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Abstract

In this work we present a framework of designing iterative techniques for image deblurring in 

inverse problem. The new framework is based on two observations about existing methods. We 

used Landweber method as the basis to develop and present the new framework but note that the 

framework is applicable to other iterative techniques. First, we observed that the iterative steps of 

Landweber method consist of a constant term, which is a low-pass filtered version of the already 

blurry observation. We proposed a modification to use the observed image directly. Second, we 

observed that Landweber method uses an estimate of the true image as the starting point. This 

estimate, however, does not get updated over iterations. We proposed a modification that updates 

this estimate as the iterative process progresses. We integrated the two modifications into one 

framework of iteratively deblurring images. Finally, we tested the new method and compared its 

performance with several existing techniques, including Landweber method, Van Cittert method, 

GMRES (generalized minimal residual method), and LSQR (least square), to demonstrate its 

superior performance in image deblurring.
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1. Introduction

In many imaging applications, including medicine and biology [1, 2], optics [3, 4], remote 

sensing [5], astrophysics [6], and other fields [7], due to the relative motion between 

objects and the imaging device [8], observed images are blurred and often contaminated 

by measurement noise. Image quality may also be affected by packet loss due to the 

channel impairment during transmission [9, 10]. Restoration of images is also necessary 

in compressed sensing in that one needs to solve an under-determined problem [11, 12]. 

To restore the original images from the smoothed observations, we can employ either 

direct inversions or iterative solutions. Typical direct inversions include truncated singular 

value decomposition (SVD) inversion [13, 14], Tikhonov regularization [15], total variation 

regularization [16, 17] and others. Representative iterative solutions include Landweber 

method [18], Van Cittert method [19], conjugate gradient descent [20], Kalman filter-type 

method [21], and others [22, 23, 24]. For both types of approaches, maintaining the stability 

of the inversion process is critical to obtain reasonable results. However, a trade-off exists 

between maintaining stability and achieving a satisfactory level of accuracy in results. In 

direct inversion methods, the trade-off manifests as the selection of the number of singular 

values in truncated SVD inversion or the weight factor in Tikhonov-like regularization [25]. 

In iterative inversion methods, the trade-off manifests as the selection of the iterative step 

size and the threshold used in stopping the iteration. In addition to the above two general 

types of methods, hybrid techniques have also been proposed to solve ill-posed problems. 

For example, in a hybrid setup, an inversion problem may be approximated by a series 

of small bidiagonal systems to be solved via the Lanczos process [26]. In addition to the 

direct and iterative methods, in recent years other types of methods have been proposed. 

For example, Singha and Majumdar presented a method that treats inverse problems as 

a domain adaptation in a coupled dictionary learning setup [27]. Peng et al. proposed 

a method employing two-dimensional principal component analysis in two directions to 

extract feature-based sparse representation prior in a feature space instead of in the pixel 

space given by a blurred image, thus mitigating the effect of blurring [28]. In recent years, 

deep learning techniques have also been proposed to solve inverse problems. For example, 

Chun et al. presented an iterative neural network approach that combines regression neural 

network with an iterative reconstruction algorithm to reconstruct images [29]. In their 

approach, called Momentum-Net, momentum terms are used in the extrapolation modules 

and majorizers are used in non-iterative model-based image reconstruction modules to 

obtain fast convergence rate and accurate results. Liu et al. proposed a method to adaptively 

guide the trajectories of learning-based iterations to restore blurred images in an unrolling 

optimization framework [30], where unrolling refers to the phenomenon that one can unroll 

an iterative method to become a feed-forward network. A potential limitation of unrolling 

iterative methods, however, is that the structure of resulting neural network may be highly 

complicated [31].
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In this work, we focused on the Landweber method as it is a widely used technique and has 

motivated many variations of the original design, such as the smoothed-project Landweber 

method used in compressive sensing [32], the Runge-Kutta type modification whereby a 2-

stage RungeKutta solution is applied to Landweber-like iteration [33], relaxation whereby an 

iterative relaxation strategy is used to accelerate the convergence [34], and the reduced-base 

method that couples the usually high-dimensional parameter spaces in the inverse problem 

with the adaptive online reduced basis updates to achieve faster convergence [35]. In 

addition, many derivatives of Landweber methods have been developed for image deblurring 

[36, 37, 38]. Here, we presented a new thought on designing iterative techniques that can 

perform better in many scenarios, especially in restoring the high-frequency components of 

images. There are two new ideas in our proposed method. For the first idea, we observed 

that the iterations of Landweber method can be decomposed into two terms, whereby the 

first term is a constant that remains unchanged throughout the iterations, and the second 

term is being updated each time. For the method to restore a blurred image, it requires the 

two terms to work together to generate a satisfactory result. Detailed analysis showed that 

the first term is a twice low-pass filtered version of the true image, meaning that the first 

term is of very low-frequency (or even smoother than the observed image). For the whole 

method to generate good results, the second term then needs to cancel out the low-frequency 

components in the much smoothed first term, a task that often is challenging. We therefore 

propose to modify the first term so that it is just a one-time low-pass filtered version of the 

true image.

For the second idea, we observed that, in iterative methods like the Landweber method, 

the whole iterative process hinges on the original inverse problem, starting with the blurred 

observation as the best estimate of the true image, and then it tries to approximate the true 

image iteratively by minimizing a cost function. We argue that we can obtain better results 

in designing iterative techniques by using the up-to-date best estimate of the true image at 

each iteration and solving a ”new” inverse problem every time. In other words, for the very 

first iteration, our best estimate of the true image is indeed the blurred observation. However, 

starting with the second iteration, our best estimate of the true image is the restoration result 

given by the first iteration. So, for the second iteration, we can use the output of the first 

observation as the starting point to compute the output of the second iteration. The same 

process can then be repeated for the subsequent iterations. In this way, we should obtain 

better performance in the whole process. In this paper, we, therefore, have presented our new 

designs of iterative techniques by incorporating the above ideas.

The paper is organized as follows. In Section 2 we have explained the motivation of our 

idea and described the design of new method by using Landweber method as the starting 

point. In Section 3 we used test images to evaluate and compare the new method with the 

standard Landweber method, Van Cittert method, GMRES, and LSQR. We have discussed 

observations about the new method and offered conclusions in Section 4.
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2. Method

In a typical setup of image deblurring, we assume that the observed image g is a blurred 

version of true image f, plus some measurement noise w, such that we have an inverse 

problem

g = Hf + w (1)

where H is the point spread function (PSF) and we need to find f. In the blurring process, 

the effect of H can be considered as a low-pass filter such that it smooths a sharp image f to 

generate g. In Landweber method, to find a solution f to Eq. (1), we look to minimize

argminJ(f) = 1
2 ∥ Hf − g ∥ 2

2
(2)

Take the derivative of the above formula, we have

∇J(f) = HT(Hf − g) (3)

Then by gradient descent, Landweber method iteratively solves Eq. (2) by

fn + 1 = fn − β ∇J(f) (4)

We initialize f0 to the observation g, and, for the first few iterations, the Landweber method 

has the form of

f0 = g (5)

f1 = f0 + βHT g − Hf0 = βHTg + f0 − βHTHf0

⋮
(6)

fn + 1 = fn + βHT g − Hfn = βHTg + fn − βHTHfn (7)

n = 1, 2, ⋯ for iteration n + 1, where β is a small positive constant controlling the 

speed of iteration and superscript T stands for transpose. To ensure the stability of the 

iterative process, β must be less than 2
λ1

2  where λ1 is the largest singular value of H. In 

implementation, the calculation of singular values takes a long time for large matrices and, 

without knowing the specific range for β, it is prudent to select a small β. However, the 

downside of choosing a small β is that the convergence will take a long time. In calculation, 

the Landweber method is implemented in the lexicographic manner such that f and g 
become column vectors, instead of matrices. Overall, the purpose of the Landweber method 

is to recover the sharp image f from its low-pass filtered version g.
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From Eq. (7), we note that the first term βHT g on the right-hand side (RHS) is a constant 

vector while only the second term fn − βHTHfn  is updated in the iterations. Examining the 

iterative process of Eq. (7), especially its first term βHT g on the RHS, we can make two 

observations and, based on the two observations, we propose two changes to the iterative 

solution.

2.1. First Observation and The Proposed Change

The first observation is that, for the first term βHTg on the RHS of Eq. (7), β is a scalar 

constant, HT is a low-pass filter, and g is a smoothed version of f. Then the effect of 

HTg is to essentially low-pass filter g again, further shifting the frequencies of g down to 

low-frequency and making g even smoother. Figure 1 shows what image f, its observed 

image g which equals to H f + w and the further blurred image HTg may look like. For 

this example, the true image was blurred by a Gaussian kernel with a bandwidth of 7 

and a standard deviation of 1.0. In this particular example, we can see that, while g is a 

blurred version of f, some details are still discernible. However, HTg is even more blurred 

than g, making many details unreadable. Given a deblurring approach, under the same 

condition, it is likely more difficult to recover f from HTg, which is used in the standard 

Landweber method, than from g. To find f, then Landweber method relies on the second 

term fn − βHTHfn  to not only recover the lost high-frequency components of f, but also to 

cancel out the low-frequency components in HTg. Therefore, it seems reasonable that, if we 

remove HT in the first term on the RHS, we can reduce the burden placed on the second term 

on the RHS to accelerate the iterative process to find f. In other words, the iterative process 

can be tentatively designed as

f0 = g (8)

f1 = βg + f0 − βHTHf0

⋮
(9)

fn + 1 = βg + fn − βHTHfn (10)

for n = 1, 2, ⋯, so g in the first term on the RHS is not low-pass filtered by HT. Here we note 

that, though Eq. (10) is not directly derived from minimizing the cost of Eq. (2), it can lead 

to superior computational results in restoration. As we will see next, the iterative process of 

Eq. (10) can be further optimized.

2.2. Second Observation and The Proposed Change

The second observation is that, from Eq. (8) and (7), we note that g is used as the 

initial estimate for the true image f. This is a reasonable estimate because, without further 

computations, g is the best guess we have when the iterations start. If we use Eq. (10) to 

express the first iteration, we have
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f1 = βg + f0 − βHTHf0
(11)

where g is the best estimate to be used to calculate f1. Here we note that, in Eq. (11), f0 

is actually g, but for the convenience of discussion below, we keep the notion of f0 in the 

second term. However, starting from the second iteration, our best estimate for the true f is 

no longer g but f1 since f1 now is available. If we assume f1 is one-step closer to f than g, 

then we should replace g by f1 so that, to obtain f2, our best estimate for true image f now is 

f1. In other words, we assume that, at the second iteration, we are faced with a ”new” inverse 

problem, that is,

f1 = Hf + w (12)

because we now have f1 available to us. Then our goal is to solve Eq. (12). Applying Eq. 

(11) to the new inverse problem of Eq. (12), the process of computing f2 can be written as

f2 = βf1 + f1 − βHTHf1 . (13)

In other words, starting from the second iteration, we can replace g in Eq. (11) by the result 

of the previous iteration because, at each iteration, we have a new estimate that is better than 

g in terms of its distance to the true f. At the third iteration, our inverse problem becomes

f2 = Hf + w (14)

and our solution is similar to Eq. (13), that is,

f3 = βf2 + f2 − βHTHf2 . (15)

Essentially, the idea is that, as we progress through each iteration, we have an updated 

inverse problem and we solve the problem via one iteration, and then we move on to the next 

inverse problem and, again, solve it via one iteration.

If we define

Δfn ≡ fn − βHTHfn (16)

then we have

fn + 1 = βfn + Δfn (17)

while for the original Landweber method we have

fn + 1 = βHg + Δfn (18)
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2.3. The Finalized New Design

So, based on the above two observations, we propose a new iterative method as follows.

f0 = g (19)

f1 = βg + f0 − βHTHf0
(20)

f2 = βf1 + f1 − βHTHf1

⋮
(21)

fn + 1 = βfn + fn − βHTHfn (22)

for n = 1, 2, …. In the new iterative method, the two changes are, 1) removal of PSF 

H in the first term on the RHS and 2) replacement of g by fn for n > 1. The iteration 

stops when the difference between two consecutive results is smaller than a threshold or the 

number of iterations reaches a preset level. As discussed before, the new method implicitly 

assumes a new inverse problem starting with n > 1, whereas the inverse problem becomes 

fn = Hf(n − 1) + w.

Computationally, we note that the new method has the similar complexity as the Landweber 

method as there are no extra operations. In addition, from Eq. (22), we note that the idea 

behind the new method can be applied to other iterative algorithms because the proposed 

changes are about, first, how to prevent PSF H from low-pass filtering the already blurred 

observation g, and, second, how to utilize most recent intermediate results to update the 

inverse problem at each iteration. Note that the changes do not impact the second term 

on the RHS of the iterative process, which can be considered as how different methods 

calculate the stepwise changes to be added to the previous outputs. In other words, existing 

algorithms like the Landweber method solve one fixed inverse problem, as given by Eq. (1), 

in N iterations, while the new method solves N inverse problems in N iterations whereas 

each inverse problem is attempted only once. Our assumptions about admitting a solution is 

that f is smooth and H is Fréchet differentiable.

3. Results

In this section we evaluated the performance of the new method in deblurring. Because 

the new method is motivated by our observation of how then Landweber method proceeds, 

we compared the new method with the Landweber method. Also, because of the similarity 

between the Landweber method and Van Cittert method, which has the form of

fn + 1 = βg + fn − βHfn , (23)

we included the Van Cittert method for comparison as well.
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We used mean squared error (MSE), which is defined as

MSE = fn − f 2
2

L
(24)

where L is the total number of pixels in an image, to evaluate the restoration. We also 

used structural similarity index measure (SSIM) [39] as a measurement of the quality of 

restoration. For two images u and v, SSIM is defined as

SSIM = 2μuμv + c1 2σuv + c2
μu2 + μv2 + c1 σu2 + σv2 + c2

(25)

where μu and σu are the average and standard deviation of image u, respectively, and μv 

and σv are similarly defined for image v. In the definition, σuv is the covariance of u and 

v, and c1 and c2 are two positive numbers to ensure the stabilization of the division. For all 

the examples, signal-to-noise ratio (SNR) is defined as the energy of H f over the energy of 

noise w

SNR = log∥ Hf ∥2
2

∥ w ∥2
2 dB (26)

where ∥ w ∥2
2 is the energy of the noise.

As the first example, we compared the three methods on deblurring the test image ”baboon”. 

For this example, we set the Gaussian blurring kernel with a bandwidth of 7 and a standard 

deviation of 1.0. The SNR was 9.5 dB. We used a step size of 3e-4 for the iterative 

processes. Results are shown in Figure 2. The original image and its blurred version are 

shown in Figure 2(a) and (b). The restorations by the standard Landweber method, Van 

Cittert method, and the new method are shown in Figure 2(c–e), respectively. From the three 

restorations, we note that the new method achieved the best performance as it showed more 

fine structure on the face and restored the pupil more sharply. The plot of MSEs in Figure 

2(f) showed that, in this example, the new method had the lowest MSE. We also computed 

the SSIMs of the three restorations corresponding to Figure 2(c–e). The SSIMs were 0.6069, 

0.6636, and 0.7463, respectively, indicating that the new method had the highest SSIM.

For the next example, we applied the three methods to deblur the ”boat” image shown in 

Figure 1(b). We set the step size to 1e-3 for the iterative processes. Results of the first 500 

iterations are shown in Figure 3. It is observable that the new method gave the best result. 

The characters on the boat are more readable in Figure 3(c) than in Figure 3(a) and (b). 

Figure 3(d) shows that the new method had lowest MSE. We calculated that the SSIMs 

of Figure 3(a–b) were 0.6993, 0.7180, and 0.7462, respectively. We then tested how the 

three methods performed if we increased the number of iterations to 1000. The results are 

shown in Figure 4. From this figure, we observed that the MSE of the new method started 

to increase at iteration 800, yet its result was still sharper than those given by the other two 

methods. We calculated that the SSIMs of Figure 4(a–c) were 0.7145, 0.7415, and 0.7756, 

respectively. When we increased the number of iterations further to 1500, we obtained 
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results shown in Figure 5. It is interesting to note that the MSE of the new method exceeded 

those of the Van Cittert and Landweber methods. We calculated that the SSIMs of Figure 

5(a–c) were 0.7260, 0.7551, and 0.7318, respectively. Here we note that from the MSE plot 

and the SSIM calculation, it seems that the result of the new method was not as good as 

that of the Van Cittert method. Yet, from the restored images, we observed that the new 

method generated the sharpest result among the three methods. This phenomenon points to 

the fact that MSE and SSIM, though can measure difference between the true image and its 

restoration, do not always indicate whether the restoration is sharp or not.

As another example, we used a Gaussian kernel with a bandwidth of 3 and a standard 

deviation of 0.75 to blur a test image ”sails” and added white Gaussian noise to the blurred 

image. The SNR was 9.4 dB. We then tested the Landweber method, Van Cittert method, 

and the new method on deblurring the image by 5000 iterations. The step size was set to 

3e-4. Results and the MSEs are shown in Figure 6. From the images, we see that the new 

method created a sharper restoration, such as the numbers on the sails, even when it had a 

larger MSE than the other two methods. From the MSE plot, it is also seen that the new 

method had a smaller error. It is interesting to note that the results of the new method and 

the Landweber method had similar MSEs, yet the result of the new method was sharper. 

The SSIMs of the standard Landweber method, Van Cittert method, and the new method 

were 0.8506, 0.8815, and 0.9200, respectively. We next used the same blurring kernel and 

parameters and applied the three methods on test image ”clock”. Results are shown in Figure 

7. We had the same observation that the new method generated a sharper result, despite that 

its MSE was higher than those of the other two methods. We also computed the SSIMs for 

Figure 7(c–e) and they were 0.6389, 0.6236, and 0.6132, respectively. In this example, we 

have the same observation that it seemed the new method gave a result with a higher MSE 

and lower SSIM than the other two methods. Yet, visual inspection of the results indicated 

that the new method created sharpest restoration.

Another scenario we tested is when the true PSF H is not known exactly. In the next 

example, we evaluated how the new method may perform using an estimated H to restore 

images. For the first example, the ”bridge” image was blurred by a Gaussian kernel H with a 

bandwidth of 3 and a standard deviation of 1.0. The SNR was 9.8 dB. Assuming that we did 

not know H exactly, we used an estimate H with a bandwidth of 5 and a standard deviation 

of 1.5 to deblur the image. Results are shown in Figure 8. We see from the comparison that 

the new method generated the best restoration as the restoration was sharper and showed 

more details about the ”bridge”. It also had a lower MSE. The SSIMs of Figure 8(c–e) were 

0.6988, 0.7810, and 0.7915, respectively.

Next we used several other test images for comparison among the three methods with 

different degrees of blurriness. These test images are shown in Figure 9, downloaded 

from homepages.cae.wisc.edu/~ece533/images/. Table 1 compares results given by the three 

methods on images blurred by a Gaussian kernel with a bandwidth of 3 and standard 

deviation of 1.0. The step size of restoration was 2e-4 and the number of iterations was 

3000. Results in the table are given as MSE followed by SSIM. From the table we see that 

the new method achieved lower MSEs and higher SSIMs than the other two methods.
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We next made the blurring effect more severe by increasing the standard deviation of the 

Gaussian kernel to 1.5 but kept all the other setup the same. The results are shown in Table 

2, from which, again, we note that the new method had the lowest MSEs and highest SSIMs.

In real world, it is often the case that we do not know the blurring PSF exactly. Next, 

we evaluated the new method when we used an inexact PSF to deblur an image. In this 

example, we also compared the new method not only with the standard Landweber method 

and the Van Cittert method but also the GMRES (generalized minimal residual method) 

and LSQR (least squares) methods. At first, we blurred an image with a Gaussian kernel 

with a bandwith of 3 and a standard deviation of 1.25. The SNR was 7.8 dB. We then used 

a Gaussian kernel with a bandwidth of 3 and a standard deviation of 1.55 to restore the 

image. The results of five methods are shown in Figure 10. For the first three methods, we 

ran iterations to 2000 as the MSEs for the Van Cittert and Landweber methods continued 

to decrease. For the GMRES and LSQR, we ran iterations to 100 as their MSEs started to 

increase after the first several iterations. For the Van Cittert method, standard Landweber 

method, and the new method, their restorations were the results of 2000th iteration. For the 

GMRES and LSQR methods, their restorations were the results of their second iteration, as 

both methods achieved their lowest MSEs at the second iteration, which can also be seen 

from Figure 10. Comparing the restoration results, we see that, in the presence of noise 

and with an estimated PSF, the new method gave the sharpest restoration, for example, the 

numbers on the watch, among the five methods. Next, we used the same test image but 

assumed that the PSF was under-estimated by 0.5. The results given by GMRES, LSQR, and 

the new method are shown in Figure 11. From the figure, we note that the new method still 

generated the best restoration and, in this case, had lowest MSE. The results given by the 

Van Cittert and Landweber methods are not shown but they had higher MSEs than the new 

method and blurrier restorations. We also computed the SSIMs for the standard Landweber 

method, the Van Cittert method, GMRES, LSQR, and the new method. The values were 

0.4921, 0.4710, 0.0264, 0.0677, and 0.3518, respectively. We note that the new method had 

a higher SSIM than GMRES and LSQR methods but its SSIM was lower than those of the 

standard Landweber method and the Van Cittert method. However, visual inspection of the 

restored images indicates that the new method had the best result as it shows more fine 

details about the watch.

Additional results are given in supplement materials, in which we performed ablation tests 

of implementing one idea only and compared the performance with the full new method, 

and more comparisons between the new method and two other existing iterative methods, 

GMRES and LSQR, and evaluated the new method on how it performs on restoring images 

blurred by a uniform kernel.

4. Discussion and Conclusions

In this work we presented a new framework on designing iterative techniques for image 

deblurring. We demonstrated the performance of the new framework using the Landweber 

method as a baseline technique. The motivation for the new framework stems from two 

observations about the Landweber method.
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The first observation is that, as the true images are degraded by the low-pass filtering effect 

of a PSF, it is reasonable to avoid using twice the low-pass filtered f from the beginning 

in the iterative process so the new method can achieve better performance. Our design was 

based on the idea of making the task of the iterative process easier because, as we showed, 

it is the iterative term that must cancel out the low-frequency components in the constant 

term to generate sharp restorations. If the constant term is much smoothed, as in the standard 

Landweber method, then the iterative term may not sufficiently cancel out the smoothness in 

the constant term, leading to sub-optimal results. Here we note that, for the image deblurring 

problem described in this work, we assumed an undetermined boundary condition. The 

reason is that, as shown by Zhou et al. [40], an undetermined boundary condition can lead 

to better results in image deblurring if the underlying image does not have high similarity 

at the boundary, which is the case for many images. On the other hand, if the underlying 

images have high similarity at the boundary, then a repeated boundary condition may lead 

to better results in deblurring [40]. In cases where a boundary condition can be imposed, 

Donatelli et al. proposed to replace the quadratic HT H operator by H′H where H′ is the 

H related to the boundary conditions with the PSF rotated by 180 degrees and their results 

showed that re-blurring H′H with anti-reflective boundary conditions can reduce the ringing 

effects during the blurring process [41]. Our method is distinct from the re-blurring idea by 

emphasizing the effect of avoiding two two times of low-pass filtering incurred by HT H to 

reduce the burden for the deblurring process to generate sharp restorations.

The second observation is that we can treat each iteration as searching for solution to a 

new deblurring problem in the sense that, at each iteration, our best estimate about the true 

image is updated by the previous cycle and, therefore, we do not have to use the original 

blurry observation as our best estimate. In other words, traditional methods solve the inverse 

problem of g = Hf + w over many iterations. In our proposal, we showed that it is beneficial 

to solve a series of inverse problems, starting with g = Hf + w, then the inverse problem is 

updated to f1 = Hf + w, then to f2 = Hf + w and so on. For each updated inverse problem, 

we only solve it one time by fn + 1 = βfn + fn − βHTHfn  where n = 1, 2, ⋯. Then the 

inverse problem gets updated and we then solve the ”new” problem again.

The contribution of this work is two-fold. The first contribution is that it shows the 

initialization term in the Landweber method is a twice blurred version of true image f and it 

is beneficial to replace Hg with g to remove the additional low-pass filtering imposed by the 

PSF H. The second contribution is that, as we showed in the analysis of the iterative steps 

of Landweber method, we can update the inverse problem model as we progress through 

the iterations. Instead of keeping the inverse problem unchanged, meaning that we always 

start from the same point, we can update the inverse problem as we acquire an estimate 

of the true image. This estimate then can be used to rewrite the inverse problem and help 

the iterative process achieve a better performance. We note that the two contributions are 

not constrained to modifying the Landweber method. They are applicable to other iterative 

algorithms if they have the similar computational setup in initialization and updating the 

iterative process.
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Here we note that we present the new framework as a stand-alone method, however, it is 

possible to integrate it with the latent iterative techniques it is based on. For example, it can 

be integrated with the standard Landweber method such that the new method is used for the 

first few hundreds of iterations while the standard Landweber method is used for the next 

several hundreds of iterations.

Based on the test results and comparisons, we can make several observations. First, it shows 

that the new method can generate sharper images as compared to other methods, whether 

its resulting images have a lower or higher MSE than the results given by the other two 

methods. This is likely due to the fact that the new method, using βg as the starting point, 

maintains more high-frequency components in the first place.

Second, when the PSF had to be estimated, the new method still generated the best results 

among the three methods, likely because of the constant part of the new iterative process, 

i.e., βg, is not filtered by the estimated PSF to start the iterations, thus reducing the impact of 

the imprecise PSF on the results.

It is also interesting to note that, as can be seen from our comparisons, MSE and SSIM 

do not always concur with visual inspection on how good a restored image is. Though a 

low MSE is typically desirable in image processing, depending on the underlying task of an 

application, a higher MSE may be an acceptable trade-off if the resulting image can provide 

useful information, such as in image deblurring. We used MSE in this work because the cost 

functions of many image deblurring algorithms essentially aims to minimize an energy term 

with an L2 norm of the similar form as MSE, i.e., to minimize ∥ g − Hf ∥ where f  is the 

restored image. In our experiments, we note that a high SSIM is generally preferred but just 

relying on SSIM may lead to incorrect conclusion on selecting the best restoration results. 

This could be due to the fact that SSIM is not a parameter-free metric as the two constants 

c1 and c2 in Eq. (25) need to be carefully set to stabilize its calculation. To the best of our 

knowledge, there is no dedicated metric that assesses the quality of deblurred images in both 

a quantitative way that an algorithm can be based on and a qualitative way that agrees with 

visual inspection. It would be beneficial to develop such a metric, which, however, is beyond 

the scope of this work.

In this work, we compared the new method to the standard Landweber method, Van 

Cittert method, GMRES, and LSQR. We chose these methods for comparison because they 

constitute the backbone of many other methods and have broad practical applications. More 

importantly, the purpose of comparing the new method to these methods is to illustrate 

the impact of the idea on designing iterative deblurring algorithms to better recover the 

high-frequency components in images, which is the overarching goal of image deblurring. 

From the idea of constructing the new framework, the two novel modifications can be 

adapted to other iterative techniques in solving inverse problems, including but not limited to 

image deblurring.

There are limitations of this work. We derived the new design of the deblurring process 

via insights into the existing Landweber method to improve the performance of image 

deblurring, however, we did not theoretically analyze the convergent behavior of the new 
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algorithm. Our numerical examples showed that the new algorithm can attain sharper 

restorations, though it may attain higher MSEs over an exceedingly large number of 

iterations. It points to the fact that a judiciously designed stopping rule is needed to stop 

the iterations. One choice is to stop the process when the difference between two iterations is 

smaller than a preset threshold.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We identified two aspects for improving iterative algorithms in deblurring

• Proposed two modifications on existing methods for deblurring images

• Testing showed that the new method can preserve fine details in deblurring
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Figure 1: 
(a) True f of part of the ”boat” image. (b) Blurred observation g. (c) Further blurred image 

HTg.
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Figure 2: 
(a) True image f. (b) Blurred observation g. (c) Restoration by Van Cittert method. (d) 

Restoration by Landweber method. (e) Restoration by the new method. (f) MSEs of the three 

methods. Black, Van Cittert method. Blue, Landweber method. Red, new method.
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Figure 3: 
(a) Restoration of Figure 1 by Van Cittert method at 500 iterations. (b) Restoration by 

Landweber method at 500 iterations. (c) Restoration by the new method at 500 iterations. (d) 

MSEs of the three methods. Black, Van Cittert method. Blue, Landweber method. Red, new 

method.
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Figure 4: 
(a) Restoration of Figure 1 by Van Cittert method at 1000 iterations. (b) Restoration by 

Landweber method at 1000 iterations. (c) Restoration by the new method at 1000 iterations. 

(d) MSEs of the three methods. Black, Van Cittert method. Blue, Landweber method. Red, 

new method.
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Figure 5: 
(a) Restoration of Figure 1 by Van Cittert method at 1500 iterations. (b) Restoration by 

Landweber method at 1500 iterations. (c) Restoration by the new method at 1500 iterations. 

(d) MSEs of the three methods. Black, Van Cittert method. Blue, Landweber method. Red, 

new method.
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Figure 6: 
(a) True image f. (b) Blurred observation g. (c) Restoration by Van Cittert method. (d) 

Restoration by Landweber method. (e) Restoration by the new method. (f) MSEs of the three 

methods. Black, Van Cittert method. Blue, Landweber method. Red, new method.
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Figure 7: 
(a) True image f. (b) Blurred observation g. (c) Restoration by Van Cittert method. (d) 

Restoration by Landweber method. (e) Restoration by the new method. (f) MSEs of the three 

methods. Black, Van Cittert method. Blue, Landweber method. Red, new method.
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Figure 8: 
(a) True image ”bridge” f. (b) Blurred observation g by a Gaussian kernel H with a 

bandwidth of 3 and a standard deviation of 1.0. (c) Restoration by Van Cittert method using 

a Gaussian kernel H with a bandwidth of 5 and a standard deviation of 1.5. (d) Restoration 

by Landweber method using H. (e) Restoration by the new method using H. (f) MSEs of the 

three methods. Black, Van Cittert method. Blue, Landweber method. Red, new method.
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Figure 9: 
Test images. Top, from left to right, tulips, monarch, and gold hill. Bottom, Saturn, fruits, 

and mountain.
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Figure 10: 
(a) An original image. (b) Blurred observation. (c-g) Results by Van Cittert method, standard 

Landweber method, GMRES, LSQR, and the new method, respectively, when the PSF was 

not known exactly and its standard deviation was over-estimated by 0.3. The MSEs of the 

five restoration results were 0.0296, 0.0565, 0.1189, 0.1191, and 0.6712, respectively. (h) 

MSEs of the Van Cittert method, standard Landweber method, and new method. (i) MSEs of 

GMRES and LSQR methods.
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Figure 11: 
(a-c) Results by GMRES, LSQR, and the new method, respectively, when the PSF was not 

known exactly and its standard deviation was under-estimated by 0.5. The MSEs of the three 

restoration results were 0.1214, 0.1211, and 0.0940, respectively.
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Table 1:

MSEs and SSIMs of the three methods in restoring images blurred by a Gaussian kernel with bandwidth of 3 

and a standard deviation of 1.0. Numbers are MSE followed by SSIM, separated by ”/”.

SNR Landweber Van Cittert New

Tulips 8.7 0.187 / 0.851 0.168 / 0.869 0.066 / 0.900

Monarch 8.8 0.211 / 0.878 0.190 / 0.897 0.080 / 0.933

Gold hill 5.5 0.076 / 0.624 0.074 / 0.636 0.067 / 0.664

Saturn 8.5 0.161 / 0.885 0.145 / 0.882 0.048 / 0.886

Fruits 9.9 0.334 / 0.816 0.301 / 0.817 0.091 / 0.824

Mountain 9.4 0.404 / 0.634 0.378 / 0.667 0.294 / 0.727
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Table 2:

Comparison of the three methods in restoring images blurred by a Gaussian kernel with bandwidth of 3 and a 

standard deviation of 1.5. Numbers are MSE followed by SSIM.

SNR Landweber Van Cittert New

Tulips 7.7 0.493 / 0.632 0.427 / 0.698 0.274 / 0.793

Monarch 7.9 0.541 / 0.622 0.468 / 0.701 0.304 / 0.820

Gold hill 4.5 0.121 / 0.470 0.111 / 0.497 0.090 / 0.550

Saturn 7.5 0.439 / 0.739 0.379 / 0.774 0.240 / 0.834

Fruits 9.0 0.924 / 0.673 0.798 / 0.708 0.503 / 0.763

Mountain 8.4 0.772 / 0.383 0.686 / 0.447 0.507 / 0.546
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