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Abstract

Given functional data from a survival process with time-dependent covariates, we derive a smooth 

convex representation for its nonparametric log-likelihood functional and obtain its functional 

gradient. From this we devise a generic gradient boosting procedure for estimating the hazard 

function nonparametrically. An illustrative implementation of the procedure using regression trees 

is described to show how to recover the unknown hazard. The generic estimator is consistent 

if the model is correctly specified; alternatively an oracle inequality can be demonstrated for 

tree-based models. To avoid overfitting, boosting employs several regularization devices. One of 

them is step-size restriction, but the rationale for this is somewhat mysterious from the viewpoint 

of consistency. Our work brings some clarity to this issue by revealing that step-size restriction is a 

mechanism for preventing the curvature of the risk from derailing convergence.
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1. Introduction.

Flexible hazard models involving time-dependent covariates are indispensable tools for 

studying systems that track covariates over time. In medicine, electronic health records 

systems make it possible to log patient vitals throughout the day, and these measurements 

can be used to build real-time warning systems for adverse outcomes such as cancer 

mortality [2]. In financial technology, lenders track obligors’ behaviours over time to assess 

and revise default rate estimates. Such models are also used in many other fields of scientific 

inquiry since they form the building blocks for transitions within a Markovian state model. 
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Indeed, this work was partly motivated by our study of patient transitions in emergency 

department queues and in organ transplant waitlist queues [20]. For example, allocation for 

a donor heart in the U.S. is defined in terms of coarse tiers [23], and transplant candidates 

are assigned to tiers based on their health status at the time of listing. However, a patient’s 

condition may change rapidly while awaiting a heart, and this time-dependent information 

may be the most predictive of mortality and not the static covariates collected far in the past.

The main contribution of this paper is to introduce a fully nonparametric boosting procedure 

for hazard estimation with time-dependent covariates. We describe a generic gradient 

boosting procedure for boosting arbitrary weak base learners for this setting. Generally 

speaking, gradient boosting adopts the view of boosting as an iterative gradient descent 

algorithm for minimizing a loss functional over a target function space. Early work includes 

Breiman [6, 7, 8] and Mason et al. [21, 22]. A unified treatment was provided by Friedman 

[13], who coined the term “gradient boosting” which is now generally taken to be the 

modern interpretation of boosting.

Most of the existing boosting approaches for survival data focus on time-static covariates 

and involve boosting the Cox model. Examples include the popular R-packages mboost 

(Bühlmann and Hothorn [10]) and gbm (Ridgeway [26]) which apply gradient boosting to 

the Cox partial likelihood loss. Related work includes the penalized Cox partial likelihood 

approach of Binder and Schumacher [4]. Other important approaches, but not based on 

the Cox model, include L2Boosting [11] with inverse probability of censoring weighting 

(IPCW) [16, 18], boosted transformation models of parametric families [15], and boosted 

accelerated failure time models [27].

While there are many boosting methods for dealing with time-static covariates, the literature 

is far more sparse for the case of time-dependent covariates. In fact, to our knowledge 

there is no general nonparametric approach for dealing with this setting. This is because in 

order to implement a fully nonparametric estimator, one has to contend with the issue of 

identifying the gradient, which turns out to be a non-trivial problem due to the functional 

nature of the data. This is unlike most standard applications of gradient boosting where the 

gradient can easily be identified and calculated.

1.1. Time-dependent covariate framework.

To explain why this is so challenging, we start by formally defining the survival problem 

with time-dependent covariates. Our description follows the framework of Aalen [1]. Let T 
denote the potentially unobserved failure time. Conditional on the history up to time t– the 

probability of failing at T ∈ [t, t+dt) equals

λ(t, X(t))Y (t)dt . (1)

Here λ(t, x) denotes the unknown hazard function, X(t) ∈ X ⊆ ℝp is a predictable covariate 

process, and Y (t) ∈ {0, 1} is a predictable indicator of whether the subject is at risk at time 

t.1 To simplify notation, without loss of generality we normalize the units of time so that Y 
(t) = 0 for t > 1.2 In other words, the subject is not at risk after time t = 1, so we can restrict 

attention to the time interval (0, 1].
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If failure is observed at T ∈ (0, 1] then the indicator Δ = Y (T) equals 1, otherwise Δ = 

0 and we set T = ∞. Throughout we assume we observe n independent and identically 

distributed functional data samples Xi( ⋅ ), Y i( ⋅ ), Ti i = 1
n . The evolution of observation i’s 

failure status can then be thought of as a sequence of coin flips at time increments t = 

0, dt, 2dt, ⋯, with the probability of “heads” at each time point given by (1). Therefore, 

observation i’s contribution to the likelihood is

1 − λ 0, Xi(0) Y i(0)dt × 1 − λ dt, Xi(dt) Y i(dt)dt × ⋯

× λ Ti, Xi Ti
Δi

dt 0
e−∫0

1Yi(t)λ t, Xi(t) dtλ Ti, Xi Ti
Δi,

where the limit can be understood as a product integral. Hence, if the log-hazard function is

F(t, x) = log  λ(t, x),

then the (scaled) negative log-likelihood functional is

Rn(F) = 1
n ∑

i = 1

n ∫
0

1
Y i(t)eF t, Xi(t) dt − 1

n ∑
i = 1

n
ΔiF T i, Xi T i , (2)

which we shall refer to as the likelihood risk. The goal is to estimate the hazard function λ(t, 
x) = eF(t, x) nonparametrically by minimizing Rn(F).

1.2. The likelihood does not have a gradient in generic function spaces.

As mentioned, our approach is to boost F using functional gradient descent. However the 

chief difficulty is that the canonical representation of the likelihood risk functional does not 

have a gradient. To see this, observe that the directional derivative of (2) equals

d
dθRn(F + θf)

θ = 0
= 1

n ∑
i = 1

n ∫
0

1
Y i(t)eF t, Xi(t) f t, Xi(t) dt

− 1
n ∑

i = 1

n
Δif T i, Xi T i ,

(3)

which is the difference of two different inner products 〈eF, f〉† − 〈1, f〉‡ where

g, f † = 1
n ∑

i = 1

n ∫0
1

Yi(t)g t, Xi(t) f t, Xi(t) dt,

1The filtration of interest is σ{X(s), Y(s), I(T ≤ s) : s ≤ t}. If X(t) is only observable when Y(t) = 1, we can set X t = xc ∉ X
whenever Y(t) = 0.
2Since the data is always observed up to some finite time, there is no information loss from censoring at that point. For example, if T′ 
is the failure time in minutes and the longest duration in the data is τ′ = 60 minutes, the failure time in hours, T, is at most τ = 1 hour. 
The hazard function on the minute timescale, λT′(t′, X(t′)), can be recovered from the hazard function on the hourly timescale, λT (t, 

X(t)), via λT′ t′, X t′ = 1
τ′λT

t′
τ′ , X t′

τ′ .
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g, f ‡ = 1
n ∑

i = 1

n
Δig Ti, Xi Ti f Ti, Xi Ti .

Hence, (3) cannot be expressed as a single inner product of the form 〈gF, f〉 for some 

function gF (t, x). Were it possible to do so, gF would then be the gradient function.

In simpler non-functional data settings like regression or classification, the loss can be 

written as L(Y , F(x)), where F  is the non-functional target statistical model and Y is 

the outcome, so the gradient is simply ∂L(Y , F(x))/ ∂F(x). The negative gradient is then 

approximated using a base learner f ∈ ℱ from a predefined class of functions ℱ (this being 

either parametric; for example linear learners, or nonparametric; for example tree learners). 

Typically, the optimal base learner f  is chosen to minimize the L2-approximation error and 

then scaled by a regularization parameter 0 < ν ≤ 1 to obtain the updated estimate of F :

F F − νf,      f = argmin
f ∈ ℱ

∂L
∂F − f 2 .

Importantly, in the simpler non-functional setting the gradient does not depend on the space 

that F  belongs to. By contrast, a key insight of this paper is that the gradient of Rn(F) 

can only be defined after carefully specifying an appropriate sample-dependent domain for 

Rn(F). The likelihood risk can then be re-expressed as a smooth convex functional, and an 

analogous representation also exists for the population risk. These representations resolve 

the difficulty above, allow us to describe and implement a gradient boosting procedure, and 

are also crucial to establishing guarantees for our estimator.

1.3. Contributions of the paper.

A key discovery that unlocks the boosted hazard estimator is Proposition 1 of Section 

2. It provides an integral representation for the likelihood risk from which several results 

follow, including, importantly, an explicit representation for the gradient. Proposition 1 

relies on defining a suitable space of log-hazard functions defined on the time-covariate 

domain [0, 1] × X. Identifying this space is the key insight that allows us to rescue the 

likelihood approach and to derive the gradient needed to implement gradient boosting. 

Arriving at this framework is not conceptually trivial, and may explain the absence of 

boosted nonparametric hazard estimators until now.

Algorithm 1 of Section 2 describes our estimator. The algorithm minimizes the likelihood 

risk (2) over the defined space of log-hazard functions. In the special case of regression tree 

learners, expressions for the likelihood risk and its gradient are obtained from Proposition 1, 

which are then used to describe a tree-based implementation of our estimator in Section 4. In 

Section 5 we apply it to a high-dimensional dataset generated from a naturalistic simulation 

of patient service times in an emergency department.

Section 3 establishes the consistency of the procedure. We show that the hazard estimator 

is consistent if the space is correctly specified. In particular, if the space is the span of 
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regression trees, then the hazard estimator satisfies an oracle inequality and recovers λ up to 

some error tolerance (Propositions 3 and 4).

Another contribution of our work is to clarify the mechanisms used by gradient boosting 

to avoid overfitting. Gradient boosting typically applies two types of regularization to 

invoke slow learning: (i) A small step-size is used for the update; and (ii) The number 

of boosting iterations is capped. The number of iterations used in our algorithm is set 

using the framework of Zhang and Yu [31], whose work shows how stopping early 

ensures consistency. On the other hand, the role of step-size restriction is more mysterious. 

While [31] demonstrates that small step-sizes are needed to prove consistency, unrestricted 

greedy step-sizes are already small enough for classification problems [28] and also for 

commonly used regression losses (see the Appendix of [31]). We show in Section 3.3 

that shrinkage acts as a counterweight to the curvature of the risk (see Lemma 2). Hence 

if the curvature is unbounded, as is the case for hazard regression, then the step-sizes 

may need to be explicitly controlled to ensure convergence. This important result adds 

to our understanding of statistical convergence in gradient boosting. As noted by Biau 

and Cadre [3] the literature for this is relatively sparse, which motivated them to propose 

another regularization mechanism that also prevents overfitting. Our work adds to this by 

considering the functional data setting.

Concluding remarks can be found in Section 6. Proofs not appearing in the body of the paper 

can be found in the Appendix.

2. The boosted hazard estimator.

In this section, we describe our boosted hazard estimator. To provide readers with concrete 

examples for the ideas introduced here, we will show how the quantities defined in this 

section specialize in the case of regression trees, which is one of a few possible ways to 

implement boosting.

We begin by defining in Section 2.1 an appropriate sample-dependent domain for the 

likelihood risk Rn(F). As explained, this key insight allows us to re-express the likelihood 

risk and its population analogue as smooth convex functionals, thereby enabling us to 

compute their gradients in closed form in Propositions 1 and 2 of Section 2.2. Following 

this, the boosting algorithm is formally stated in Section 2.3.

2.1. Specifying a domain for Rn(F).

We will make use of two identifiability conditions (A1) and (A2) to define the domain 

for Rn(F). Condition (A1) below is the same as Condition 1(iv) of Huang and Stone [19]. 

Assumption (A1). The true hazard function λ(t, x) is bounded between some interval [ΛL, 

ΛU] ⊂ (0, ∞) on the time-covariate domain [0, 1] × X.

Recall that we defined X(·) and Y(·) to be predictable processes, and so it can be shown 

that the integrals and expectations appearing in this paper are all well defined. Denoting 

the indicator function as I(·), define the following population and empirical sub-probability 

measures on [0, 1] × X:
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μ(B) = E ∫0
1

Y (t) ⋅ I[ t, X(t) ∈ B]dt ,

μn(B) = 1
n ∑

i = 1

n ∫0
1

Yi(t) ⋅ I t, Xi(t) ∈ B dt,

and note that Eμn(B) = μ(B) because the data is i.i.d. by assumption. Intuitively, μn measures 

the denseness of the observed sample time-covariate paths on [0, 1] × X. For any integrable f,

∫ f dμ = E ∫
0

1
Y (t) ⋅ f(t, X(t))dt , (4)

∫ f dμn = 1
n ∑

i = 1

n ∫
0

1
Y i(t) ⋅ f t, Xi(t) dt . (5)

This allows us to define the following (random) norms and inner products

f μn, 1 = ∫ f dμn

f μn, 2 = ∫ f2dμn
1/2

f ∞ = sup f(t, x) : (t, x) ∈ [0, 1] × X

f1, f2 μn = ∫ f1f2dμn,

and note that ‖ · ‖μn, 1 ≤ ‖ · ‖μn, 2 ≤ ‖ · ‖∞ because μn([0, 1] × X) ≤ 1.

By careful design, μn allows us to specify a natural domain for Rn(F). Let ϕj(t, x) j = 1
d  be 

a set of bounded functions [0, 1] × X [ − 1, 1] that are linearly independent, in the sense 

that ∫[0, 1] × X ∑jcjϕj
2dtdx = 0 if and only if c1 = ⋯ = cd = 0 (when some of the covariates 

are discrete-valued, dx should be interpreted as the product of a counting measure and the 

Lebesgue measure). The span of the functions is

ℱ = ∑
j = 1

d
cjϕj:cj ∈ ℝ .
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For example, the span of all regression tree functions that can be defined on [0, 1] × X, 

is ℱ = ∑jcjIBj(t, x):cj ∈ ℝ ,3 which are linear combinations of indicator functions over 

disjoint time-covariate cubes indexed4 by j = (j0, j1,·⋯, jp):

Bj = (t, x) ∈ [0, 1] × X:

t j0 < t ≤ t j0 + 1

x 1, j1 < x(1) ≤ x 1, j1 + 1

⋮
x p, jp < x(p) ≤ x p, jp + 1

. (6)

Remark 1. The regions Bj are formed using all possible split points x k, jk
jk

 for the k-th 

coordinate x(k), with the spacing determined by the precision of the measurements. For 

example, if weight is measured to the closest kilogram, then the set of all possible split 

points will be {0.5, 1.5, 2.5, ⋯} kilograms. Note that these split points are the finest possible 

for any realization of weight that is measured to the nearest kilogram. While abstract 

treatments of trees assume that there is a continuum of split points, in reality they fall on a 

discrete (but fine) grid that is pre-determined by the precision of the data.

When ℱ is equipped with 〈·, ·〉μn, we obtain the following sample-dependent subspace of 

L2(μn), which is the appropriate domain for Rn(F):

ℱ, ⋅ , ⋅ μn .

Note that the elements in ℱ, ⋅ , ⋅ μn  are equivalence classes rather than actual functions 

that have well defined values at each (t, x). This is a problem because the likelihood risk (2) 

requires evaluating F(t, x) at the points (Ti, Xi(Ti)) where Δi = 1. We resolve this by fixing an 

orthonormal basis {φnj(t, x)}j for ℱ, ⋅ , ⋅ μn , and represent each member of ℱ, ⋅ , ⋅ μn
uniquely in the form ∑jcjφnj(t, x). For example in the case of regression trees, applying the 

Gram-Schmidt procedure to ϕj(t, x) = IBj(t, x) j gives

φnj(t, x) j =
IBj(t, x)

μn Bj
1/2 :μn Bj > 0 ,

which by design have disjoint support.

3It is clear that said span is contained in ℱ. For the converse, it suffices to show that ℱ is also contained in the span of trees of some 
depth. This is easy to show for trees with p + 1 splits, because they can generate partitions of the form (−∞, t] × (−∞, x(1)]× ⋯ × 
(−∞, x(p)] in [0, 1] × X (Section 3 of [8]).
4With a slight abuse of notation, the index j is only considered multi-dimensional when describing the geometry of Bj, such as in (6). 
In all other situations j should be interpreted as a scalar index.
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The second condition we impose is for ϕj j = 1
d  to be linearly independent in L2(μ), that is 

∑jcjϕj μ, 2
2 = ∑ijci ∫ ϕiϕjdμ cj = 0 if and only if c1 = ⋯ = cd = 0. Since by construction 

ϕj j = 1
d  are already linearly independent in [0, 1] × X, the condition intuitively requires the 

set of all possible time-covariate trajectories to be adequately dense in [0, 1] × X to intersect a 

sufficient amount of the support of every ϕj. This is weaker than the identifiability conditions 

1(ii)-1(iii) in [19] which require X(t) to have a positive joint probability density on [0, 1] × X.

Assumption (A2). The Gram matrix Σij = ∫ ϕiϕjdμ is positive definite.

2.2. Integral representations for the likelihood risk.

Having deduced the appropriate domain for Rn(F), we can now recast the risk as a smooth 

convex functional on ℱ, ⋅ , ⋅ μn . Proposition 1 below provides closed form expressions for 

this and its gradient. We note that if the risk is actually of a certain simpler form, it might be 

possible to estimate its gradient empirically from our risk expression using [24].

Proposition 1. For functions F(t, x), f(t, x) of the form ∑jcjφnj(t, x), the likelihood risk (2) 

can be written as

Rn(F) = ∫ eF − λnF dμn, (7)

where λn ∈ ℱ, ⋅ , ⋅ μn  is the function

λn(t, x) = 1
n ∑

j
∑

i = 1

n
Δiφnj Ti, Xi Ti φnj(t, x) .

Thus there exists ρ ∈ (0, 1) (depending on F and f) for which the Taylor representation

Rn(F + f) = Rn(F) + gF , f μn + 1
2∫ eF + ρff2dμn (8)

holds, where the gradient

gF(t, x) = ∑
j

eF , φnj μnφnj(t, x) − λn(t, x) (9)

of Rn(F) is the projection of eF −λn onto ℱ, ⋅ , ⋅ μn . Hence if gF = 0 then the infimum of 

Rn(F) over the span of {φnj(t, x)}j is uniquely attained at F.

For regression trees the expressions (7) and (9) simplify further because ℱ is closed under 

pointwise exponentiation, i.e. eF ∈ ℱ for F ∈ ℱ. This is because the Bj’s are disjoint so 

F = ∑jcjIBj and hence eF = ∑jecjIBj. Thus
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λn(t, x) = ∑
j:μn Bj > 0

 Failj
nμn Bj

IBj(t, x), (10)

Rn(F) = ∑
j:μn Bj > 0

ecjμn Bj − cjFailj
n , (11)

gF(t, x) = ∑
j:μn Bj > 0

ecj −  Failj
nμn Bj

IBj(t, x), (12)

where

Failj = ∑
i

ΔiI Ti, Xi Ti ∈ Bj

is the number of observed failures in the time-covariate region Bj.

Proof of Proposition 1. Fix a realization of Xi( ⋅ ), Y i( ⋅ ), Ti i = 1
n . Using (5) we can rewrite 

(2) as

Rn(F) = ∫ eFdμn − 1
n ∑

i = 1

n
ΔiF Ti, Xi Ti .

We can express F in terms of the basis {φnk}k as F(t, x) = ∑kckφnk(t, x). Hence

∫ λnFdμn = ∫ 1
n ∑

j
∑

i = 1

n
Δiφnj Ti, Xi Ti φnj(t, x)F(t, x)dμn

= 1
n ∑

j
∑

i = 1

n
Δiφnj Ti, Xi Ti ∫ φnj(t, x)F(t, x)dμn

= 1
n ∑

j
∑

i = 1

n
Δiφnj Ti, Xi Ti ∫ φnj(t, x)∑

k
ckφnk(t, x)dμn

= 1
n ∑

j
∑

i = 1

n
Δiφnj Ti, Xi Ti cj

= 1
n ∑

i = 1

n
Δi∑

j
cjφnj Ti, Xi Ti

= 1
n ∑

i = 1

n
ΔiF Ti, Xi Ti ,

where the fourth equality follows from the orthonormality of the basis. This completes the 

derivation of (7).

By an interchange argument we obtain
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d
dθRn(F + θf) = ∫ eF + θf − λn fdμn,

d2

dθ2Rn(F + θf) = ∫ eF + θff2dμn,

the latter being positive whenever f ≠ 0; i.e., Rn(F) is convex. The Taylor representation 

(8) then follows from noting that gF is the orthogonal projection of eF − λn ∈ L2(μn) onto 

ℱ, ⋅ , ⋅ μn . □

The expectation of the likelihood risk also has an integral representation. A special case of 

the representation (13) below is proved in Proposition 3.2 of [19] for right-censored data 

only, under assumptions that do not allow for internal covariates. In the statement of the 

proposition below recall that ΛL and ΛU are defined in (A1). The constant αℱ is defined 

later in (28).

Proposition 2. For F ∈ ℱ ∪ log λ ,

R(F) = E Rn(F) = ∫ eF − λF dμ . (13)

Furthermore the restriction of R(F) to ℱ is coercive:

1
2R(F) ≥ ΛL

αℱ
F

∞
+ ΛUmin 0, 1 − log  2ΛU , (14)

and it attains its minimum at a unique point F* ∈ ℱ, ⋅ , ⋅ μ . If ℱ contains the underlying 

log-hazard function then F* = log λ.

Remark 2. Coerciveness (14) implies that any F with expected risk R(F) less than R(0) ≤ 1 < 
3 is uniformly bounded:

F
∞

< αℱ
ΛL

3/2 + ΛUmax 0, log  2ΛU − 1 ≤ αℱβΛ (15)

where the constant

βΛ = 3/2 + ΛUmax 0, log  2ΛU − 1
min 1, ΛL

(16)

is by design no smaller than 1 in order to simplify subsequent analyses.
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2.3. The boosting procedure.

In gradient boosting the key idea is to update an iterate in a direction that is approximately 

aligned to the negative gradient. To model this direction formally, we introduce the concept 

of an ε-gradient.

Definition 1. Suppose gF ≠ 0. We say that a unit vector gF
ε ∈ ℱ, ⋅ , ⋅ μn  is an ε-gradient at 

F if for some 0 < ε ≤ 1,

gF
gF μn, 2

, gF
ε

μn
≥ ε . (17)

Call −gF
ε  a negative ε-gradient if gF

ε  is an ε-gradient.

Our boosting procedure seeks approximations gF
ε  that satisfy (17) for some pre-specified 

alignment value ε. The larger ε is, the closer the alignment is between the negative gradient 

and the negative ε-gradient, and the greater the risk reduction. In particular, −gF is the 

unique negative 1-gradient with maximal risk reduction. In practice, however, we find that 

using a smaller value of ε leads to simpler approximations that prevent overfitting in finite 

samples. This is consistent with other implementations of boosting: It is well known that the 

statistical performance of gradient descent generally improves when simpler base learners 

are used.

Algorithm 1 describes the proposed boosting procedure for estimating λ. For a given level 

of alignment ε, Line 3 finds an ε-gradient gFm
ε  at Fm satisfying (18) at the m-th iteration, 

and uses its negation for the boosting update in Line 4. If the ε-gradients are regression tree 

learners, as is the case with the implementation in Section 4, then the trees cannot be grown 

in the same way as the standard boosting algorithm in Friedman [13]. This is because the 

standard approach grows all regression trees to a fixed depth, which may or may not ensure 

ε-alignment at each boosting iteration.

To ensure ε-alignment, the depth of the trees are not fixed in the implementation in Section 

4. Instead, at each boosting iteration a tree is grown to whatever depth is needed to satisfy 

(18). This can always be done because the alignment ε is non-decreasing in the number of 

tree splits, and with enough splits we can recover the gradient gFm itself up to μn-almost 

everywhere.5 As mentioned earlier, we recommend using small values of ε, which can be 

determined in practice using cross-validation. This differs from the standard approach where 

cross-validation is used to select a common tree depth to use for all boosting iterations.

In addition to the gradient alignment ε, Algorithm 1 makes use of two other regularization 

parameters, Ψn and νn. The first defines the early stopping criterion (how many boosting 

iterations to use), while the second controls the step-sizes of the boosting updates. These are 

two common regularization techniques used in boosting:

5Split the tree until each leaf node contains just one of the regions Bj in (6) with μn(Bj) > 0. Then set the value of the node equal to the 
value of the gradient function (12) inside Bj.
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1. Early stopping. The number of boosting iterations m is controlled by stopping the 

algorithm before the uniform norm of the estimator Fm ∞ reaches or exceeds

Ψn = W n1/4 ∞, (19)

where W(y) is the branch of the Lambert function that returns the real root of the 

equation zez = y for y > 0.

2. Step-sizes. The step-size νn ≪ 1 used in gradient boosting is typically held 

constant across iterations. While we can also do this in our procedure,6 the 

role of step-size shrinkage becomes more salient if we use νn/(m+1) instead as 

the step-size for the m-th iteration in Algorithm 1. This step-size is controlled 

in two ways. First, it is made to decrease with each iteration according to the 

Robbins-Monro condition that the sum of the steps diverges while the sum of 

squared steps converges. Second, the shrinkage factor νn is selected to make the 

step-sizes decay with n at rate

νn2eΨn < 1,      νn2eΨn 0. (20)

This acts as a counterbalance to Rn(F)’s unbounded curvature:

d2

dθ2Rn(F + θf)
θ = 0

= ∫ eFf2dμn, (21)

which is upper bounded by eΨn when ‖F‖∞ < Ψn and f μn, 2 = 1.

3. Consistency.

Under (A1) and (A2), guarantees for our hazard estimator λboost in Algorithm 1 can be 

derived for two scenarios of interest. The guarantees rely on the regularizations described in 

Section 2.3 to avoid overfitting. In the following development, recall from Proposition 2 that 

F* is the unique minimizer of R(F), so it satisfies the first order condition

eF* − λ, F μ = 0 (22)

6The term νn2eΨn in condition (20) would need to be replaced by mνn2eΨn if a constant step-size is used.
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for all F ∈ ℱ. Recall that the span of all trees is closed under pointwise exponentiation 

eF ∈ ℱ , in which case (22) implies that λ* = eF* is the orthogonal projection of λ onto 

ℱ, ⋅ , ⋅ μ .

1. Consistency when ℱ is correctly specified. If the true log-hazard function log λ 
is in ℱ, then Proposition 2 asserts that F* = log λ. It will be shown in this case 

that λboost is consistent:

λboost − λ μ, 2
2 = op(1) .

2. Oracle inequality for regression trees. If ℱ is closed under pointwise 

exponentiation, it follows from (22) that λ* is the best L2(μ)-approximation to 

λ among all candidate hazard estimators eF :F ∈ ℱ . It can then be shown that 

λboost converges to this best approximation:

λboost − λ μ, 2
2 = λ* − λ μ, 2

2 + op(1) .

This oracle result is in the spirit of the type of guarantees available for tree-based 

boosting in the non-functional data setting. For example, if tree stumps are used 

for L2-regression, then the regression function estimate will converge to the best 

approximation to the true regression function in the span of tree stumps [9]. 

Similar results also exist for boosted classifiers [5].

Propositions 3 and 4 below formalize these guarantees by providing bounds on the error 

terms above. While sharper bounds may exist, the chief purpose of this paper is to introduce 

our generic estimator for the first time and to provide guarantees that apply across different 

implementations. More refined convergence rates may exist for a specific implementation, 

just like the analysis in Bühlmann and Yu [11] for L2Boosting when componentwise spline 

learners are specifically used. We leave this for future research.

En route to establishing the guarantees, Lemma 2 below clarifies the role played by step-

size restriction in ensuring convergence of the estimator. As explained in the Introduction, 

explicit shrinkage is not necessary for classification and regression problems where the risk 

has bounded curvature. Lemma 2 suggests that it may, however, be needed when the risk 

has unbounded curvature, as is the case with Rn(F). Seen in this light, shrinkage is really a 

mechanism for controlling the growth of the risk curvature.

3.1. Strategy for establishing guarantees.

The representations for Rn(F) and its population analogue R(F) from Section 2 are the key 

ingredients for formalizing the guarantees. We use them to first show that Fm ∈ ℱ, ⋅ , ⋅ μn
converges to F* ∈ ℱ, ⋅ , ⋅ μ : Applying Taylor’s theorem to the representation for R(F) in 

Proposition 2 yields
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Fm − F* μ, 2
2 ≤ 2 R Fm − R F*

mint, x λ* ∧ λboost
. (23)

The problem is thus transformed into one of risk minimization R Fm R F* , for which 

[31] suggests analyzing separately the terms of the decomposition

0 ≤ R Fm − R F*
≤ Rn Fm − R Fm  (I)       COMPLEXITY ARGUMENT 
+ Rn F* − R F*  (II)       STANDARD ARGUMENT 
+ Rn Fm − Rn F* .  (III)       CURVATURE ARGUMENT 

(24)

The authors argue that in boosting, the point of limiting the number of iterations m (enforced 

by lines 5–10 in Algorithm 1) is to prevent Fm from growing too fast, so that (I) converges to 

zero as n → ∞. At the same time, m is allowed to grow with n in a controlled manner so that 

the empirical risk Rn Fm  in (III) is eventually minimized as n → ∞. Lemmas 1 and 2 below 

show that our procedure achieves both goals. Lemma 1 makes use of complexity theory via 

empirical processes, while Lemma 2 deals with the curvature of the likelihood risk. The term 

(II) will be bounded using standard concentration results.

3.2. Bounding (I) using complexity.

To capture the effect of using a simple negative ε-gradient (17) as the descent direction, we 

bound (I) in terms of the complexity of7

ℱε = ℱε, boost ∪ F ∈ ℱ: F ∞ = 1 ⊆ ℱ,

 where ℱε, boost = Fm = − ∑
k = 0

m − 1 νn
k + 1gFk

ε :m = 0, 1, … . (25)

Depending on the choice of weak learners for the ε-gradients, ℱε may be much smaller than 

ℱ. For example, coordinate descent might only ever select a small subset of basis functions 

{ϕj}j because of sparsity. As another example if λ(t, x) is additively separable in time and 

also in each covariate, then regression trees might only ever select simple tree stumps (one 

tree split).

The measure of complexity we use below comes from empirical process theory. Define 

ℱε
Ψ = F ∈ ℱε: F ∞ < Ψ  for Ψ > 0 and suppose that Q is a sub-probability measure 

on [0, 1] × X. Then the L2(Q)-ball of radius δ > 0 centred at some F ∈ L2(Q) is 

F′ ∈ ℱε
Ψ : F′ − F Q, 2 < δ . The covering number N δ, ℱε

Ψ, Q  is the minimum number of 

such balls needed to cover ℱε
Ψ (Definitions 2.1.5 and 2.2.3 of van der Vaart and Wellner 

[29]), so N δ, ℱε
Ψ, Q = 1 for δ ≥ Ψ. A complexity measure for ℱε is

7For technical convenience, ℱε has been enlarged from ℱε, boost to include the unit ball.
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Jℱε = sup
Ψ, Q ∫

0

1
log N uΨ, ℱε

Ψ, Q 1/2du , (26)

where the supremum is taken over Ψ > 0 and over all non-zero sub-probability measures. As 

discussed, Jℱ is never greater than, and potentially much smaller than Jℱ, the complexity of 

ℱ, which is fixed and finite.

Before stating Lemma 1, we note that the result also shows an empirical analogue to the 

norm equivalences

F μ, 1 ≤ F μ, 2 ≤ F ∞ ≤ αℱ
2 F μ, 1 for all F ∈ ℱ (27)

exists, where

αℱ = 2 sup
F ∈ ℱ: F ∞ = 1

F ∞
F μ, 1

= 2
inf

F ∈ ℱ: F ∞ = 1
F

μ, 1

> 1. (28)

The factor of 2 serves to simplify the presentation, and can be replaced with anything greater 

than 1.

Lemma 1. There exists a universal constant κ such that for any 0 < η < 1, with probability at 
least

1 − 4 exp  − ηn1/4
καℱJℱε

2

an empirical analogue to (27) holds for all F ∈ ℱ:

F μn, 1 ≤ F μn, 2 ≤ F ∞ ≤ αℱ F μn, 1, (29)

and for all F ∈ ℱε
Ψn,

Rn(F) − Rn(0) − R(F) − R(0) < η . (30)

Remark 3. The equivalences (29) imply that dim ℱ, ⋅ , ⋅ μn  equals its upper bound 

dimℱ = d. That is, if ∑jcjϕj μn, 2 = 0, then ∑jcjϕj ∞ = 0, so c1 = ⋯ = cd = 0 because 

ϕj j = 1
d  are linearly independent on [0, 1] × X.

3.3. Bounding (III) using curvature.

We use the representation in Proposition 1 to study the minimization of the empirical 

risk Rn(F) by boosting. Standard results for exact gradient descent like Theorem 2.1.15 of 

Nesterov [25] are in terms of the norm of the minimizer, which may not exist for Rn(F).8 
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If coordinate descent is used instead, Section 4.1 of [31] can be applied to convex functions 

whose infimum may not be attainable, but its curvature is required to be uniformly bounded 

above. Since the second derivative of Rn(F) is unbounded (21), Lemma 2 below provides 

two remedies: (i) Use the shrinkage decay (20) of νn to counterbalance the curvature; 

(ii) Use coercivity (15) to show that with increasing probability, Fm m = 0
m  are uniformly 

bounded, so the curvatures at those points are also uniformly bounded. Lemma 2 combines 

both to derive a result that is simpler than what can be achieved from either one alone. In 

doing so, the role played by step-size restriction becomes clear. The lemma relies in part on 

adapting the analysis in Lemma 4.1 of [31] for coordinate descent to the case for generic 

ε-gradients. The conditions required below will be shown to hold with high probability.

Lemma 2. Suppose (29) holds and that

Rn F* − R F* < 1,       sup
F ∈ ℱs*n

Rn(F) − R(F) < 1.

Then the largest gap between F* and Fm m = 0
m ,

γ = max
m ≤ m

Fm − F* ∞ ∨ 1, (31)

is bounded by a constant no greater than 2αℱβΛ, and for n ≥ 55,

Rn Fm − Rn F* < 2eβΛ
log n
4n1/4

ε/ αℱγ
+ νn2eΨn . (32)

Remark 4. The last term in (32) suggests that the role of the step-size shrinkage νn is to 

keep the curvature of the risk in check, to prevent it from derailing convergence. Recall from 

(21) that eΨn describes the curvature of Rn(Fm). Thus our result clarifies the role of step-size 

restriction in boosting functional data.

Remark 5. Regardless of whether the risk curvature is bounded or not, smaller step-sizes 

always improve the convergence bound. This can be seen from the parsimonious relationship 

between νn and (32). Fixing n, pushing the value of νn down towards zero yields the lower 

limit

2eβΛ
log n
4n1/4

ε/ αℱγ
.

However, this limit is unattainable as νn must be positive in order to decrease the risk. 

This effect has been observed in practical applications of boosting. Friedman [13] noted 

8The infimum of Rn(F) is not always attainable: If f is non-positive and vanishes on the set {{Ti, Xi(Ti)} : Δi = 1}, then 

Rn(F + θf) = ∫ eF + θf − λnF dμn is decreasing in θ so f is a direction of recession. This is however not an issue for boosting 

because of early stopping.
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improved performance for gradient boosting with the use of a small shrinkage factor ν. At 

the same time, it was also noted there was diminishing performance gain as ν became very 

small, and this came at the expense of an increased number of boosting iterations. This 

same phenomenon has also been observed for L2Boosting [11] with componentwise linear 

learners. It is known that the solution path for L2Boosting closely matches that of lasso as ν 
→ 0. However, the algorithm exhibits cycling behaviour for small ν, which greatly increases 

the number of iterations and offsets the performance gain in trying to approximate the lasso 

(see Ehrlinger and Ishwaran [12]).

3.4. Formal statements of guarantees.

As a reminder, we have defined the following quantities:

λboost = eFm, the boosted hazard estimator in Algorithm 1

λ* = eF*, where F* is the unique minimizer of R(F) in Proposition 2

ΛL,ΛU = lower and upper bounds on λ(t, x) as defined in (A1)

γ  = maximum gap between F* and Fm m = 0
m  defined in (31)

κ = a universal constant

αℱ = constant defined in (28) βΛ = constant defined in (16)

Jℱε = complexity measure (26), bounded above by Jℱ

To simplify the results, we will assume that n ≥ 55 and also set the shrinkage to satisfy 

νn2eΨn = log n/ 64n1/4 . Our first guarantee shows that our hazard estimator is consistent if the 

model is correctly specified.

Proposition 3. (Consistency under correct model specification). Suppose ℱ contains the true 
log-hazard function log λ. Then with probability

1 − 8 exp  − log n
καℱ ΛL

−1 ∨ ΛU Jℱε

2

we have that λboost ∞ is bounded and

λboost − λ μ, 2
2 < 13βΛ

maxt, x λ ∨ λboost
2

mint, x λ ∧ λboost
log n
4n1/4

ε/ αℱγ
.

Thus λboost is consistent.

Via the tension between ε and Jℱε, Proposition 3 captures the trade-off in statistical 

performance between weak and strong learners in gradient boosting. The advantage of 

low complexity (weak learners) is reflected in the increased probability of the L2(μ)-bound 
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holding, with this probability being maximized when Jℱε 0, which generally occurs as 

ε → 0. However, diametrically opposed to this, we find that the L2(μ)-bound is minimized 

by ε → 1, which occurs with the use of stronger learners that are more aligned with the 

gradient. This same trade-off is also captured by our second guarantee which establishes an 

oracle inequality for tree learners.

Proposition 4. (Oracle inequality for tree learners). Suppose eF ∈ ℱ for F ∈ ℱ. Then among 

eF :F ∈ ℱ , λ* is the best L2(μ)-approximation to λ, that is

λ* = arg  min
eF :F ∈ ℱ

eF − λ μ, 2 .

Moreover, λboost converges to this best approximation λ*: With probability

1 − 8 exp  − log n
καℱ ΛL

−1 ∨ ΛU Jℱε

2

we have that λboost ∞ is bounded and

λboost − λ μ, 2
2 < ρℱ

2 + 13βΛ
maxt, x ΛU ∨ λboost

2

mint, x ΛL ∧ λboost
log  n
4n1/4

ε/ αℱγ
,

where ρℱ
2 = λ* − λ μ, 2

2  is the smallest error one can achieve from using functions in 

eF :F ∈ ℱ  to approximate λ.

For tree learners, λ*(t, x) is constant over each region Bj in (6), and its value equals the local 

average of λ over Bj,

λ*(t, x) Bj = 1
μ Bj

∫Bjλdμ .

Hence if the Bj’s are small, λ* should closely approximate λ (recall from Remark 1 

that the size of the Bj’s is fixed by the data). To estimate the approximation error 

ρℱ in terms of Bj, suppose that λ is sufficiently smooth, e.g. Hölder continuous 

λ(t, x) − λ t′, x′ ≾ t − t′, x − x′ b for some b > 0. Then since infBjλ ≤ λ* Bj ≤ supBjλ,

ρℱ ≤ λ* − λ ∞ ≾ max
j

diamBj
b .
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4. A tree-based implementation.

Here we describe an implementation of Algorithm 1 using regression trees, whereby the 

ε-gradient gFm
ε  is obtained by growing a tree to satisfy (18) for a pre-specified ε.

To explain the tree growing process, first observe that the m-th step log-hazard estimator is 

an additive expansion of CART basis functions. Thus it can be written as

Fm(t, x) = ∑
b = 0

m − 1
∑
l = 1

Lb
γb, lIAb, l(t, x)

= ∑
j

cm, jIBj(t, x),
(33)

where Ab,l is the l-th leaf region of the b-th tree. Recall from Section 2.3 that each tree 

is grown until (18) is satisfied, so the number of leaf nodes Lb can vary from tree to tree. 

The leaf regions are typically large subsets of the time-covariate space [0, 1] × X adaptively 

determined by the tree growing process (to be discussed shortly). Since each leaf region can 

be further decomposed into the finer disjoint regions Bj in (6), Fm(t, x) can be rewritten as 

(33). However, many of these regions will share the same coefficient value, so (33) can be 

written more compactly as

Fm(t, x) = ∑
j

cm, jIBm, j′ (t, x),

where Bm, j′  is the union of contiguous regions whose coefficient equals cm,j. This smooths 

the hazard estimator λboost(t, x) over [0, 1] × X, thanks to the regularization imposed by 

limiting the number of trees (early stopping) and also by the use of weak tree learners. 

This is unlike the unconstrained hazard MLE λn(t, x) defined in (10), which can take on a 

different value in each region Bj, making it prone to overfit the data.

To construct an ε-gradient gFm
ε  with ε-alignment to gFm defined by (12),

gFm(t, x) = ∑
j:μn Bj > 0

ecm, j −
 Fail j

nμn Bj
IBj(t, x),

the tree splits are adaptively chosen to reduce the L2(μn)-approximation error between gFm
ε

and gFm. We implement tree splits for both time and covariates. Specifically, suppose we 

wish to split a leaf region A ⊆ [0, 1] × X into left and right daughter subregions A1 and 

A2, and assign values γ1 and γ2 to them. For example, a split on the k-th covariate could 

propose left and right daughters such as

A1 = (t, x) ∈ A:x(k) ≤ s ,      A2 = (t, x) ∈ A:x(k) > s , (34)

or a split on time t could propose regions
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A1 = (t, x) ∈ A:t ≤ s ,      A2 = (t, x) ∈ A:t > s . (35)

Now note that gFm is constant within each region Bj. We denote its value by gFm tBj, xBj

where tBj, xBj  is the centre of Bj. Hence the best split of A into A1 and A2 is the one that 

minimizes

min
γ1

∫A1
gFm(t, x) − γ1

2dμn + min
γ2

∫A2
gFm(t, x) − γ2

2dμn

= min
γ1

∑
j:Bj ⊆ A1

μn Bj ⋅ gFm tBj, xBj − γ1
2 + min

γ2
∑

k:Bk ⊆ A2
μn Bk ⋅ gFm tBk, xBk − γ2

2

= min
γ1

∑
j:zj ∈ A1,

wj > 0

wj ⋅ yj − γ1
2 + min

γ2
∑

k:zk ∈ A2,
wk > 0

wk

⋅ yk − γ2
2,

(36)

where

yj = gFm tBj, xBj = ecm, j −
Failj

nμn Bj

represents the j-th pseudo-response, zj = tBj, xBj  its covariate and wj = μn(Bj) its weight. 

Thus the splits use a weighted least squares criterion, which can be efficiently computed as 

usual.

We split the tree until (18) is satisfied, resulting in Lm leaf nodes (Lm − 1 splits). As 

discussed in Section 2.3, we can always find a deep enough tree that is an ε-gradient because 

with enough splits we can recover the gradient gFm itself. Recall also that a small value of ε 
performs best in practice, and this can be chosen by cross-validating on a set of small-sized 

candidates: For each one we implement Algorithm 1, and we select the one that minimizes 

the cross-validated risk Rn(F) defined in (11). By contrast, the standard boosting algorithm 

[13] uses cross-validation to select a common number of splits to use for all trees, which 

does not ensure that each tree is an ε-gradient.

Regarding the possible split points for the covariates (34), note that the k-th covariate x(k) 

= x(k)(t) is a time series that is sampled periodically. This yields a set of unique values 

equal to the union of all of the sampled values for the n observations. In direct analogy to 

non-functional data boosting, we place candidate split points in-between the sorted values 

in this set. In other words, splits for covariates only occur at values corresponding to the 

observed data just as in non-functional boosting.

The resolution for the grid of candidate time splits (35) is set equal to the temporal 

resolution. For example, the covariate trajectories in the simulation in Section 5 are 

piecewise constant and may change every 0.002 days. Placing the candidate split points 

at 0.002, 0.004, ⋯ days simplifies the exact computation of μn(Bj) because every covariate 
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trajectory is constant between these points. Again, notice that the splits for time only occur 

at values informed by the observed data.

Putting it together, the setup above leverages our insight in (36) by transforming the survival 

functional data into the data values wj, yj, zj j:wj > 0, which enables the implementation to 

proceed like standard gradient boosting for non-functional data. Only the pseudo-response 

yj in wj, yj, zj  needs to be updated at each boosting iteration, while the other two do 

not change. In terms of storage it costs O(np |T|) to store wj, yj, zj j:wj > 0, where |T| is 

the cardinality of the set of candidate time splits.9 Computationally, choosing a new tree 

split requires testing O(np |T|) candidate splits.10 The space and time complexities of the 

implementation are reasonable given that they are O(np) for non-functional data boosting: In 

the functional data setting, each sample can have up to |T| observations, so n functional data 

samples is akin to O(n |T|) samples in a non-functional data setting.

5. Numerical experiment.

We now apply the boosting procedure of Section 4 to a high-dimensional dataset generated 

from a naturalistic simulation. This allows us to compare the performance of our estimator 

to existing boosting methods. The simulation is of patient service times in an emergency 

department (ED), and the hazard function of interest is patient service rate in the ED. The 

study of patient transitions in an ED queue is an important one in healthcare operations, 

because without a high resolution model of patient flow dynamics, the ED may be 

suboptimally utilized which would deny patients of timely critical care.

5.1. Service rate.

The service rate model used in the simulation is based upon a service time dataset from 

the ED of an academic hospital in the United States. The dataset contains information on 

86,983 treatment encounters from 2014 to early 2015. Recorded for each encounter was: 

Age, gender, Emergency Severity Index (ESI)11, time of day when treatment in the ED ward 

began, day of week of ED visit, and ward census. The last one represents the total number 

of occupied beds in the ED ward, which varies over the course of the patient’s stay. Hence it 

is a time-dependent variable. Lastly, we also have the duration of the patient’s stay (service 

time).

The service rate function is developed from the data in the following way. First, we apply 

our nonparametric estimator to the data to perform exploratory analysis. We find that:

9Each wj, yj, zj  is of dimension p + 3 and the number of time-covariate regions Bj with wj > 0 is at most n( |T| + 1). To show 

the latter, observe that Bj will only have wj = μn(Bj) > 0 if it is traversed by at least one sample covariate trajectory. Then note that 
each of the n sample covariate trajectories can traverse at most |T| + 1 unique regions.
10A sample covariate trajectory can have at most |T| unique observed values for the k-th covariate x(k), so there are at most n |T|
candidate splits for x(k). Thus there are O(np |T|) candidate splits for p covariates. The number of candidate splits on time is 
obviously |T|.
11Level 1 is the most severe (e.g., cardiac arrest) and level 5 is the least (e.g., rash). We removed level 1 patients from the dataset 
because they were treated in a separate trauma bay.
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1. The key variables affecting the service rate (based on relative variable 

importance [13]) are ESI, age, and ward census. In addition, two of the most 

pronounced interaction terms identified by the tree splits are (AGE ≥ 34, ESI = 

5) and (AGE ≥ 34, ESI ≤ 4).

2. Holding all the variables fixed, the shapes of the estimated service rate function 

resemble the hazard functions of log-normal distributions. This agrees with the 

queuing literature that find log-normality to be a reasonable parametric fit for 

service durations.

Guided by these findings, we specify the service rate λ(t, X(t)) for the simulation as a 

log-normal accelerated failure time (AFT) model, and estimate its parameters from data. 

This yields the service rate

λ(t, x) = θ(x) ⋅ ϕl(θ(x)t; m, σ)
1 − Φl(θ(x)t; m, σ) , (37)

where ϕl(·;m, σ) and Φl(·;m, σ) are the PDF and CDF of the log-normal distribution with 

log-mean m = −1.8 and log-standard deviation σ = 0.74. The function θ(x) captures the 

dependence of the service rate on the covariates:

log θ(X(t)) = − 0.0071 ⋅ AGE + 0.022 ⋅ ESI − min a ⋅ CENSUSt
70 , 2 + 0.10 ⋅ I

(AGE ≥ 34, ESI = 5) − 0.10 ⋅ I(AGE ≥ 34, ESI ≤ 4) + 0 ⋅  NUISANCE 1 + ⋯
+ 0 ⋅ NUISANCE43 .

(38)

The specification for θ(X(t)) above is a slight modification of the original estimate, with 

the free parameter a allowing us to study the effect of time-dependent covariates on hazard 

estimation. When a = 0, the service rate does not depend on time-varying covariates, but 

as a increases, the dependency becomes more and more significant. In the data, the ward 

census never exceeds 70, so we set the capacity of the simulated ED to 70 as well. The min 

operator caps the impact that census can have on the simulated service rate as a grows. The 

irrelevant covariates NUISANCE1, ⋯, NUISANCE43 are added to the data in order to assess 

how boosting performs in high dimensions. We explicitly include them in (38) to remind 

ourselves that the simulated data is high-dimensional. Forty of the irrelevant variables are 

generated synthetically as described in the next subsection, while the rest are variables from 

the original dataset not used in the simulation.

5.2. Simulation model.

Using (37) and (38), we simulate a naturalistic dataset of 10,000 patient visit histories. 

The value of a will be varied from 0 to 3 in order to study the impact of time-dependent 

covariates on hazard estimation. Each patient is associated with a 46-dimensional covariate 

vector consisting of:

• The time-varying ward census. The initial value is sampled from its marginal 

empirical distribution in the original dataset. To simulate its trajectory over 

a patient’s stay, for every timestep advance of 0.002 days (≈3 minutes), a 

Bernoulli(0.02) random variable is generated. If it is one, then the census is 
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incremented by a normal random variable with zero mean and standard deviation 

10. The result is truncated if it lies outside the range [1, 70], the upper end being 

the capacity of the ED.

• The other five time-static covariates in the original dataset. These are sampled 

from their marginal empirical distributions in the original dataset. Two of the 

variables (age and ESI) influence the service rate, while the other three are 

irrelevant.

• An additional forty time-static covariates that do not affect the service rate 

(irrelevant covariates). Their values are drawn uniformly from [0, 1].

We also generate independent censoring times (rounded to the nearest 0.002 days) for 

each visit from an exponential distribution. For each simulation, the rate of the exponential 

distribution is set to achieve an approximate target of 25% censoring.

5.3. Comparison benchmarks.

When the covariates are static in time, a few software packages are available for performing 

hazard estimation with tree ensembles. Given that the data is simulated from a log-normal 

hazard, we compare our nonparametric method to two correctly specified parametric 

estimators:

1. The blackboost estimator in the R package mboost [10] provides a tree boosting 

procedure for fitting the log-normal hazard function. In order to apply this to the 

simulated data, we make ward census a time-static covariate by fixing it at its 

initial value.

2. Transformation forests [17] in the R package trtf can also fit log-normal hazards. 

Moreover, it allows for left-truncated and right-censored data. Since the ward 

census variable is simulated to be piecewise constant over time, we can treat 

each segment as a left-truncated and right-censored observation. Thus for this 

simulation, transformation forests are able to handle time-dependent covariates 

with time-static effects. This falls in between the static covariate/static effect 

blackboost estimator and our fully nonparametric one.

Since the service rate model used in the simulations is in fact log-normal, the benchmark 

methods above enjoy a significant advantage over our nonparametric one, which is not privy 

to the true distribution. In fact, when a = 0 the log-normal hazard (37) depends only on 

time-static covariates, so the benchmarks should outperform our nonparametric estimator. 

However, as a grows, we would expect a reversal in relative performance.

To compare the performances of the estimators, we use Monte Carlo integration to evaluate 

the relative mean squared error

%MSE =
EX ∫0

1 λ(t, X) − λ(t, X) 2dt

EX ∫0
1λ(t, X)2dt

.
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The Monte Carlo integrations are conducted using an independent test set of 10,000 

uncensored patient visit histories. For the test set, ward census is held fixed over time at the 

initial value, and we use the grid {0, 0.02, 0.04, ⋯, 1} for the time integral. The nominator 

above is then estimated by the average of λ(t, x) − λ(t, x) 2 evaluated at the 51×10,000 

points of (t, x). The denominator is estimated in the same manner.

5.4. Results.

For the implementation of our estimator in Section 4, the value of ε and the number of trees 

m are jointly determined using ten-fold cross validation. The candidate values we tried for 

ε are {0.003, 0.004, 0.005, 0.006, 0.007}, and we limit m to no more than 1,000 trees. A 

wider range of values can be of course be explored for better performance (at the cost of 

more computations). As comparison, we run an ad-hoc version of our algorithm in which all 

trees use the same number of splits, as is the case in standard boosting [13]. This approach 

does not explicitly ensure that the trees will be ε-gradients for a pre-specified ε. The number 

of splits and the number of trees used in the ad-hoc method are jointly determined using 

ten-fold cross-validation.

In order to speed up convergence at the m-th iteration for both approaches, instead of using 

the step-size νn/(m+1) of Algorithm 1, we performed line-search within the interval (0, 

νn/(m+1)]. While Lemma 2 shows that a smaller shrinkage νn is always better, this comes at 

the expense of a larger m and hence computation time. For simplicity we set νn = 1 for all 

the experiments here.

For fitting the blackboost estimator, we use the default setting of nu = 0.1 for the step-

size taken at each iteration. The other hyperparameters, mstop (the number of trees) and 

maxdepth (maximum depth of trees), are chosen to directly minimize the relative MSE 

on the test set. This of course gives the blackboost estimator an unfair advantage over 

our estimator, which is on top of the fact that it is based on the same distribution as the 

true model. Transformation forest (using also the true distribution) is fit using code kindly 

provided by Professor T. Hothorn.12

Variable selection.—The relative importances of variables [13] for our estimator are 

given in Table 1 for all four cases a = 0, 1, 2, 3. The four factors that influence the service 

rate (38) are explicitly listed, while the irrelevant covariates are grouped together in the 

last column. When a = 0, the service rate does not depend on census, and we see that the 

importance of census and the other irrelevant covariates are at least an order of magnitude 

smaller than the relevant ones. As a increases, census becomes more and more important as 

correctly reflected in the table. Across all the cases the importance of the relevant covariates 

are at least an order of magnitude larger than the others, suggesting that our estimator is able 

to pick out the influential covariates and largely avoid the irrelevant ones.

12In the code 100 trees are used in the forest, which takes about 700 megabytes to store the fitted object when applied to our simulated 
data.
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Presence of time-dependent covariates.—Table 2 presents the relative MSEs for 

the estimators as the service rate function (38) becomes increasingly dependent on the 

time-varying census variable. When a = 0 the service rate depends only on time-static 

covariates, so as expected, the parametric log-normal benchmarks perform the best when 

applied to data simulated from a log-normal AFT model.

However, as a increases, the service rate becomes increasingly dependent on census. The 

corresponding performances of both benchmarks deteriorate dramatically, and is handily 

outperformed by the proposed estimator. We note that the inclusion of just one time-

dependent covariate is enough to degrade the performances of the benchmarks, despite the 

fact that they have the exact same parametric form as the true model.

Finally we find comparable performance among the ad-hoc boosted estimator and our 

proposed one, although a slight edge goes to the latter especially in the more difficult 

simulations with larger a. The results here demonstrate that there is a place in the survival 

boosting literature for fully nonparametric methods like this one that can flexibly handle 

time-dependent covariates.

6. Discussion.

Our estimator can also potentially be used to evaluate the goodness-of-fit of simpler 

parametric hazard models. Since our approach is likelihood-based, future work might 

examine whether model selection frameworks like those in [30] can be extended to cover 

likelihood functionals. For this, [10] provides some guidance for determining the effective 

degrees of freedom for the boosting estimator. The ideas in [32] may also be germane.

The implementation presented in Section 4 is one of many possible ways to implement our 

estimator. We defer the design of a more refined implementation to future research, along 

with open-source code.
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APPENDIX: PROOFS

Proof of Proposition 2.

Proof. Writing

R(F) = E ∫0
1

Y (t) ⋅ eF(t, X(t))dt − ΔF(T , X(T)) ,

we can apply (4) to establish the first part of the integral in (13) when F ∈ ℱ ∪ log λ . To 

complete the representation, it suffices to show that the point process
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M(B) = Δ ⋅ I[ T , X(T) ∈ B]

has mean ∫Bλdμ, and then apply Campbell’s formula. To this end, write N(t) = I(T ≤ t) and 

consider the filtration σ{X(s), Y(s),N(s) : s ≤ t}. Then N(t) has the Doob-Meyer form dN(t) 
= λ(t, X(t))Y(t)dt + dM(t) where M(t) is a martingale. Hence

E M(B) = E ∫0
1

I[ t, X(t) ∈ B]dN(t)

= E ∫0
1

Y (t) ⋅ I[ t, X(t) ∈ B] ⋅ λ(t, X(t))dt + E ∫0
1

I[ t, X(t) ∈ B]dM(t)

= ∫B
λdμ + E ∫0

1
I[ t, X(t) ∈ B]dM(t) ,

where the last equality follows from (4). Since I[{t, X(t)} ∈ B] is predictable because 

X(t) is, the desired result follows if the stochastic integral ∫0
1I[ t, X(t) ∈ B]dM(t) is a 

martingale. By Section 2 of Aalen [1], this is true if M(t) is square-integrable. In fact, 

M(t) = N(t) − ∫0
tλ(t, X(t))dt is bounded because λ(t, x) is bounded above by (A1). This 

establishes (13).

Now note that for a positive constant Λ the function ey − Λy is bounded below by both −Λy 
and Λy + 2Λ{1 – log 2Λ}, hence ey − Λy ≥ Λ|y| + 2Λmin{0, 1 – log 2Λ}. Since Λ min{0, 1 

− log2Λ} is non-increasing in Λ, (A1) implies that

eF(t, x) − λ(t, x)F(t, x) ≥ min eF(t, x) − ΛLF(t, x), eF(t, x) − ΛUF(t, x)
≥ ΛL F(t, x) + 2ΛUmin 0, 1 − log  2ΛU .

Integrating both sides and using the norm equivalence relation (27) shows that

R(F) ≥ ΛL F μ, 1 + 2ΛUmin 0, 1 − log  2ΛU

≥
2ΛL
αℱ

F
∞

+ 2ΛUmin 0, 1 − log  2ΛU

≥
2ΛL
αℱ

F μ, 2 + 2ΛUmin 0, 1 − log  2ΛU .

The lower bound (14) then follows from the second inequality. The last inequality shows 

that R(F) is coercive on ℱ, ⋅ , ⋅ μ . Moreover the same argument used to derive (8) shows 

that R(F) is smooth and convex on ℱ, ⋅ , ⋅ μ . Therefore a unique minimizer F* of R(F) 

exists in ℱ, ⋅ , ⋅ μ . Since (A2) implies there is a bijection between the equivalent classes 

of ℱ, ⋅ , ⋅ μ  and the functions in ℱ, F* is also the unique minimizer of R(F) in ℱ. 

Finally, since eF(t, x) − λ(t, x)F(t, x) is pointwise bounded below by λ(t, x) 1 − log λ(t, x) , 

R(F) ≥ ∫ (λ − λlog λ)dμ = R(log λ) for all F ∈ ℱ. □
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Proof of Lemma 1.

Proof. By a pointwise-measurable argument (Example 2.3.4 of [29]) it can be shown that all 

suprema quantities appearing below are sufficiently well behaved, so outer integration is not 

required. Define the Orlicz norm X Φ = inf C > 0:EΦ( |X | /C) ≤ 1  where Φ(x) = ex2 − 1. 

Suppose the following holds:

sup
F ∈ ℱε

Ψn
Rn(F) − Rn(0) − R(F) − R(0)

Φ

≤ κ′Jℱε/n1/4,
(39)

sup
G ∈ ℱε: G ∞ ≤ 1

G μn, 1 − G μ, 1
Φ

≤ κ′′Jℱε/n1/2, (40)

where Jℱε is the complexity measure (26), and κ′,κ″ are universal constants. Then by 

Markov’s inequality, (30) holds with probability at least 1 − 2exp − ηn1/4/ κ′Jℱε
2 , and

sup
G ∈ ℱε: G ∞ ≤ 1

G μ, 1 − G μn, 1 < 1/αℱ (41)

holds with probability at least 1 − 2exp − n1/2/ αℱκ′′Jℱε
2 . Since αℱ > 1 and η < 1, (30) 

and (41) jointly hold with probability at least 1 − 4exp − ηn174/ καℱJℱε
2 . The lemma 

then follows if (41) implies (29). Indeed, for any non-zero F ∈ ℱ, its normalization G = 

F/‖F‖∞ is in ℱε by construction (25). Then (41) implies that

F ∞
F μn, 1

= 1/ G
μn, 1

≤ αℱ

because

1/αℱ > G μ, 1 − G μn, 1 ≥ 2/αℱ − G μn, 1,

where the last inequality follows from the definition of αℱ (28).

Thus it remains to establish (39) and (40), which can be done by applying the 

symmetrization and maximal inequality results in Sections 2.2 and 2.3.2 of [29]. Write 

Rn(F) = (1/n)∑i = 1
n li(F) where li(F) = ∫0

1Y i(t)eF t, Xi(t) dt − ΔiF Ti, Xi Ti  are independent 

copies of the loss

l(F) = ∫
0

1
Y (t) ⋅ eF(t, X(t))dt − Δ ⋅ F(T , X(T)), (42)

which is a stochastic process indexed by F ∈ ℱ. As was shown in Proposition 2, 

E l(F) = R(F). Let ζ1, ⋯ , ζN be independent Rademacher random variables that are 
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independent of Z = Xi( ⋅ ), Y i( ⋅ ), Ti i = 1
n . It follows from the symmetrization Lemma 2.3.6 

of [29] for stochastic processes that the left hand side of (39) is bounded by twice the Orlicz 

norm of

sup
F ∈ ℱε

Ψn
∣ 1

n ∑
i = 1

n
ζi li(F) − li(0)

≤ 1
n sup

F ∈ ℱεΨn
∑
i = 1

n
ζi∫

0

1
Y i(t) eF t, Xi(t) − 1 dt

+ 1
n sup

F ∈ ℱE
Ψn

∑
i = 1

n
ζiΔiF T i, Xi T i .

(43)

Now hold Z fixed so that only ζ1, ⋯ , ζn are stochastic, in which case the sum in the second 

line of (43) becomes a separable subgaussian process. Since the Orlicz norm of ∑i = 1
n ζiai

is bounded by 6∑i = 1
n ai2

1/2
 for any constant ai, we obtain the following the Lipschitz 

property for any F1, F2 ∈ ℱε
Ψn:

∑
i = 1

n
ζi∫0

1
Yi(t) eF1 t, Xi(t) − eF2 t, Xi(t) dt

Φ, ζ ∣ Z

2

≤ 6 ∑
i = 1

n ∫0
1

Yi(t) eF1 t, Xi(t) − eF2 t, Xi(t) dt
2

≤ 6e2Ψn ∑
i = 1

n ∫0
1

Yi(t) ⋅ F1 t, Xi(t) − F2 t, Xi(t) dt
2

≤ 6e2Ψn ∑
i = 1

n ∫0
1

Yi(t) F1 t, Xi(t) − F2 t, Xi(t)
2dt

= 6ne2Ψn F1 − F2 μn, 2
2 ,

where the second inequality follows from |ex − ey| ≤ emax(x, y)|x−y| and the last from the 

Cauchy-Schwarz inequality. Putting the Lipschitz constant (6n)1/2eΨn obtained above into 

Theorem 2.2.4 of [29] yields the following maximal inequality: There is a universal constant 

κ′ such that

sup
F ∈ ℱε

Ψn
∑

i = 1

n
ζi∫0

1
Yi(t) eF t, Xi(t) − 1 dt

Φ, ζ ∣ Z

≤ κ′n1/2eΨn∫0

Ψn
log N u, ℱε

Ψn, μn
1/2

du

≤ κ′n1/2eΨnΨnJℱε,
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where the last line follows from (26). Likewise the conditional Orlicz norm for the 

supremum of ∑i = 1
n ζiΔiF Ti, Xi Ti  is bounded by κ′Jℱεn1/2Ψn. Since neither bounds 

depend on Z, plugging back into (43) establishes (39):

sup
F ∈ ℱε

Ψn
Rn(F) − Rn(0) − R(F) − R(0)

Φ

≤ 2κ′Jℱε
ΨneΨn

n1/2 1 + e−Ψn

≤ 4κ′
Jℱε
n1/4 ,

where ΨneΨn = n1/4 by (19). On noting that

G
μn, 1

= 1
n ∑

i = 1

n ∫0
1

Yi(t) G t, Xi(t) dt,       G
μ, 1

= E ∫0
1

Y (t) G(t, X(t)) dt ,

(40) can be established using the same approach. □

Proof of Lemma 2.

Proof. For m < m, applying (8) to Rn Fm + 1 = Rn Fm −
νn

m + 1gFm
ε  yields

Rn Fm + 1 = Rn Fm − νn
m + 1 gFm, gFm

ε
μn

+ νn2

2(m + 1)2∫ gFm
ε 2exp Fm − ρ Fm + 1 − Fm dμn

< Rn Fm − ενn
m + 1 gFm μn, 2 + νn2eΨn

2(m + 1)2 ,

(44)

where the bound for the second term is due to (18) and the bound for the integral follows 

from ∫ gFm
ε 2dμn = 1 (Definition 1 of an ε-gradient) and ‖Fm‖∞, ‖Fm+1‖∞ < Ψn for m < m

(lines 5–6 of Algorithm 1). Hence for m ≤ m, (44) implies that

Rn Fm < Rn(0) + ∑
m = 0

∞ νn2eΨn

2(m + 1)2
< Rn(0) + 1 ≤ 2

because νn2eΨn < 1 under (20). Since maxm ≤ m Fm ∞ < Ψn, and using our assumption 

supF ∈ ℱε
Ψn Rn F − R F < 1 in the statement of the lemma, we have

R Fm ≤ Rn Fm + Rn Fm − R Fm < 3.

Clearly the minimizer F* also satisfies R(F*) ≤ R(0) < 3. Thus coercivity (15) implies that
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Fm ∞, F* ∞ < αℱβΛ,

so the gap γ  defined in (31) is bounded as claimed.

It remains to establish (32), for which we need only consider the case Rn Fm − Rn F* > 0. 

The termination criterion gFm = 0 in Algorithm 1 is never triggered under this scenario, 

because by Proposition 1 this would imply that Fm minimizes Rn(F) over the span of {φnj(t, 

x)}j, which also contains F* (Remark 3). Thus either m = ∞, or the termination criterion 

Fm −
νn

m + 1gFm
ε

∞ ≥ Ψn in line 5 of Algorithm 1 is met. In the latter case

Ψn ≤ Fm − νn
m + 1gFm

ε
∞

≤ αℱ Fm − νn
m + 1gFm

ε
μn, 2

≤ αℱ ∑
m = 0

m − 1 νn
m + 1 + 1

(45)

where the inequalities follow from (29) and from gFm
ε

μn, 2 = 1. Since the sum is diverging, 

the inequality also holds for m sufficiently large (e.g. m = ∞).

Given that F* lies in the span of {φnj(t, x)}j, the Taylor expansion (8) is valid for Rn(F*). 

Since the remainder term in the expansion is non-negative, we have

Rn F* = Rn Fm + F* − Fm
≥ Rn Fm + gFm, F* − Fm μn .

Furthermore for m ≤ m,

gFm, Fm − F* μn ≤ Fm − F* μn, 2 ⋅ gFm μn, 2
≤ Fm − F* ∞ ⋅ gFm μn, 2
≤ γ ⋅ gFm μn, 2 .

Putting both into (44) gives

Rn Fm + 1 < Rn Fm +
ενn

γ(m + 1) gFm, F* − Fm μn +
νn2eΨn

2(m + 1)2

≤ Rn Fm +
ενn

γ(m + 1) Rn F* − Rn Fm +
νn2eΨn

2(m + 1)2
.

Subtracting Rn(F*) from both sides above and denoting δm = Rn(Fm) − Rn(F*), we obtain

δm + 1 < 1 −
ενn

γ(m + 1) δm +
νn2eΨn

2(m + 1)2
.
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Since the term inside the first parenthesis is between 0 and 1, solving the recurrence yields

δm < δ0 ∏
m = 0

m − 1
1 −

ενn
γ(m + 1) + νn2eΨn ∑

m = 0

∞ 1
2(m + 1)2

≤ max 0, δ0 exp − ε
γ ∑

m = 0

m − 1 νn
m + 1 + νn2eΨn

≤ emax 0, δ0 exp − ε
αℱγ Ψn + νn2eΨn,

where in the second inequality we used the fact that 0 ≤ 1 + y ≤ ey for |y| < 1, and the last 

line follows from (45).

The Lambert function (19) in Ψn = W(n1/4) is asymptotically log y −log log y, and in fact by 

Theorem 2.1 of [14], W(y) ≥ log y −log log y for y ≥ e. Since by assumption n ≥ 55 > e4, the 

above becomes

δm < emax 0, δ0
log n
4n1/4

ε/ αℱγ
+ νn2eΨn .

The last step is to control δ0, which is bounded by 1 − Rn(F*) because Rn(F0) = Rn(0) ≤ 1. 

Then under the hypothesis |Rn(F*) − R(F*)| < 1, we have

δ0 ≤ 1 − R F* + 1 < 2 − R F* .

Since (14) implies R(F*) ≥ 2ΛU min{0, 1 − log(2ΛU)},

δ0 < 2 − R F* ≤ 2 + 2ΛUmax 0, log  2ΛU − 1 < 2βΛ .

□

Proof of Proposition 3.

Proof. Let δ = log n/(4n1/4) which is less than one for n ≥ 55 > e4. Since αℱ, γ ≥ 1 it follows 

that

δ < log n
4n1/4

ε/ αℱγ
. (46)

Now define the following probability sets

S1 = sup
F ∈ ℱεΨn

Rn(F) − Rn(0) − R(F) − R(0) < δ/3
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S2 = Rn(0) − R(0) < δ/3

S3 = Rn F* − R F* < δ/3

S4 = (29) holds  ,

and fix a sample realization from ∩k = 1
4 Sk. Then the conditions required in Lemma 2 are 

satisfied with supF ∈ ℱε
Ψn Rn(F) − R(F) < 2δ/3, so γ  (and hence λboost ∞) is bounded and 

(32) holds. Since Algorithm 1 ensures that Fm ∞ < Ψn, we have Fm ∈ ℱε
Ψn and therefore it 

also follows that Rn Fm − R Fm < 2δ/3. Combining (23) and (24) gives

Fm − F* μ, 2
2 ≤ 2

mint, x λ* ∧ λboost
2δ
3 + δ

3 + Rn Fm − Rn F*

< 2
mint, x λ* ∧ λboost

δ + 2eβΛ
log n
4n1/4

ε/ αℱγ
+ 1

16 ⋅ log n
4n1/4

<
13βΛ

mint, x λ* ∧ λboost
log n
4n1/4

ε/ αℱγ
,

where the second inequality follows from (32) and νn2eΨn = log n/ 64n1/4 , and the last from 

(46). Now, using the inequality |ex − ey| ≤ max(ex, ey)|x − y| yields

λboost − λ* μ, 2
2 < 13βΛ

maxt, x λ* ∨ λboost
2

mint, x λ* ∧ λboost
log n
4n1/4

ε/ αℱγ
,

and the stated bound follows from F* = log λ since ℱ is correctly specified (Proposition 2).

The next task is to lower bound ℙ ∩k = 1
4 Sk . It follows from Lemma 1 that

ℙ S1 ∩ S4 ≥ 1 − 4exp − log n
12καℱJℱε

2
.

Bounds on ℙ S2  and ℙ S3  can be obtained using Hoeffding’s inequality. Note from (2) that 

Rn 0 = ∑i = 1
n ∫0

1Y i(t)dt/n and Rn F* = ∑i = 1
n li F* /n for the loss l(·) defined in (42). Since 

0 ≤ ∫0
1Y i(t)dt ≤ 1 and − F* ∞ < l F* ≤ eF* ∞ + F* ∞,

ℙ S2 ≥ 1 − 2exp −2n1/2 log n
12

2
, ℙ S3 ≥ 1 − 2exp −2n1/2 log n

36e‖F*‖∞

2
.
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By increasing the value of κ and/or replacing Jℱε with max 1, Jℱε  if necessary, we can 

combine the inequalities to get a crude but compact bound:

ℙ ∩k = 1
4 Sk ≥ 1 − 8exp − log n

καℱJℱεe F* ∞

2
. (47)

Finally, since ‖F*‖∞ = ‖log λ‖∞ < max{|log ΛL|, |log ΛU|}, we can replace e F* ∞ in the 

probability bound above by ΛL
−1 ∨ ΛU. □

Proof of Proposition 4.

Proof. It follows from (22) that λ* is the orthogonal projection of λ onto ℱ, ⋅ , ⋅ μ . Hence

λboost − λ μ, 2
2 = eF* − λ μ, 2

2 + eFm − eF* μ, 2
2

= min
F ∈ ℱ

eF − λ μ, 2
2 + eFm − eF* μ, 2

2

≤ min
F ∈ ℱ

eF − λ μ, 2
2 + max

t, x
λ* ∨ λboost

2 Fm − F* μ, 2
2 ,

where the inequality follows from |ex − ey| ≤ max(ex, ey)|x − y|. Bounding the last term in 

the same way as Proposition 3 completes the proof. To replace e F* ∞ in (47) by ΛL
−1 ∨ ΛU, 

it suffices to show that ΛL ≤ λ*(t, x) ≤ ΛU. Since the value of λ* over one of its piecewise 

constant regions B is ∫Bλdμ/μ(B), the desired bound follows from (A1). We can also replace 

maxt, x λ* ∨ λboost  and mint, x λ* ∧ λboost  with maxt, x ΛU ∨ λboost  and mint, x ΛL ∧ λboost
respectively. □
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Table 1

Relative importances of variables in the boosted nonparametric estimator. The numbers are scaled so that the 

largest value in each row is 1.

a Time Age ESI Census All other variables

0 1 0.21 0.025 0.0011 <0.0010

1 1 0.22 0.013 0.46 <0.0003

2 0.34 0.064 0.0020 1 0

3 0.11 0.011 <0.0001 1 0
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Table 2

Comparative performances (%MSE) as the service rate (38) becomes increasingly dependent on the time-

varying ward census variable (by increasing a).

a blackboost (set to true log-
normal distribution)

Transformation forest (set to true 
log-normal distribution)

Boosted hazards (ε fixed for 
all iterations)

Ad-hoc (# splits fixed for all 
iterations)

0 5.0% 5.0% 7.8% 7.1%

1 17% 6.1% 4.5% 8.1%

2 46% 9.7% 5.4% 7.0%

3 67% 18% 7.2% 7.4%
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