dominated system to a rain-snow system would likely increase scouring events, 

which could disrupt Chinook salmon redd productivity (Hassan et al., 2015). However, 

Bear Valley Creek, like many other meadow systems, runs through a broad valley 

with an extensive floodplain system. Because over-bank flows have access to this large 

floodplain, large magnitude floods are unlikely to produce scouring shear stresses sufficient 

to mobilize salmonid spawning gravel (McKean and Tonina, 2013; Tonina and McKean, 

2010). Sediment mobility analysis (supplemental information) based on Andrews’ shielding 

method and d50 ranging between 0.03 and 0.054 m to cover the most likely range of median 

grain sizes observed in the patches along the study site supports this observation and shows 

limited mobility of coarse (d50 and higher) grains less than 10 and 3% of the streambed 

with d50=0.03 and 0.054 m respectively for the highest future scenario flow of 7 m3/s. In 

contrast to other sites where gravel and d50 are mobile at bankfull discharge (e.g., Mueller 

et al., 2005), this analysis confirmed what was reported by McKean and Tonina (2013) on 

a shorter reach, that even at flows near bankfull, coarse particle in the range of the median 

grain size are mostly immobile, indicating that scour would not be a critical issue in this 

stream (Figure S2a shows the case of d50=0.04m). With this coarse-particle low mobility, 

an armor layer of coarser surface grain size distribution would most likely form through 

removal of fine grains (Wilcock and DeTemple, 2005). Thus, high spring discharges may 

provide flushing flows to clean sand from the pore structure of gravel, potentially enhancing 

redd productivity (Kondolf and Wilcock, 1996; Wu, 2000; Wu and Chou, 2003).

Reeder et al. Page 14

Sci Total Environ. Author manuscript; available in PMC 2022 September 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



However, depending on fine sediment inputs, larger and more extended winter flows 

may mobilize fine sediments and clog or entomb salmon redds (Maturana et al., 2013), 

potentially threatening the embryonic development by reducing the delivery of oxygen-rich 

surface water to the eggs via hyporheic fluxes (Stuart, 1954; Tonina and Buffington, 2009). 

In future (NF and FF) climate scenarios, flows that may transport sand are likely to occur 

during the egg gestation period (April and May). These flows may fully or partially clog the 

redds although embryos from some redds will potentially hatch prior to the sediment peak 

flows. This clogging scenario is less likely under current sand input conditions and most 

likely cleaning of coarse sediment may occur. However, changes in hillslope processes with 

increased potential for wildfires and fine sediment delivered to the stream may potentially 

increase this risk (Sankey et al., 2017) and consequently reduce embryos survival to parr, sh.

Changes to the WUA can be used as a metric to gage the impact of an environmental 

change on a stream’s habitat quality. For example, Boavida, et. al. (2012) used cumulative 

time below preassigned WUA thresholds (WUA in the condition under examination as a 

percent of the peak WUA for a reference area) to evaluate the impact of restoration of 

a degraded stream on habitat quality for Mediterranean freshwater fish species. For the 

present study, we make a quantitative comparison of the available WUA under the different 

climate scenarios. Our results indicate that, during the spawning season, the WUA values 

in the future condition range from 68% of historic (July) to 76% of historic (August). For 

rearing, WUA values are only significantly below the historic rearing WUA values in March 

(77%) and April (64%). May and June have significantly higher WUA value in the future 

conditions, 137% and 170% respectively. These results suggest a significant negative impact 

on spawning habitat with a modest and possibly positive impact on rearing habitat. The 

average future condition for rearing WUA values may not be too different from present 

in future scenarios. However, fragmentation of rearing habitat due to the lower summer 

flows may be a significant component, which has not yet been quantified due to lack of 

information on fish spatial distribution. Rearing habitat, which is in slow moving water, is 

mainly in marginal areas, backwater zones and in lateral channels. Lateral channels may 

disconnect from the main channel during very low flows reducing access and or stranding 

fish.

Carnie et al. (2015) investigate habitat patch size and patch connectivity on spawning habitat 

for the same river for different discharge scenarios and found that low discharges (1 m3 s−1) 

during spawning period would increase the fragmentation of high-quality habitat from the 

historic conditions (above 2 m3 s−1). However, connectivity was found to be a secondary 

effect compared to patch size. Future scenarios project even lower discharges that may 

results in more fragmentation which may potentially exacerbate the reduction in available 

spawning habitat.

Conversely to other regions (Muñoz-Mas et al., 2018), the projected increase in stream water 

temperature for these high elevation meadow systems may have a positive effect on fish 

growth. The impact of future climate on fish size is approximately a 5 % increase in their 

mode length from the historic to the far future scenario. This increase is about 5 mm in 

the FF and is at least 5 times the standard deviation (about 1.1 mm) of natural intra annual 

variability quantified for the historic scenario. It is unknown, if this increase is sufficient to 

Reeder et al. Page 15

Sci Total Environ. Author manuscript; available in PMC 2022 September 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



increase the potential for fish to reach the ocean significantly but, in general, any increase in 

size has been thought to increase success. However, a Chinook multi-population, including 

Bear Valley Creek, study on juvenile downstream migration survival showed that mean 

length was a poor predictor of passing lower Granite Dam, a major migratory bottleneck 

(Zabel and Achord, 2004). The same study also noticed that size might significantly impact 

success of the next life stages, because longer fish start migration earlier and they might 

have advantages during the ocean phase. Consequently, longer fish may have overall better 

fitness. Thus, although future population of Chinook salmon may find reduced spawning 

habitat, which may lead to lower redd density from historic condition, the warmer waters 

may in turn help to have larger fish migrating to the ocean.

Our fish growth model is based on only 15 years of data and may not capture the entire 

variability of fish densities and stream water temperatures. Another limitation could be the 

use of summer mean water temperatures instead of the entire period after hatching, March-

August, which was shown to be a better predictor of fish size than summer temperature 

(Crozier et al., 2010). This may potentially explain the high p-value and uncertainty of 

the temperature term, which may indicate that it is less significant than the other terms. 

The predicted future fish size increase is due to increase in stream water temperatures 

accounted through the temperature term in model 2. Typically models within 2 or 3 ΔAICc 

are considered similar candidates, which indicated that growth models 1, 3, and 6 could be 

plausible predictors based on our sample data. Growth models with temperature (models 

1, 2, 6) all predict increase in fish size only based on the effect of temperature, whose 

terms, however, are not statistically significant (p>0.05) in all models. Conversely, Model 

3, which has similar r2 but slightly higher AIC (ΔAICc=1.75) value than model 2, predicts 

a negligible decrease in fish size, −0.3% for the FF scenario, due to reduction in rearing 

habitat. However, temperature has such an important effect on fish growth due to fish 

physiology, that warrants its inclusion. Conversely, the inclusion of the quadratic term for 

temperature is not supported by the ranges of summer temperatures experienced by fish 

during the sampling period and thus does not improve prediction. The problem is also 

further complicated by the low number of fish spawners returning, much lower than historic 

conditions, which may potentially add more weight on the density.

While our results suggest that climate change will cause negative pressure on spawning 

habitat and a modest decrease in rearing habitat, the overall outlook for Bear Valley Creek 

is that it will continue to host a substantially usable environment for salmon spawning and 

growth especially for the current densities. In recent decades, the number of fish returning 

to and spawning in Bear Valley Creek are quite low as compared to historical numbers such 

that redd density are orders of magnitude smaller than what they used to be historically. 

Consequently, future salmonids’ success may be more dependent on habitat accessibility 

(e.g., keeping adequate migration corridors) than from natal stream habitat quality. The 

increase of stream water temperature may provide some benefits (from model 2 analysis) 

at these high elevation cold-water streams, but it may have far more detrimental impact 

during upstream migration, when anadromous fish may exhaust their stored energy before 

reaching their spawning grounds (Connor et al., 2019; Crossin et al., 2008). This effect 

could be exacerbated by the expected lower discharges during summer further increasing 

stream water temperature along the entire river network, not just its headwaters.

Reeder et al. Page 16

Sci Total Environ. Author manuscript; available in PMC 2022 September 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Thus, inclusion of fine scale resolution analysis similar to that applied in this work 

within life cycle models may better constrain the impact of climate change on population 

adaptation and survival. These models will pass the condition of one life stage to the 

next one, accounting for local conditions and thus better quantify the impact of stream 

water temperature and flows changes on fish population besides fish size. Results could 

be also better constrained by bioenergetic or individual-based model approaches, because 

they would take advantage of the fish-scale high-resolution spatial and temporal distribution 

of the hydromorphological quantities. A key limitation in these approaches, though, is 

the quantification of food availability (e.g., drifts) and intra and among species dynamics. 

Our statistical growth approach is parsimonious, and it associates energy and cospecies 

dynamics with stream water temperature and fish density, respectively. It is based on 

regression analysis that requires historic information on fish length and stream discharge, 

which underlines the importance of continuous monitoring companies (Achord et al., 2003; 

Crozier et al., 2010). However, our key assumption is that fish length is a proxy for fish 

survival and fitness, but fish size may not always be an indicator of better survival as 

documented by Carlson et al. (2008) nor of better migration success as shown by Zabel and 

Achord (2004). Thus incorporation of fine scale microhabitat analysis along river networks 

within fish population models may provide a more effect approach to address questions like 

those asked in the work.

Bear Valley Creek is not a unique meadow system within the tributaries of the Salmon 

River or of the Columbia River at large. Many meadow systems in the region have similar 

characteristics, snowmelt dominated, meandering and cold-water streams. Our results would 

be broadly representative of many other streams in the Pacific Northwest region (Hamlet 

et al., 2005; Hamlet and Lettenmaier, 2007; Leppi et al., 2012; Mote and Salathé, 2010). 

Salmon and several other closely related cold-water species occupy many streams and rivers 

across a range of elevations where hydrology is similarly being affected by climate change 

(Isaak et al., 2018). Moreover, numerous hydrologic studies in this region have documented 

past and future predicted transitions from snow to rain/snow hydrology (Hamlet et al., 2005; 

Hamlet and Lettenmaier, 2007; Leppi et al., 2012; Luce et al., 2013; Luce and Holden, 2009; 

Mote and Salathé, 2010), but our study is one of the few that translates those effects to 

locally specific habitat changes.

CONCLUSION

With the use of fine-resolution and large-scale modeling this work quantifies that future 

climate conditions will likely reduce spawning suitability of Chinook salmon by about 30 %. 

Rearing habitat quality may also reduce for most of the year but within the range of historic 

values. Future inter-annual variability of habitat quality is similar to that observed in the past 

for spawning but exhibits larger fluctuations for rearing habitat. As the climate warms, the 

watershed will transition from a snowmelt dominated water supply regime to a rain/snow 

scenario. This will result in a broadening of the spring flow peak in the annual hydrograph 

in which the rising and falling limbs of the spring flow are shallower than in the past and the 

peak flow is lower. The major effect on the watershed, between past and future scenarios, is 

a change in timing of peak flows and their reductions. The future high discharges are around 

the historic bankfull discharge, while historic high discharges were larger than bankfull 
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during the snowmelt period (May-June) flooding the surrounding meadow floodplain for 

almost 2 months. These lower peak flows will strongly spatially and temporally reduce the 

river-floodplain interaction.

The altered flow regime mostly impacts spawning conditions rather than rearing because, 

presently, low flows occur during the spawning period. The increase of stream water 

temperature for the future scenarios may potentially improve the biological response 

of the fish population, due to fish length predicted increase, although its benefits on 

counterbalancing the reduction in both spawning and rearing habitats are still unclear and 

potentially limited. Young fish size increase has been suggested as an indication of potential 

increase fitness. This suggests that for Bear Valley Creek and in extension for other high 

elevation meadow systems, increases in stream water temperature may be beneficial but our 

analysis could not demonstrate if this may compensate for the reduction in spawning and 

rearing areas. Our modeling approach and local results at the spawning and rearing life stage 

could be incorporated in a life-cycle model to better constrain our analysis at the population 

level.

To constrain our analysis and better answer our questions, this micro-habitat approach 

should be used within a life cycle model to understand the potential impact at the population 

scale. Similarly, whereas rearing habitat quantified as WUA or HHS decreased for most part 

of the year, the impact of its fragmentation is less constrained than the spawning habitat 

and consequently more research should focus on this aspect. This investigation shows 

that numerical modeling and remote sensing surveying tools allow analyzing physical and 

biological processes that occur at the microscale over kilometers of stream network. This 

approach can be scaled to the river network as hydrological and topographical information 

are available and its results improved by use of bio-energetic or individual-based modeling 

approaches.
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Figure 1: 
(Left) The Bear Valley Creek study site encompassing approximately 7.4 km of relatively 

pristine, high mountain meadow, gravel bed spawning and rear habitat for Chinook salmon 

and other salmonid species, in Central Idaho. (Right) The 2D hydrodynamic model predicts 

hydraulic and habit characteristics with a high degree of spatial and geographic specificity. 

In this view, water depth profiles at a 1-meter spatial resolution are shown geolocated for 

a small portion of the Bear Valley study site. Predictions, at the same resolution, were 

also created for flow velocity, water surface elevation, shear stress and hydraulic habitat 

suitability.
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Figure 2: 
Observed (USGS) v. predicted (VIC) monthly discharge for Bear Valley Creek. Dashed 1:1 

line represents line of perfect agreement. Trend line fit to data demonstrates slight under 

prediction of flows using VIC model, although across the range of flows the system behavior 

is represented quite well.
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Figure 3: 
(a) Observed and predicted Chinook salmon juvenile length from 1997 – 2011 based on 

growth model 2 with density, temperature, and Julian day as predictors and with bars 

showing standard error on predictions. (b) Response curves from regression model 2 for 

Chinook mode length with bands of standard errors for 3 mean summer stream water 

temperatures as a function of parr density.
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Figure 4: 
Box-and-whiskers plot of monthly discharges for B1 (brown hues), A1B (red hues) and 

ensemble mean, EM, (blue hues) climate change scenario for far future prediction (FF; 

2051–2090). Box gradations represent the 25, 50 and 75th percentiles. Whisker extents 

represent the maximum and minimum predicted values. The inset shows the averaged 

historic (H) and predicted near future (NF, 2011–2051) and far future (FF, 2051–2090) 

monthly discharges for three climate models (A1B, B1 and EM) and the horizontal red 

dashed line indicates the current bankfull discharge.
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Figure 5: 
Box-and-whiskers plot of monthly discharges for historical (H; 1929–2010, left whisker in 

each month, brown hues), near future (NF; 2011–2050, center whisker, red hues), and far 

future (FF; 2051–2090, right whisker, blue hues). Future scenarios are for the ensemble 

climate, EM, scenario. Box gradations represent the 25, 50 and 75th percentiles. Whisker 

extents represent the maximum and minimum observed values.
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Figure 6: 
Box-and-whiskers plot of monthly weighted usable areas, WUA, (top) and hydraulic habitat 

suitability, HHS (bottom) of spawning habitat for historical (H; 1929–2010, left whisker in 

each month, brown hues), near future (NF; 2011–2050, center whisker, red hues), and far 

future (FF; 2051–2090, right whisker, blue hues) for the ensemble case scenario.
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Figure 7: 
Box-and-whiskers plot of monthly weighted usable areas, WUA, (top) and hydraulic habitat 

suitability, HHS (bottom) of rearing habitat for historical (H; 1929–2010, left whisker in 

each month, brown hues), near future (NF; 2011–2050, center whisker, red hues), and far 

future (FF; 2051–2090, right whisker, blue hues) for the ensemble case scenario.
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Figure 8: 
Predicted Chinook salmon mode lengths based on model 2 as violin and box plots for 

historic (1929–2010), near future (2011–2050) and far future (2051–2090) scenarios (a) and 

their yearly trends with linear regression line and shaded area show standard error (b). The 

black line is the regression line for years earlier than 1990 and it is virtually horizontal with 

slope not statistically significant (p>0.01). Inter annual variation in temperature and flow 

hydraulics results in model fish length variability, which is larger than the 2.6 mm standard 

error of the model. Results were standardized at 100 redds per year and at the same Julian 

day of 210.

Reeder et al. Page 31

Sci Total Environ. Author manuscript; available in PMC 2022 September 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 9: 
Predicted yearly mean spawning and rearing weighted usable areas (WUA) and yearly mean 

stream water summer temperatures from historic to EM predicted future climate conditions.
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Table 1:

Bear Valley Creek and Valley Creek USGS gauge summary information.

Gauge ID Gauge Name Period of Record
Watershed Area 

(km2)
Mean Basin Elevation 

(m)

13309000 Bear Valley Creek near Cape Horn, 
Idaho

1921 – 1928 (summer months)
WY 1929 – WY 1960 443 2,146

13295000 Valley Creek near Stanley, Idaho

June 1911 – October 1913
May 1921 – November 1971
May 1972 – September 1972
WY 1993 – WY 2010

381 2,256
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Table 2:

Parameter estimates and summary statistics for multiple regression models of Chinook salmon juvenile 

growth.

Model Predictors b (SE) p-value t r2

1 Intercept −73.56 (58.89) 0.24 −1.24 0.84

T 5.22 (5.34) 0.35 0.98

D −21.21 (33.80) 0.54 −0.63

T × D 1.41 (2.50) 0.58 0.56

J 0.29 (0.17) 0.12 1.66

2 Intercept −47.34 (34.91) 0.20 −1.35 0.83

T 2.31 (1.20) 0.10 1.77

D −2.19 (0.84) 0.02 −2.61

J 0.36 (0.13) 0.02 2.69

3 Intercept −5.22 (27.7) 0.85 −0.40 0.78

D −2.37 (0.9) 0.02 −2.67

J 0.30 (0.139) 0.05 2.15

4 Intercept −101 (34.39) 0.012 −2.94 0.72

T 2.73 (1.58) 0.11 1.73

J 0.61 (0.10) < 0.01 5.57

5 Intercept −18.09 (403.6) 0.96 −0.045 0.84

T2 0.31 (2.27) 0.89 0.13

T −314 (60.47) 0.89 −0.05

D −20.84 (35.69) 0.57 −0.58

T × D 1.38 (2.64) 0.61 0.52

J 0.29 (0.18) 0.15 1.57

6 Intercept −23.85 (380.8) 0.95 0.063 0.83

T2 0.41 (2.18) 0.85 0.18

T −8.46 (57.39) 0.88 −0.14

D −2.21 (0.89) 0.03 −2.49

J 0.35 (0.13) 0.029 2.54
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Table 3:

Model selection results for multiple regressions predicting juvenile Chinook salmon modal length each August 

from 1997–2011 in Bear Valley Creek, Idaho.

Model Predictor Variables p ΔAICc AIC weight (wi) Evidence ratio (wI/wi) r2

1 T + D + T*D +J 5 1.53 0.1910 0.46 0.84

2 T + D + J 4 0 0.4005 1 0.83

3 D + J 3 1.75 0.1712 0.41 0.78

4 T + J 3 5.23 0.0366 0.07 0.72

5 T2 + T + D + D*T + J 6 3.49 0.0693 0.17 0.84

6 T2 + T + D + J 5 1.95 0.1507 0.37 0.83

Notes: 1) models are ranked from most plausible to least plausible based ΔAICc. (0.00 = most plausible model).

2) p = number of parameters in model.

3) Ratio of Akaike weights (wI/wi) indicates the plausibility of the best fitting model (wI) compared to other models (wi). So, for example, the best 
model is x times more plausible than the worst model in this set.

4) All models include a parameter for Julian day to control for inter-annual differences in fish tagging date that caused variation in fish length.
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Table 4:

WUA and HHS for Chinook salmon juvenile rearing and spawning habitat.

Past Avg. (1929 – 2010) Future Avg. (2011 – 2090) Percent Change

WUA (m2) HHS (-) WUA (m2) HHS (-) WUA % HHS %

Spawning
July 55300 0.47 37700 0.35 −32% −24%

August 38560 0.36 29350 0.29 −23% −18%

Rearing

January 72583 0.71 72359 0.68 −0.3% −4.8%

February 72313 0.71 69716 0.63 −3.6% −10.9%

March 72960 0.71 56276 0.48 −22.9% −33.0%

April 70516 0.62 45513 0.38 −35.5% −39.1%

May 38038 0.31 52105 0.44 37.0% 41.4%

June 40158 0.33 68561 0.61 70.7% 84.9%

July 68599 0.59 73026 0.69 6.5% 16.6%

August 74324 0.70 70019 0.71 −5.8% −1.4%

September 74011 0.71 71332 0.71 −3.6% −0.2%

October 74163 0.71 72014 0.71 −2.9% −0.3%

November 73988 0.71 73390 0.68 −0.8% −4.0%

December 73041 0.71 73512 0.68 0.6% −3.3%
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