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Abstract

Deep learning based models have had great success in object detection, but the state of the art 

models have not yet been widely applied to biological image data. We apply for the first time 

an object detection model previously used on natural images to identify cells and recognize their 

stages in brightfield microscopy images of malaria-infected blood. Many micro-organisms like 

malaria parasites are still studied by expert manual inspection and hand counting. This type of 

object detection task is challenging due to factors like variations in cell shape, density, and color, 

and uncertainty of some cell classes. In addition, annotated data useful for training is scarce, and 

the class distribution is inherently highly imbalanced due to the dominance of uninfected red blood 

cells. We use Faster Region-based Convolutional Neural Network (Faster R-CNN), one of the top 

performing object detection models in recent years, pre-trained on ImageNet but fine tuned with 

our data, and compare it to a baseline, which is based on a traditional approach consisting of cell 

segmentation, extraction of several single-cell features, and classification using random forests. To 

conduct our initial study, we collect and label a dataset of 1300 fields of view consisting of around 

100,000 individual cells. We demonstrate that Faster R-CNN outperforms our baseline and put the 

results in context of human performance.

1. Introduction

Biology contains a multitude of problems made for object detection. Although there has 

been a lot of interest in deep learning based models and their success in object detection, 

the state of the art models from competitions like ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC)1 and MS-COCO2 have not yet been widely applied to biological 

image data. We are interested in using object detection to identify cells and recognize their 

categories for diseases such as malaria, where manual inspection of microscopic views by 

trained experts remains the gold standard. A robust solution would allow for automated 

single cell classification and counting and would provide enormous benefits due to faster 

and more accurate quantitative results without human variability3.
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Object detection of cells in brightfield microscopy images presents special challenges. Like 

natural images, microscopy images of malaria-infected blood have variations in illumination 

from the microscope, in cell shape, density, and color from variations in sample preparation, 

and have objects of uncertain class (even for experts). However, unlike natural images, there 

is a dearth of annotated data useful for training because of the scarcity of experts, and the 

class distribution is inherently highly imbalanced due to the dominance of uninfected red 

blood cells (RBCs).

Previous attempts to automate the process of identifying and quantifying malaria4–6 have 

used complex workflows for image processing and machine learning classification using 

features from a predetermined set of measurements (intensity, shape, and texture). However, 

none of these methods have gained major traction because of a lack of generalizability and 

difficulty of replication, comparison, and extension. Algorithms cannot be reimplemented 

with certainty nor extended because authors do not generally make functioning code 

available. Authors also rarely make their image sets available, which precludes replication of 

results. The lack of a standard set of images nor standard set of metrics used to report results 

has impeded the field.

For our task of detecting individual cells and their classes, we choose to use a deep 

learning based framework called Faster Region-based Convolutional Neural Network (Faster 

R-CNN)7 because R-CNN8 and its successors7,9 have been the basis of the top performing 

object detection models in recent years. In contrast to previous methods, this one avoids the 

task of segmentation and does not rely on general features for classification. As a baseline, 

we develop a traditional approach consisting of cell segmentation and extraction of several 

single-cell level features, followed by classification using random forests. To conduct our 

initial study, we collect a novel dataset: 1300 microscopy images consisting of 100,000 

individual cells.

2. Data

Our data came from three different labs’ ex vivo samples of P. vivax infected patients in 

Manaus, Brazil, and Thailand. The Manaus and Thailand data were used for training and 

validation while the Brazil data were left out as our test set. Blood smears were stained 

with Giemsa reagent, which attaches to DNA and allow experts to inspect infected cells and 

determine their stage.

All non-RBC objects were annotated (boxed and labeled) by an expert malaria researcher 

(Figure 1). Seven labels used to cover possible cell types of interest: RBC, leukocyte, 

gametocyte, ring, trophozoite, and schizont. RBCs and leukocytes are uninfected cell types 

normally found in blood. Infected cells can develop either sexually (as gametocytes) or 

asexually (rings, trophozoites, then schizonts). Some cells were marked as difficult when not 

clearly in one of the classes, but those marked difficult were ignored in training. The data is 

also naturally imbalanced among the object classes. RBCs clearly dominate with about 97% 

of 100,000 total cells.
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3. Establish a Baseline with Traditional Method

We established a baseline performance level of an automated detection and classification 

model using the traditional approach of segmentation followed by machine learning. By 

feeding in full sized training set images into open source image processing software 

CellProfiler10, which is geared towards biological images, we segmented cells and obtained 

about 300 intensity, shape, and texture feature measurements for each cell. Since the 

segmentations may not completely match the ground truth (Figure 2), for each segmented 

object we found the ground truth object with the most overlap and call it a match if the 

intersectional area over area of union (IoU) exceeded 0.4. Otherwise, the objects were 

mis-segmentations and not used for training. We took measurements of each cell and 

corresponding cell labels to train a machine learning classifier, Random Forest with n=1000 

trees implemented with scikit-learn11. Balancing was done by adjusting class weights.

4. Deep Learning

Rather than use the full sized images for training the deep learning models, we took 

448×448 crops of each full image to augment the number of training examples and cut down 

on training time. Enough crops of each full image were taken such that the number of cells 

contained in the crops was at least twice the number of cells contained in the full sized 

image up to a maximum of 100 crops.

As is, the training set is highly imbalanced towards RBCs, so to create a more balanced 

training set, we rotated crops containing underrepresented classes by 90 degrees, which 

augmented underrepresented cell counts by roughly 4 times and removed crops containing 

only RBCs.

4.1. Faster R-CNN

Faster R-CNN7 became the state of the art in object detection when it was released in 2015. 

It takes an image as input and runs it through 2 modules: the first uses a region proposal 

network (RPN) that proposes object regions and the second is a Fast R-CNN object detector 

that classifies the region proposals9 (Figure 3). To save time, RPN and Fast R-CNN share 

convolutional layers.

4.2. Two Stage Detection and Classification

Our model detects and classifies in two stages (Figure 4). We choose a two-stage approach 

because the subtle differences between infected classes are difficult to distinguish when the 

large difference between RBCs and other cells is present. In stage one, object detection 

framework Faster R-CNN identifies bounding boxes around objects and classifies them as 

RBC or other (including infected cells and leukocytes). Faster R-CNN uses a convolutional 

neural network- here we use the AlexNet architecture with 7 layers- to jointly detect objects 

(vs. non-objects) and assign classes to the objects. In stage two, the detections from stage 

one labeled as other (non-RBC) are fed into AlexNet to obtain a 4096 dimensional feature 

vector used to classify them into more fine grained categories.
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4.3. Implementation

All deep learning models have been pre-trained with the natural image dataset ImageNet12 

and fine-tuned with our training data. The images in the training set were randomly split into 

a training and validation set for tuning the learning rate and determine early stopping.

In the two-stage model, additional augmentation was done to individual cell images. This 

included rotations, flips, horizontal and vertical shifts, color channel shifts, and scale shifts.

5. Results and Discussion

5.1. Baseline

Using a traditional segmentation plus machine learning method as a baseline, we see 

that the model attains 50% accuracy (disregarding background, RBCs, and difficult cells) 

compared to the ground truth matched segmentation objects (Figure 5). Note that this is 

an overestimate of the accuracy compared to the true ground truth as it does not include 

mis-segmentation error.

5.2. Deep Learning: One-Stage Classification

The results of using Faster R-CNN to detect and classify all objects are shown in Figure 

6. The accuracy is 59% (disregarding background, RBCs, and difficult cells). From counts 

alone, it is difficult to see whether the model is finding distinguishing features between 

infected classes. To easily visualize the feature vector that Faster R-CNN uses to do 

classification, we display a 2D t-SNE plot13 in Figure 6b. t-SNE plots can be used to 

visualize high dimensional data in 2D in a way that maintains local structures. Pairs 

of points are given joint probabilities based on their distance and the Kullback-Leibler 

divergence between the probabilities is minimized.

There is a clear separation between RBCs (in blue) and the other classes, but within the 

cluster of infected cells, there is a lack of separation between the different stages. This 

shows that the features learned through training can clearly distinguish most of the RBCs 

from the other types, but they are not sufficient to distinguish the subtle differences between 

infected stages. The accuracy has been greatly affected by cells being identified as multiple 

cell types, which further indicates confusion of the model. The model might not be able to 

classify the cells into more fine-grained categories because of the extreme class imbalance. 

It is not clear how to do further class balancing within this framework, but once individual 

cells are identified, we can utilize techniques used in image classification.

5.3. Deep Learning: Two-Stage Classification

Our two-stage model uses Faster R-CNN to detect all objects and classify them as RBC 

or not and a separate image classifier to make detailed classifications of the detections that 

Faster R-CNN labeled as not-RBC.

The results are shown in Figure 7. The total accuracy is 98% (disregarding background, 

RBCs, and difficult cells), which is a significant improvement over the one stage method. 

The t-SNE plot in Figure 7b shows clear clusters that differentiate the classes, even those 
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marked as difficult. The model can use what it has learned from training to confidently 

classify cells that humans are confused by and normally ignore. This large increase in 

accuracy is likely due to changes in the training process: learning rate adjustments based on 

subsets of training data, increase of the number of layers, and additional augmentation.

5.4. Comparison with Humans

In order to put the results in context, we compare the results of our deep learning model 

to human annotators. Two expert annotators from two different P. vivax labs annotated all 

the images from the test set independently, and the results are shown in Figure 8. The total 

accuracy of the non-difficult infected cells is 72%, which is less than the accuracy of our 

two-stage classification model. This shows the model’s ability to identify cells as well as an 

expert human for cases where the humans are sure about the classification. In ambiguous 

cases, an automated system would be even more useful for humans.

5.5. Future Work

The end goal of this project is to develop a framework that can help researchers 

automatically classify and stage cells from a field of view image and identify features 

differentiating the infected stages. Further validation of our model needs to be done. We 

intend to test the model on more reliable ground truth (like samples with parasites with more 

synchronized growth) and test for robustness by testing on samples prepared in a different 

lab. We also intend to create an online tool where images can be run through the model, 

relevant results can be displayed, and annotated data from the community can be collected 

and incorporated into future iterations of the model.
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Figure 1. 
Example image with annotations, with colors representing different class labels.
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Figure 2. 
Example segmentation (right is after segmentation). Some mis-segmentations are due to one 

cell being split into multiple and some are due to multiple cells being seen as one.

Hung et al. Page 9

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2021 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Faster R-CNN is a network for object detection that takes an image and outputs bounding 

boxes around objects of interest with class labels. It contains a Region Proposal Network 

that acts as an attention network that identifies the regions the classifier should consider7.
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Figure 4. 
Overview of how our two stage deep learning model for detection and classification is 

applied to images (i.e. test phase). A full sized image is fed into Faster R-CNN to detect 

objects and label them as RBC or other. The objects labeled as other are sent to AlexNet or 

another CNN to undergo more fine-grained classification.
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Figure 5: 
Table of predicted counts, counts from matching segmented objects to ground truth, and 

ground truth counts.
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Figure 6. 
a) Table of predicted counts with threshold = 0.65 and ground truth counts. b) t-SNE plot.
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Figure 7. 
a) Confusion matrix of predicted vs. ground truth in the classification stage. b) t-SNE plot 

after 2-stage classification.
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Figure 8. 
Table of counts for two expert annotators and the model predictions.
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