TABLE 2.
Recent development of antibacterial coatings on titanium implants
Categories | Main anti-infection agent | Mentioned synthesis method | Included bacteria species | Antibacterial effects | References |
---|---|---|---|---|---|
Metal ions | AgNPs | Physical vapor deposition (PVD) | S. aureus, S. mutans, S. epidermidis, E. coli, P. aeruginosa | ↑Antibacterial effect | Lampé et al. (2019) |
Electron cyclotron resonance (ECR) | Chen et al. (2016) | ||||
In situ dopamine reduction | Guo et al. (2020) | ||||
Layer-by-layer assembly | Wang et al. (2021b) | ||||
Electrodeposition | Ren et al. (2021) | ||||
Thermochemical treatment | Rodríguez-Contreras et al. (2021) | ||||
Zn | MAO | S. aureus | ↑Antibacterial effect | Ye et al. (2020) | |
Electrodeposition | E. coli | Shahmohammadi and Khazaei (2021) | |||
Hydrothermal method | P. gingivalis | Chen et al. (2021b) | |||
Cu | — | MRSA | ↓Biofilm formation, virulence | Zhuang et al. (2021) | |
↓Antibiotic resistance of MRSA | |||||
Ga | Hydrothermal method | S. aureus | Strong antibacterial ability | Li et al. (2021b) | |
E. coli | |||||
AgNPs | Laser cladding | S. aureus | Long-term synergistic antibacterial activity of Zn2+ and Ag+ | Zhang et al. (2018b) | |
Zn2+ | E. coli | ||||
AgNPs | Plasma electrolytic oxidation | MRSA | Synergistic antibacterial activity of Ag and Cu | van Hengel et al. (2020b) | |
CuNPs | |||||
Non-metallic antibacterial substances | Iodine | Anodization | S. aureus | ↓Bacterial colonization | Shirai et al. (2011) |
E. coli | |||||
Chlorhexidine | Organosilane chemistry | S. aureus | ↓Bacteria adhesion and growth | Wang et al. (2019) | |
Anti-fouling coatings | PEG | Simultaneous deposition; electrodeposition | S. aureus | ↓Protein absorption | Guo et al. (2021) |
E. coli | ↓Bacterial and platelet adhesion | Hoyos-Nogués et al. (2018) | |||
S. sanguinis | ↓Biofilm formation | ||||
Zwitterionic copolymer | Free radical polymerization | E. coli | ↓Protein adsorption, platelet adhesion | Huang et al. (2017) | |
RAFT polymerization | ↓Bacteria adhesion | ||||
Light-induced ROS | Photodynamic-induced ROS | Plasma electrolytic oxidation | S. sanguinis, A. naeslundii | ↑Antibacterial effect in light conditions | Nagay et al. (2019) |
↑Degradation efficiency of lipopolysaccharide | Wu et al. (2019) | ||||
Photothermal-induced ROS | π-π stacking | S. aureus, MRSA | ↑Bacteria killing | Yuan et al. (2019) | |
Hydrothermal method | ↓Biofilm formation | (Song et al., 2020) | |||
EDC-NHS chemistry | Su et al. (2020) | ||||
Sulfur doping | |||||
Bioactive antibacterial agent | AMP | Organosilane chemistry, click chemistry | S. gordonii, S. aureus | ↑Antibiofilm activity | Acosta et al. (2020) |
Layer-by-layer assembly | Rodríguez López et al. (2019) | ||||
Intelligent controlled release antibacterial coating | Gentamicin | — | S. aureus | ↓Bacteria growth and adhesion | Sang et al. (2021) |
E. coli | ↑Bacteria killing in a slightly acidic environment | ||||
Glycerin | Anodization | S. aureus | ↑Immunoregulatory antibacterial activities at 40°C | Li et al. (2021a) | |
E. coli |