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Tuberculosis (TB) remains a life-threatening disease and is one of the leading causes of mortality in developing regions due to
poverty and inadequate medical resources. Tuberculosis is medicable, but it necessitates early diagnosis through reliable screening
techniques. Chest X-ray is a recommended screening procedure for identifying pulmonary abnormalities. Still, this recom-
mendation is not enough without experienced radiologists to interpret the screening results, which forms part of the problems in
rural communities. Consequently, various computer-aided diagnostic systems have been developed for the automatic detection of
tuberculosis. However, their sensitivity and accuracy are still significant challenges that require constant improvement due to the
severity of the disease. Hence, this study explores the application of a leading state-of-the-art convolutional neural network
(EfficientNets) model for the classification of tuberculosis. Precisely, five variants of EfficientNets were fine-tuned and imple-
mented on two prominent and publicly available chest X-ray datasets (Montgomery and Shenzhen). The experiments performed
show that EfficientNet-B4 achieved the best accuracy of 92.33% and 94.35% on both datasets. These results were then improved
through Ensemble learning and reached 97.44%. The performance recorded in this study portrays the efficiency of fine-tuning
EfficientNets on medical imaging classification through Ensemble.

1. Introduction

According to the World Health Organization (WHO), tu-
berculosis (TB) is one of the leading causes of death [1, 2]. It
is most prevalent in developing countries due to the high
rate of economic distress [3]. TB can be treated if detected
early to avert its further spread and mortality [4]. Early
diagnosis of TB requires a reliable screening procedure and
accurate interpretation of the screening outcome. To this
end, chest X-ray (CXR) has been recommended by the
WHO for screening pulmonary (lungs) abnormalities due to
its high sensitivity, wide availability, and relatively less ex-
pensive. Despite this recommendation, adequate medical
resources and skilled radiologists required to efficiently
screen patients and interpret results are limited in high TB
burden countries [5, 6]. Several algorithms varying from
hand-crafted to support vector machines (SVMs) and
convolutional neural networks (CNNs) have been deployed
to automate TB screening in tackling these limitations.
However, our focus is on the CNN algorithms.

Amongst these algorithms, CNNs have demonstrated
promising performance, as evident in the literature pri-
marily in transferring models trained on large datasets
(ImageNet [7] and CIFAR-10 [8]), to medical imaging with
fewer datasets. One of the challenges in the medical field is
the lack of reliable annotated datasets and class imbalance;
hence, transferring the weights of deep models helps address
these challenges since CNN algorithms often depend on
large datasets to learn various discriminating features
contributing to attaining good results [9].

To date, many CNN models have been developed to
address the challenges of TB detection, some of which are
discussed here, ranging from the ones trained from scratch
to pretrained CNNs and Ensemble of them.

The CNN architecture proposed in [10] is trained from
scratch to diagnose TB. The architecture comprises five
convolutional layers, each preceded by the pooling layers,
and then the final output layer to obtain 86.2% accuracy and
AUC of 0.925%. The authors incorporate Grad-CAMS and
Saliency map visualizers to validate the output of the model
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classification and identify areas where TB was visible on the
CXR. The importance of a saliency map is further empha-
sized as a valuable tool to review and interpret the model
decision.

A technique based on deep CNN models is presented in
[11] for screening CXR to detect TB. Artificial CXR images
were generated using deep convolutional generative
adversarial networks (DC-GANSs). These images and the
CXR images from popular datasets were segmented into
only the lung fields using UNET. The segmented CXR
images are then used to train Vggl6 and InceptionV3 and
then Ensemble both for classification. The Ensemble model
achieved 97.1%, while the individual model obtained 93.8%
and 96.3%, respectively. The authors affirm that the per-
formance of the proposed model is impacted by the pre-
processing technique, segmentation, augmentation, image
denoising, and hyperparameter optimization.

In [12], VGG16, a variant of VGGNet [13], was
employed as a feature extractor to extract discriminating
features from CXR, and a logistic regression classifier was
trained to predict the normal and infected images. Pre-
processing techniques such as augmentation and contrast
limited adaptive histogram equalization were applied to
boost the quality of the CXR. The authors conclude that a
large database of labeled CXR would assist in building a
deeper and robust computer-aided detection system from
scratch. The study shows the effectiveness of transferring the
weights of a pretrained model to the medical imaging do-
main where there are limited annotated datasets.

GoogLeNet [14] was fine-tuned in [15] to classify dif-
ferent manifestations of TB as consolidation, pulmonary
edema, cardiomegaly, pneumothorax, or pleural effusion.
Image preprocessing was applied to normalize the CXR with
shorter dimensions, while the CXR with larger dimensions
was padded before training the model. The performance of
the model was evaluated to determine its AUC score, sen-
sitivity, and specificity. The model obtained 0.964 AUC and
91% for both specificity and sensitivity, which are further
compared with the result of 2 board-certified radiologists.

The study presented in [16] used the pretrained CNN to
confirm the presence of TB on CXR. In the study, the au-
thors conducted two experiments by applying preprocessing
such as data augmentation to CXR in the first experiment,
while the second experiment was performed directly on the
CXR. The model achieved an accuracy of 81.25% in the first
instance and 80% in the second instance. This performance
is low compared to what could be acceptable due to the
sensitive nature of TB. However, it has shown data aug-
mentation to increase data samples where necessary and
proves that the more data samples you have, the more
features can be learned and better the performance.

Ensemble classifier is presented in [17] for detecting TB
abnormalities in the CXR. Firstly, three pretrained CNN
models are trained individually with different hyper-
parameters to classify the CXR into normal and abnormal
classes. The three models are then combined through En-
semble to improve the classification. The results are then
compared, and the Ensemble model performed better than
each model, achieving 86.42%.
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Pretrained CNN models were customized and proposed
in [18] to classify CXR abnormalities. The study applied data
augmentation to generate more CXR. After the image
preprocessing, CapsNet [19], VGG16, and AlexNet [20]
were trained to classify the CXR into normal and abnormal
classes. The classifiers were evaluated using different metrics,
and the CapsNet performed best above the others con-
cerning affine transformations. Lopes and Valiati [21]
proposed three approaches (Bag of features, Simple feature
extractor, and Ensemble) as feature extractors and compared
their performance to detect TB.

The Ensemble in the study is made up of VggNet, ResNet
[22], and GoogLeNet. The CXR was first downsampled to
suit the different approaches excluding Bag of features; even
though downsampling could impact the performance due to
vital detail loss, experiments were then performed for all the
proposed methods, and the Ensemble outperformed the
other two approaches, achieving 84.6%. This performance
could have been impacted due to downsampling, class
imbalance, and limited datasets.

The study in [23] proposed an Ensemble of pretrained
CNN models toward learning modality-specific features
from different CXR collections. The knowledge learned
through modality specific is transferred and fine-tuned for
TB detection tasks on the Shenzhen CXR dataset. The
predictions of the best performing models are combined
using different ensemble methods to demonstrate improved
performance over any individual model in classifying the
CXR as infected or healthy. The evaluation of the proposed
model achieved 94.1% accuracy.

Another study that makes use of Ensemble models is
proposed in [24]. This study extracted distinctive features
from edge detected images and raw CXR images for TB
detection. Image preprocessing was applied before devel-
oping different classifiers to represent Ensemble and applied
to both image categories. The performance was evaluated,
and the Ensemble model performed best at 89.77% accuracy
with 90.91% sensitivity.

The study presented in [25] is a proposed method that
fine-tuned five pretrained CNNs as feature extractors to
diagnose TB automatically. The CXR was collected with the
patient’s demographic details such as weight, height, weight,
age, and gender. The authors conducted two experiments
that compare the performance of the CXR with demographic
information and the CXR without demographic details. The
first experiment shows higher performance in terms of AUC
and sensitivity over the second experience. The result proves
that incorporating demographic information can positively
impact performance.

In [26], VggNet and AlexNet architectures were mod-
ified to screen TB on CXR and classify them into healthy and
unhealthy classes. The architectures were independently
trained on the Montgomery and Shenzhen datasets to
evaluate the performance of each model. VggNet achieved
81.6% classification accuracy, a slight superiority over the
AlexNet architecture at 80.4%.

Deep CNN models proposed in [27] were integrated with
the handcraft technique through Ensemble learning as feature
extractors from CXR. The features extracted were then used as
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inputs to train a classifier for detecting infected CXRs. The
model was evaluated to compare the performance of both
methods, and the Ensemble model performed better at 0.99
AUC.

In [28], an automatic deep learning algorithm for the di-
agnosis of active lung TB was presented to streamline the
process of screening and detection. The algorithm was devel-
oped using the CNN comprising about 27 layers. The CXR
images were resized; then, a geometric and photometric op-
eration was applied to them before passing them on to the CNN
architecture for training. The algorithm was evaluated on two
public datasets and four custom datasets compared with cer-
tified radiologists and physicians’ interpretations. The algorithm
performance shows significant performance compared to the
radiologist and physician’s performance on all the datasets.

A hybrid model (MoblieNet-AEO) was proposed in [29]
to classify CXR images as TB and Not-TB. The proposed
model first employed MobileNet as feature extraction and
then used the Artificial Ecosystem-Based Optimization
(AEQ) as the feature selector. The model was trained with
the Shenzhen dataset and a private dataset to achieve 90.2%
and 94.1% accuracy on both datasets.

Although several computer-aided detection models have
been developed to diagnose TB, low accuracy and sensitivity
are still major concerns that lead to misdiagnosis. Existing
models are also computationally complex and expensive,
which make them unaffordable in a low-budget economy.
All these serve as motivation to propose an efficient system
suitable and accessible for low-income economies. The
contributions of this work are summarized as follows:

(1) Implementation of state-of-the-art EfficientNets to
develop an effective and inexpensive TB detection
system. It is the first time the EfficientNet model is
being ensembled to classify CXR images for tuber-
culosis diagnosis.

(2) The proposed model achieved high sensitivity and
accuracy.

(3) The model improved accuracy through Ensemble
learning (Bagging).

(4) Finally, two benchmark datasets (Shenzhen and
Montgomery) were used to evaluate the performance
of our model. Despite the challenges of limited
annotated datasets and class imbalance in medical
fields, our approach produces significant improve-
ments in TB classification accuracy over the related
methods.

The rest of the work is structured as follows: Section 2
presents detailed data and methodology explored in this
study. The experimental results and discussion are provided
in Section 3, while Section 4 concludes and gives insight into
future direction.

2. Data and Methods

2.1. Dataset. In this study, all the experiments were per-
formed with the two public CXR datasets provided by the
Department of Health and Human Service, Montgomery

Country, Maryland, USA, and Shenzhen No. 3 People’s
Hospital in China [30]. These datasets were deidentified and
exempted from IRB review. Both datasets described below
can be accessed from the website https://lhncbc.nlm.nih.
gov/publication/pub9931.

(1) The Montgomery County dataset: this dataset is a
TB-specific frontal CXR dataset provided by the
National Library of Medicine in conjunction with the
Department of Health Services, Maryland, USA, for
research intent. This dataset is composed of 58 ab-
normal samples and 80 normal samples. The naming
of each sample ends with either 0 denoting normal
sample or 1 denoting abnormal sample. All samples
are 4020 x 4892 pixels and are available in portable
network graphic (png) file format. This dataset is
accompanied by clinical readings that detail each
sample regarding age, sex, and manifestations.

(2) The Shenzhen dataset: this dataset is a TB-specific
frontal CXR provided by Shenzhen No. 3 Hospital in
Shenzhen, Guangdong, China, and is publicly
available for research. The dataset is made up of 336
abnormal samples and 326 normal samples. The
naming of each sample ends with either 0 denoting
normal sample or 1 denoting abnormal sample. All
samples are approximately 3000 x 3000 pixels saved
in portable network graphic (png) file format. This
dataset is accompanied by clinical readings that
detail each sample concerning sex, age, and diag-
nosis. Some of the CXR in both datasets are shown in
Figure 1.

2.2. Preprocessing. Image preprocessing is crucial in a deep-
learning task. Since images are provided in different sizes,
the input images need to be resized to conform to the
different CNN models while preserving the important fea-
tures. Also, the CNN model generally requires a large dataset
to properly learn discriminating features suitable for making
predictions and obtaining a reasonable performance [9].
Medical imaging is usually limited; hence, data augmenta-
tion [31] is applied in this study to generate additional
unique CXR images. The data augmentation approach
contributes toward controlling overfitting. Overfitting is a
phenomenon where the model performs well on the training
set but poorly on the new (unseen) test set. Contrast limited
adaptive histogram equalization (CLAHE) [32] is also ap-
plied on the CXR to improve the visibility quality of the
images. The augmentation types applied to the CXR images
are presented in Table 1, while Table 2 shows the parameter
values used to perform the CLAHE operation.

2.3. Transfer Learning. In this study, we adopt the concept of
transfer learning. This phenomenon leverages the pretrained
CNN model on large datasets (millions) to learn features of
the target (diagnosing TB from the CXR in this case) with a
limited dataset. In other words, we transfer the rich dis-
criminative features learned by the deep CNN models on the
ImageNet [7] dataset to our CXR dataset. The number of
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FIGURE I: Training and validation CXR from both Shenzhen and Montgomery datasets. (a) Normal CXR of a 38 yr female. (b) Normal CXR
of a 22 yr male. (c) Infected CXR of a 56 yr male. (d) Infected CXR of a 78 yr female. (¢) Normal CXR of a 40 yr female. (f) Normal CXR of a
33 yr male. (g) Infected CXR of a 47 yr male. (h) Infected CXR of a 49 yr female. (a-d) Samples from the Shenzhen dataset. (e-h) Samples

from the Montgomery dataset [30].

TaBLE 1: Data augmentation types and probability values.

Augmentation type Probability value
Rotation_right_left 0.5
Zoom range 0.3
Vertical flip 0.4
Horizontal flip 0.4
Height_shift_range 0.2
Width 0.2

TaBLE 2: CLAHE parameter values.

Parameter Value
clipLimit 2.0
tileGridSize 8x8

deep CNN model parameters increases as the network gets
deeper to achieve improved efficiency. Hence, it requires
many datasets for training, thereby making it computa-
tionally complex. So, applying these models directly on small
and new datasets results in feature extraction bias, over-
fitting, and poor generalization. We, therefore, modified the
pretrained CNN and fine-tuned its structure to suit the CXR
dataset. The concept of transfer learning is computationally
inexpensive, achieves less training time, overcomes limita-
tions of the dataset as in the medical domain, improves
performance, and is faster than training a model from
scratch [33]. The pretrained CNN model fine-tuned in this
work is the EfficientNets [34], and the structure of the
proposed method is represented in Figure 2.

2.4. EfficientNet Architecture. EfficientNet [34] is a light-
weight model based on the AutoML framework [35] to
develop a baseline EfficientNet-BO network and uniformly
scaled up the depth, width, and resolutions using a simplified
and effective compound coeflicient to improve EfficientNet
models B1-B7. The models performed efficiently and
attained superiority over the existing CNN models on the
ImageNet datasets, as shown in Figures 3 and 4, respectively.
EfficientNets are smaller with few parameters, faster, and
generalize well to obtain higher accuracy on other datasets
popular for the transfer learning task. The proposed study
fine-tuned EfficientNet models BO-B4 on CXR to detect TB.
Due to limited annotated datasets in medical imaging, the
data augmentation technique is applied to generate addi-
tional unique CXR images to control overfitting. In trans-
ferring the pretrained EfficientNets to the CXR dataset, we
fine-tuned the models by adding a global average pooling
(GAP) to reduce the number of parameters and handle
overfitting. Two dense layers follow the GAP with a ReLU
activation function and a dropout rate of 0.4 before a final
dense layer that serves as output with SoftMax activation
function to determine the probabilities of the input CXR
representing the normal and infected classes. The SoftMax
activation function is given as

eqi
(I(Q)i = 72521 eqy- (1)

where o is the SoftMax activation function, q represents the
input vector to the output layer i depicted from the
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FIGURE 2: Block structure of the proposed model.

EfficientNet-B7
84 1 AmoebaNet-C
AmoebaNet-A  ____----""7" °
L °
s NASNet-A SENet
82 + L
g ®
= ResNeXt-101
2 80
3 Pid Inception-ResNet-v2 Topl Acc. #Params
g e (%)
- e Xception ResNet-152 (He et al., 2016) 778 60M
2 ,‘ EfficientNet-B1 79.1 7.8 M
E 78 1 ! @ ResNet-152
g ! ResNeXt-101 (Xie etal, 2017) | 809 84 M
g B0 ! DenseNet-201 EfficientNet-B3 81.6 12M
1
76 " SENet (Hu et al., 2018) 82.7 146 M
1 'R Net.50 NASNet-A (Zoph et al., 2018) 82.7 89 M
I st EfficientNet-B4 82.9 19M
I o
1
| Inception-v2 GPipe (Huang et al., 2018)" 843 556 M
744 @ EfficientNet-B7 SEE A L
NASNet-A "Not plotted
ResNet-34
T T T T T T T T
0 20 40 60 80 100 120 140 160 180

Number of Parameters (Millions)

Figure 3: Comparison of EfficientNet model size with other models on ImageNet [34].

exponential element e%, N is the number of classes, and e’
represents the output vector of the exponential function.
It is understood that too many iterations could lead to
model overfitting, while too few iterations can cause
model underfitting; hence, we invoked an early stopping
strategy. About 120 training iterations were configured
and then set up the early stopping to terminate the
training once the performance stops improving on the
hold-out validation set. The early stopping, L2 regulari-
zation, data augmentation, and dropout were imple-
mented to control overfitting. The EfficientNet B0-B4
models were trained for 40 iterations (epochs) using a
stochastic gradient descent (SGD) optimizer with a 0.0001

learning rate. The batch size for each iteration was 22, and
momentum equals 0.9 and L2 regularizer. All these
configurations help to control overfitting. At the same
time, categorical cross-entropy is the loss function used to
update weights at each iteration. Hyperparameters used
were carefully evaluated and found to perform optimally.
The optimizer employed is defined as

o= - n'A“](oc;x(i);y(i)), (2)
where A, ] is the gradient of the loss w.r.t a, 7 is the defined
learning rate, « is the weight vector, while x and y are the
respective training sample and label, respectively.



2.5. Ensemble Modeling. Ensemble learning is the termi-
nology for techniques that incorporate multiple models for
decision making. The ultimate goal of Ensemble is such that
by combining multiple models, the errors of a single model
can be corrected (compensated) by other models, thereby
making the overall result (prediction and classification) of the
Ensemble better than any single participating model [36]. The
concept of Ensemble is mainly considered the interpretation
of machine learning for the intelligence of the majority.

In recent times, Ensembles are regarded as state-of-the-
art methods for solving a more significant number of ma-
chines and deep learning challenges [37]. In other words,
weighing and aggregating many individual viewpoints will
be better than deciding on the judgment of a single
individual.

(1) Strength of Ensemble learning: the efficiency of
Ensemble models for obtaining improved perfor-
mance could be due to the following [36, 38]:

Avoidance of overfitting: algorithms often find
ways to perfectly predict the training set in a few
datasets even though poor prediction is made on
the test set. So when a different hypothesis is av-
eraged, the risk of selecting the wrong hypothesis is
minimized.

Computational expediency: individual models can
get stuck in a local minimum, but through (En-
semble) combining models, the risk of local
minimum is decreased as other models can get past
a certain local minimum.

Representation: Ensemble models help improve
the scenario where the optimal hypothesis is
outside the scope of any individual model.

Class imbalance and dimensionality: they are major
problems that affect the equality of results and are well
handled by Ensemble model through resampling.

(2) Building an Ensemble model: building an Ensemble
model culminates in methodology selection to train
the individual participating models and select a
suitable process for combining the individual pre-
dictions (output). The high diversity and predictive
performance of a model are essential in selecting
participating models [38]. Other considerations for
model selections include input and output manipu-
lations, partitioning, and hybridization. Furthermore,
the methods of integrating all individual outputs into
a single final result are crucial. There are different
Ensemble types based on the generation process of
different models and a combination strategy. The
most prominent Ensemble types are Bagging [39],
Boosting [40], and Stacking [41]. In this study, the
Bagging method of Ensemble is implemented. This
method is also known as Bootstrap Aggregation.

(3) Bagging [39] is an effective method for creating
Ensembles of independent models. Many individual
models are trained independently with a sample of
data derived from the original datasets as replace-
ments. By independently, we mean the training and
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output of a particular model do not affect the others.
To ensure diversity, each replica sample has the same
number of samples as the original dataset. Thus,
some data samples may appear for the replica, while
others may not or appear more than once for
training individual models. Once the classification
output of the models is obtained, bagging then
combines them through majority voting to obtain
the final prediction. Algorithm 1 presents bagging
pseudocode. The bagging method is employed in this
study because of the following:

It is suitable for a task with small training datasets.
It can achieve low variance without impacting the
bias.

It handles classification tasks well

It has the ability to obtain improved accuracy.

3. Results and Discussion

Various EfficientNet (B0-B4) variants were fine-tuned on
both Shenzhen and Montgomery TB-specific CXR datasets
to detect TB. Each dataset is split into a 75% training set and
25% test set, respectively. The experiments were entirely
performed using the Keras deep learning framework run-
ning on the TensorFlow backend. Each model was trained in
the cloud on the Tesla graphics processing unit (GPU) and
made available through the Google Collaboratory frame-
work by Google. The Collaboratory framework provides up
to 12 GB random access memory (RAM) and about 360 GB
GPU in the cloud for research purposes. The models were
evaluated using the popular evaluation metrics (accuracy,
sensitivity, specificity, and area under the curve). The way
these evaluation metrics are determined is given as follows:

TP + TN
accuracy = x
Y TP 1 FP 1+ TN + EN
oy TP
sensitivity = TP + EN'
TN
speciﬁcity = m, (3)
oy TP
TPR = sensitivity = TP 1 FN’
FP

FPR =1 — specificity = P+ TN
where TP=true positive, FP=false positive, TN =true
negative, FN = false negative, TPR = true-positive rate, and
FPR = false-positive rate.

The experimental results showing each dataset’s accuracy
and loss are presented in Figures 5 and 6. The various
EfficientNet models converge at the 40th iteration (epoch);
then, the accuracy is determined using the test set. The
models performed well at extracting and learning dis-
criminative features from the CXR. Precisely, EfficientNetB4
attains the best accuracy (92.33% and 94.35%) for both
datasets over the other variants. The performance details of
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Model Top(—; )A e TOP{; )A " gparams Ratio-to-EfficientNet #FLOPs Ratio-to-EfficientNet
0 0
EfficientNet-B0 77.1 93.3 53 M 1x 0.39B 1x
ResNet-50 (He et al., 2016) 76.0 93.0 26 M 49x 4.1B 11x
DenseNet-169 (Huang et al., 2017) 76.2 93.2 14 M 2.6x 35B 8.9x
EfficientNet-B1 79.1 94.4 7.8 M 1x 0.70 B 1x
ResNet-152 (He et al., 2016) 77.8 93.8 60 M 7.6 X 11B 16 x
DenseNet-264 (Huang et al., 2017) 77.9 93.9 34 M 4.3 x 6.0B 8.6 x
Inception-v3 (Szegedy et al., 2016) 78.8 94.4 24 M 3.0x 57B 8.1x
Xception (Chollet, 2017) 79.0 94.5 23 M 3.0x 84B 12x
EfficientNet-B2 80.1 94.9 9.2 M 1x 1.0 B 1x
Inception-v4 (Szegedy et al., 2017) 80.0 95.0 48 M 52x 13B 13 x
Inception-resnet-v2 (Szegedy et al., 2017) 80.1 95.1 56 M 6.1x 13B 13 x
EfficientNet-B3 81.6 95.7 12M 1x 1.8B 1x
ResNeXt-101 (Xie et al., 2017) 80.9 95.6 84 M 7.0x 32B 18x
PolyNet (Zhang et al., 2017) 81.3 95.8 2M 7.7 x 35B 19x
EfficientNet-B4 82.9 96.4 19M 1x 42 B 1x
SENet (Hu et al., 2018) 82.7 96.2 146 M 7.7x 42 B 10x
NASNet-A (Zoph et al., 2018) 82.7 96.2 89 M 4.7x 24 B 5.7x
AmoebaNet-A (Real et al., 2019) 82.8 96.1 87 M 4.6 x 23B 5.5x
PNASNet (Liu et al., 2018) 82.9 96.2 86 M 4.5x 23 B 6.0x
EfficientNet-B5 83.6 96.7 30 M 1x 9.9B 1x
AmoebaNet-C (Cubuk et al., 2019) 83.5 96.5 155 M 52x 41 B 4.1x
EfficientNet-B6 84.0 96.8 43 M 1x 19B 1x
EfficientNet-B7 84.3 97.0 66 M 1x 37B 1x
GPipe (Huang et al., 2018) 843 97.0 557 M 84x - -

FIGURE 4: Performance of EfficientNets vs state-of-the-art models on ImageNet [34].

Input:

Data set D = {(x;, ¥1), (x5, ¥2)s-- o> (X ¥}
Base learning algorithm L;

Number of learning rounds T

Process:

fort=1,... T:

D, = Bootstrap (D); % Generate a bootstrap sample from D
h,=L(D,); % Trainabaselearner h, from the bootstrap sample
end.

Output: H(x) = argmax .y Zle 1(y = h,(x)) % the value of 1 (a) is 1 if a is true and 0 if otherwise

ALGORITHM 1: Bagging Ensemble.

the experiments are illustrated in Table 3, depicting accu-
racy, sensitivity, specificity, and AUC.

Despite achieving good performance, we further build an
Ensemble model comprising the best performing individual
models (B2, B3, and B4) from the initial experiments to
improve accuracy. The performance of the three Effi-
cientNets was averaged to build an Ensemble to classify the
CXR. The Ensemble model outperformed the individual
variants of EfficientNets in diagnosing TB, achieving 95.82%
for the Montgomery dataset and 97.44% for the Shenzhen
dataset. The accuracy and loss plots for the Ensemble model
are presented in Figure 7. Also, the model obtains the highest
sensitivity for TB detection.

One of the main advantages of EfficientNets is that they
are smaller with fewer parameters and faster and generalize

well on transfer learning datasets [34]. EfficientNet-BO had
the least performance, as shown in Table 3, despite having
the fewest parameters. This low performance could result
from image downsampling to conform to the model’s
224 x 224 input size. A detailed number of parameters and
input size for each EfficientNet are provided in Table 4. We
observed that performance improves as the model gets
deeper. For the Montgomery dataset, EfficientNet-B0 started
poorly. It only began to converge from the 11th iteration,
although with little noise, until the 25th iteration, where it
began to stabilize until the 40th iteration. Overfitting starts
to occur after the 40th iteration; hence, early stoppage was
invoked. On the contrary, the training progressed well for
the Shenzhen dataset but only began to overfit after the 40th
iteration. Generally, the models performed better on the
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FIGURE 5: Accuracy and loss for the Shenzhen dataset: (a—e) performance accuracy of each EfficientNet and (f-j) the corresponding loss.
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TaBLE 3: Experimental results.

) Montgomery Shenzhen
EfficientNet model o o o o
Accuracy (%) Sensitivity (%) Specificity (%) AUC Accuracy (%) Sensitivity (%) Specificity (%) AUC
BO 80.52 82.10 81.48 0.77 84.90 87.08 85.36 0.82
Bl 83.46 83.78 83.77 0.80 86.62 89.12 90.81 0.86
B2 86.35 90.16 88.25 0.84 91.24 90.83 90.31 0.90
B3 90.40 93.01 92.00 0.90 92.83 93.64 89.53 0.92
B4 92.33 95.41 93.61 0.92 94.35 95.69 94.15 0.93
Ensemble 95.82 98.13 95.78 0.94 97.44 99.18 96.21 0.96
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FIGURE 7: Accuracy and loss of the Ensemble model: (a, b) performance on the Shenzhen dataset and (c, d) performance on the Montgomery
dataset.

TABLE 4: Parameter values and input sizes of each EfficientNet.

Model Parameter (million) (M) Input size
BO 5.3 224 x 224
B1 7.8 240 x 240
B2 9.2 260 x 260
B3 12 300 x 300

B4 19 380 x 380
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TaBLE 5: Proposed method compared with the related Ensemble
study.

Author Result (%)
Lopes and Valiati [21] 84.6
Rajaraman and Antani [23] 94.1
Hernandez et al. [17] 86.4
Hijazi et al. [24] 89.7
Dasanayaka and Dissanayake [11] 97.1
Pasa et al. [10] 86.2
Sahlol et al. [29] 94.1
Proposed method 97.4
Shenzhen

100 ) ) ) ) ) ) ) ) ) ) )

95 ) ) ) ) ) ) i )
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85 ' ' ' '

80 ' ' ' '

75 : : : :

BO B1 B2 B3 B4 Ensemble

m Accuracy (%)
m Sensitivity (%)
Specificity (%)

FiGURrE 8: Best results achieved on the Shenzhen dataset.

Shenzhen dataset. This attribute could be due to the in-
creased dataset and balanced class ratio of normal to ab-
normal CXR. One of the challenges faced during the
experiments was determining the best combinations of
hyperparameters suitable for these models and overfitting
due to limited data samples. Hence, we explored data
augmentation and other regularization techniques (drop-
out) to combat overfitting as much as possible. The result of
the proposed method compared with the related Ensemble
study is presented in Table 5.

4. Conclusion

This study investigated and implemented EfficientNet
models for automatic diagnosis of TB on the two most
prominent and publicly available CXR datasets. Effi-
cientNets that achieved state-of-the-art performance over
other architectures to maximize accuracy and efficiency were
explored and fine-tuned on CXR images. The fine-tuning
technique is a valuable way to take advantage of rich generic
features learned from large dataset sources such as ImageNet
to compliment the lack of annotated datasets affecting
medical domains. The experimental results show the ef-
fectiveness of the EfficientNets in extracting and learning
distinctive features from the CXR images and then classi-
tying them into a healthy or infected class. Out of the five
EfficientNet variants explored in this study, the EfficientNet-
B4 outperformed among the others, as evident in Table 3 and
depicted in Figure 8. The achieved result is improved
through Ensemble of the best three (B2, B3, and B4). It is
worthy of note that exploring EfficientNets for the
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classification of TB images helps save time while preserving
accuracy. However, one of the major limitations of the
proposed approach is training the model on small datasets
and training on images with low resolutions. These limi-
tations can easily result in significant overfitting. Hence, it is
essential to explore effective image preprocessing techniques
to overcome these challenges. For future study, we will
consider Ensembling all variants of EfficientNets and
compare with other state-of-the-art models for detecting
foreign objects on CXR images that could affect performance
or be misclassified as TB. Although the proposed meth-
odology is specific to TB detection, it could be extended to
detect other pulmonary abnormalities, given the right set of
datasets.

Data Availability

Data used in this research are publicly available (Shenzhen
and Montgomery TB-specific CXR datasets). The developed
model can be shared upon request.
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