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Abstract

In this paper, we present a fully convolutional densely connected network (Tiramisu) for multiple 

sclerosis (MS) lesion segmentation. Different from existing methods, we use stacked slices from 

all three anatomical planes to achieve a 2.5D method. Individual slices from a given orientation 

provide global context along the plane and the stack of adjacent slices adds local context. By 

taking stacked data from three orientations, the network has access to more samples for training 

and can make more accurate segmentation by combining information of different forms. The 

conducted experiments demonstrated the competitive performance of our method. For an ablation 

study, we simulated lesions on healthy controls to generate images with ground truth lesion 

masks. This experiment confirmed that the use of 2.5D patches, stacked data and the Tiramisu 

model improve the MS lesion segmentation performance. In addition, we evaluated our approach 

on the Longitudinal MS Lesion Segmentation Challenge. The overall score of 93.1 places the 

L2-loss variant of our method in the first position on the leaderboard, while the focal-loss variant 

has obtained the best Dice coefficient and lesion-wise true positive rate with 69.3% and 60.2%, 

respectively.
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1 Introduction

Multiple Sclerosis (MS) is a demyelinating disease of the central nervous system. Magnetic 

resonance imaging (MRI) is commonly used for monitoring the disease course. Automated 

quantification of focal MS lesions in the white matter (WM) is a desirable goal, but this 

task is complicated by the vast variability in lesion appearance, shape and location, as well 

as sensitivity to scanning protocols and patient populations. Even manual segmentation of 
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lesions is highly challenging; in addition to being time-consuming, this process is prone to 

notoriously high inter- and intra-observer variability [3]. Many novel automated algorithms 

have been proposed to improve the segmentation results over the past years.

Among the automated methods, supervised techniques have dominated this field by their 

strong ability to detect MS lesions [3]. In recent years, machine learning techniques, 

especially convolutional neural networks (CNNs), have shown better performance than other 

methods. The deep neural networks create features directly from the training data without 

any manual feature engineering. With the growth of computing power and the development 

of deep learning, the CNN-based models have provided state-of-the-art results in MS lesion 

segmentation [1,5]. Among the variety of network architectures, the U-Net [10] is currently 

widely used in medical image segmentation.

Contributions.

In this work, we adapted the fully convolutional densely connected networks (Tiramisu [6]) 

for MS lesion segmentation. We introduced the use of 2.5D stacked slices (Sect. 2.2) to 

improve the network performance. We conducted experiments on our in-house dataset and 

the ISBI 2015 Longitudinal MS Lesion Segmentation Challenge dataset (Challenge). For the 

in-house dataset (Sect. 4.1), we performed realistic lesion simulation on healthy controls. 

The simulated dataset allows us to perform an ablation study without the complexities of 

intra-rater and inter-rater variabilities that often plague manual lesion segmentations [3]. 

The ablation experiments show that the introduction of 2.5D stacked slices is helpful for 

the segmentation performance and the Tiramisu model performs better than U-Net. While 

valuable for running experiments in a controlled environment, all simulations inevitably 

have limitations; thus, we also conducted experiments on a real dataset. For the Challenge 

(Sect. 4.2), as of March 2019, the score of our proposed method places us in the first 

position on the leaderboard with a score substantially higher than the previously reported 

results.

2 Materials and Methods

2.1 Datasets and Pre-processing

In-house Dataset.—This dataset consists of 15 healthy controls. For each subject, 3T 

T1-w MPRAGE and FLAIR images were acquired at Brigham and Women’s Hospital [9]. 

We use a publicly available lesion simulation tool to generate a dataset with ground truth 

lesion masks.1 The unambiguous ground truth definition allows us to precisely measure 

performance in the ablation study presented in Sect. 4.1. The number of simulation time-

points for each healthy control is normally distributed with N(4, 1) so that we get on average 

4 time-points for each subject. The lesion load follows the log-normal distribution Log − 

N(log(15), log(3)
3 ) and is forced into the range [5, 50]. This yields an approximate average 

lesion load of 15ml, which is a plausible lesion load.

1https://github.com/CSIM-Toolkits/LesionSimulatorExtension.
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ISBI Longitudinal MS Lesion Segmentation Challenge Dataset.—This dataset 

contains 5 training and 14 testing subjects, with 4 to 5 time-points per subject [3]. T1-w 

MPRAGE, FLAIR, T2-w and PD images were acquired at 3T. Lesions were manually 

delineated by two expert raters.

Pre-processing.—For the in-house dataset, T1-w and FLAIR images were co-registered 

to the T1-w space using ANTs [2] and skull-stripped using BET [13]. Next, bias correction 

was performed by N4ITK [14]. For the Challenge dataset, we used the pre-processed data 

as provided [3]. This includes N4 bias correction, skull-stripping, dura-stripping, followed 

by a second N4 bias correction and a rigid registration to the MNI template. Afterward, all 

images were registered to the baseline image. Finally, for both datasets, we performed an 

intensity normalization for each image with kernel density estimation.

2.2 2.5D Stacked Slices

A stack of 3 slices is defined as a center slice and its 2 adjacent slices. We only consider the 

stacks whose corresponding lesion mask has at least one voxel of lesion in the center slice. 

While the central slice is the most important one, the neighboring slices provide contextual 

information about possible lesions. Due to limited data and computational resources, current 

3D methods use small patches to train the network, which leads to a lack of global 

structure information. In contrast, a stack of adjacent slices from any plane provides global 

information along two axes (e.g., x, y) and local information from the third axis (e.g., z).

The term 2.5D is defined as stacked slices along three orthogonal planes (axial, coronal and 

sagittal). Although this term is previously used in [11] for fusing three orthogonal views of 

a region into a training sample, we define it here referring to using 2D slices from the three 

orientations independently. For a multi-modal dataset of N modalities (e.g., N = 4 for the 

Challenge dataset which contains T1-w, T2-w, FLAIR and PD images), the input would be 

the concatenation of N stacked slices of the same location from different modalities.

The 2.5D stacked slices exploit the 3D nature of MRI but are still 2D, providing efficient 

training. This enables the network to learn the global structure from all three orientations. 

The inference results along the different orientations are combined via majority vote to 

output the final segmentation. To force the stacks from different orientations have the same 

size, they are randomly cropped to 128 × 128.

2.3 Network Structure and Loss Functions

Our network is a 2D fully convolutional densely connected network adopted from the 

Tiramisu model [6]. The network takes the 2.5D stacked slices from all the available 

modalities (T1-w, FLAIR, etc.) as the input and outputs the lesion segmentation binary mask 

(Fig. 1). The loss function has to be carefully chosen for training the deep neural network. In 

this work, we used L2 loss, Dice loss and focal loss [8] and compared their performance.

The L2 loss is defined as: ℒL2 = |F(X) − Y |2 where X represents the inputs of all available 

modalities and F(·) is the function of the neural network. Y is the training lesion mask which 

can be ground truth or gold standard.
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The Dice loss (ℒDice) and Dice Similarity Coefficient (DSC) are defined as: 

ℒDice = 1 − DSC(F(X), Y ) and DSC(F(X), Y ) = 2 F(X) ∩ Y
F(X) + Y .

The focal loss is defined as 

ℒfocal = − αY ⋅ (1 − F(X))γlog(F(X)) − (1 − α)(1 − Y ) ⋅ F(X)γlog(1 − F(X)) where α is the 

weighting factor and γ is the modulating factor. α balances the importance of positive and 

negative examples whereas γ is used to give more focus on potentially mislabeled examples.

3 Experimental Methods

Evaluation Metrics and Compared Methods.

We evaluated our method following the metrics described in [3]. The metrics include: 

Dice Similarity Coefficient (DSC), Positive Predictive Value (PPV, or precision), True 

Positive Rate (TPR, or recall), Lesion-wise False Positive Rate (LFPR), Lesion-wise 

True Positive Rate (LTPR) and Volume difference (VD). For both datasets, in addition 

to experiment-specific comparisons, we also compared our results with two established 

methods, FLEXCONN [12] and MIMoSA [15].

Implementation Details.

For our simulated in-house dataset, we split 4/5 of the simulated data into the training 

set, and 1/5 into the test set. For the Challenge, we trained 5 models based on 5-fold cross-

validation and then use majority voting to get the segmentation output of the Challenge test 

set.

Our networks were trained using the Adam optimizer [7] with the initial learning rate (lr) 

of 0.0002 and momentum term of 0.5. The initial lr was used for 100 epochs and then it 

linearly decayed to 0 within the chosen epoch number. For the network trained with focal 

loss, we use the setting γ = 2, α = 0.25, following the findings of [8].

4 Results

4.1 Simulated In-House Dataset

Since manual lesion segmentation is notorious for inter-rater and intra-rater variations [3], 

we first evaluated our method on the simulated in-house dataset to momentarily avoid the 

ambiguities introduced by human raters. Figure 2(A–D) illustrates that the simulation is 

visually realistic. Figure 2(E–G) demonstrates that our method is able to segment the lesions 

on this simulated dataset.

We trained our network with three different loss functions to assess performance. In Table 

1, the results of these three variants are shown in the first three rows. The focal-loss variant 

achieved the highest DSC and TPR while the L2 variant achieved the best PPV and LFPR. 

The former showed stronger ability to recall lesions but the latter achieved a better balance 

between LFPR and LTPR. The L2 variant outperformed the Dice variant in most metrics.
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Since we have the ground truth for the simulated dataset, it is well-suited for an ablation 

study to illustrate the role of the introduced techniques. We used the network trained with 

the focal loss as the baseline and removed individual components to assess the resulting 

difference in performance. We considered the following settings: (1) using only 2.5D (i.e., 
along 3 different orientations) without stacking; (2) only 2D stacked data along a single 

orientation; (3) smaller patch sizes (64 × 64 instead of 128 × 128, with stacking and 2.5D); 

(4) a U-net architecture rather than Tiramisu. The results are shown in Table 1. When we 

only use 2.5D slices without stacking, we observe that all the metrics, except PPV and VD, 

get worse. Similarly, when we only use stacked 2D data or use U-Net, the performance is 

not as good as the baseline. Moreover, using smaller patches (64 × 64) to train the network 

cannot reach the same performance as large patches (128 × 128) since they contain less 

structural information.

We next consider the Precision-Recall (PR) curves by controlling the threshold (between −1 

and 1) of membership predictions (Fig. 3(a)). The curve of L2-loss network is closest to the 

upper right corner which means it has the best performance. The baseline (the focal loss 

network) performed better than its variations, as expected. An interesting observation of the 

Dice-loss network is that most of its predictions are exactly −1 (Non-lesion) or 1 (Lesion). 

Because of this, most data points on the PR curve lie in a small range for this variant, 

unlike the other networks. For lesion-wise comparison, the lesion-wise Receiver Operating 

Characteristic (ROC) curves are plotted in Fig. 3(b). The L2 variant had higher LTPR when 

LFPR is smaller than 0.20, whereas the focal loss variant performed best when the LFPR is 

allowed to be higher. With respect to lesion-wise metrics, the baseline method also showed 

better performance than the networks in the ablation study.

4.2 The Longitudinal MS Lesion Segmentation Challenge

The results on the public Challenge dataset are shown in Table 2. In this table, we also 

compare our results to the three top-ranking methods on the leaderboard prior to our 

method, Hashemi et al. [5], Feng et al. [4], Aslani et al. [1]. For each metric, the best 

two scores are emphasized because the values are very close. An overall score (SC) of 90 

indicates segmentation accuracy similar to the human raters [3]. The scores of our proposed 

methods are substantially higher than the previous best-reported score (92.486). Similar to 

our results on the simulated dataset, among the networks, the L2 variant has the best overall 

performance (the highest score). It made a good trade-off between LFPR and LTPR. The 

focal loss variant achieved the best DSC, the best LTPR and the second-best TPR (recall) 

which mean it is very sensitive to the lesions. The Dice variant’s performance is close to 

that of the L2 variant, but the latter is better in most metrics. These are consistent with our 

findings on the simulated in-house dataset.

Among the top-ranking methods, [5] implemented the 3D Tiramisu and used Dice/focal 

loss. [4] uses a 3D U-Net and weighted binary cross entropy. [1] used 2D U-Net and 2.5D 

patches. Compared to the leading 3D approaches in the Challenge [4,5], our networks have 

more samples for training and are less susceptible to training data size. Compared to the 

leading 2D approach [1], our 2.5D stacked representation gives a glimpse of the 3D context 

without causing a substantial reduction in training set size. On the challenge leaderboard, 
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a recent submission achieved a higher score than these three methods (but lower than 

our scores). However, we are unable to include it since, to the best of our knowledge, 

this approach has not yet been published. We note that there is an overall performance 

drop between the in-house dataset and the Challenge dataset, which we believe is due to 

imperfections in the manually created labels of the Challenge dataset.

5 Conclusion

We proposed a novel pipeline using fully convolutional DenseNets and 2.5D stacked slices 

for automated MS lesion segmentation. We trained our network with L2 loss, Dice loss 

and focal loss. The network trained with L2/Dice loss shows the good trade-off between 

true positives and false positives. The network trained with focal loss has a strong ability 

to recall lesions. On the simulated in-house dataset, we developed our method and the 

ablation study showed the 2.5D stacked data and Tiramisu model are the main reasons for 

the improvements. On the ISBI Challenge, our method outperformed the state-of-the-art 

methods. We achieved the best overall score with the use of L2 loss and the highest DSC/

LTPR with the focal loss. The excellent performance achieved on the ISBI challenge suggest 

fully convolutional DenseNets and stacked 2.5D data as a highly promising approach for 

medical image segmentation.
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Fig. 1. 
The network architecture of our proposed method. The downsampling path consists of a 

convolutional layer (CONV), 5 dense blocks (DB) and the transition down (TD) blocks. 

The upsampling path is symmetrical to the downsampling path, but for the input of each 

block, it concatenates the output from the Transition Up (TU) block and the output from the 

corresponding downsampling block. The final Tanh layer brings the output values to the [−1, 

1] range. Within each DB, the input of each layer is the concatenation of all the previous 

layers. Each DB consists of 4 layers.
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Fig. 2. 
Qualitative results from the simulated in-house dataset. (A) Original T1-w image (B) 

Simulated T1-w image (C) Original FLAIR image (D) Simulated FLAIR image (E–G) 

Zoomed-in segmentation results with L2 loss, Dice loss and focal loss, respectively. Green: 

true positive. Red: false positives. Blue: false negatives. Red boxes in (A)–(D) highlight 

lesions (Colour figure online).
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Fig. 3. 
Precision-Recall and Lesion-wise ROC (LFPR-LTPR) curves for the ablation study. The 

in-set figures provide zoomed-in views. The red dots indicate when the threshold is set to 0 

(the membership function values are in the range [−1, 1]).
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Table 1.

Results on the simulated in-house dataset. The first 3 rows are our proposed methods trained with different 

losses. The following 4 rows each show the effect of changing one component of the baseline (Ours (ℒFocal)). 

The last two rows are the results obtained with FLEXCONN and MIMoSA based on the same dataset.

DSC PPV TPR LFPR LTPR VD

Ours (ℒL2) 0.861 0.919 0.810 0.104 0.603 0.119

Ours (ℒDice) 0.847 0.904 0.798 0.150 0.597 0.118

Ours (ℒFocal) 0.865 0.850 0.880 0.209 0.636 0.045

Only 2.5D 0.859 0.866 0.853 0.278 0.620 0.028

Stacked 2D 0.828 0.801 0.858 0.584 0.640 0.088 Ablation Study

Smaller Patch 0.858 0.850 0.868 0.236 0.644 0.040

U-Net 0.835 0.803 0.871 0.597 0.694 0.087

FLEXCONN [12] 0.707 0.624 0.832 0.667 0.546 0.393

MIMoSA [15] 0.424 0.530 0.370 0.851 0.544 0.316
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Table 2.

Results on the ISBI challenge test set. For each metric, the bold values mean the best result and the underlined 

values are the second-best result. The first three rows are our proposed methods trained with different losses. 

The following three rows are the reported state-of-the-art methods. The last two rows are other established 

methods.

SC DSC PPV TPR LFPR LTPR VD

Ours (ℒ2) 93.21 0.643 0.908 0.533 0.124 0.520 0.428

Ours (ℒDice) 93.11 0.642 0.902 0.533 0.155 0.540 0.425

Ours (ℒfocal) 92.85 0.693 0.818 0.644 0.236 0.602 0.340

Hashemi et al. [5] 92.49 0.584 0.921 0.456 0.087 0.414 0.497

Feng et al. [4] 92.41 0.682 0.782 0.645 0.270 0.600 0.326

Aslani et al. [1] 92.12 0.611 0.899 0.490 0.139 0.410 0.454

FLEXCONN [12] 90.48 0.524 0.866 N/A 0.110 N/A 0.521

MIMoSA [15] 87.72 0.568 0.611 0.570 0.474 0.353 0.343
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