Skip to main content
. Author manuscript; available in PMC: 2021 Dec 22.
Published in final edited form as: Med Image Comput Comput Assist Interv. 2019 Oct 10;11766:338–346. doi: 10.1007/978-3-030-32248-9_38

Table 1.

Results on the simulated in-house dataset. The first 3 rows are our proposed methods trained with different losses. The following 4 rows each show the effect of changing one component of the baseline (Ours (LFocal)). The last two rows are the results obtained with FLEXCONN and MIMoSA based on the same dataset.

DSC PPV TPR LFPR LTPR VD

Ours (LL2) 0.861 0.919 0.810 0.104 0.603 0.119

Ours (LDice) 0.847 0.904 0.798 0.150 0.597 0.118

Ours (LFocal) 0.865 0.850 0.880 0.209 0.636 0.045
Only 2.5D 0.859 0.866 0.853 0.278 0.620 0.028
Stacked 2D 0.828 0.801 0.858 0.584 0.640 0.088 Ablation Study
Smaller Patch 0.858 0.850 0.868 0.236 0.644 0.040
U-Net 0.835 0.803 0.871 0.597 0.694 0.087

FLEXCONN [12] 0.707 0.624 0.832 0.667 0.546 0.393
MIMoSA [15] 0.424 0.530 0.370 0.851 0.544 0.316