Table 1.
Results on the simulated in-house dataset. The first 3 rows are our proposed methods trained with different losses. The following 4 rows each show the effect of changing one component of the baseline (Ours ()). The last two rows are the results obtained with FLEXCONN and MIMoSA based on the same dataset.
DSC | PPV | TPR | LFPR | LTPR | VD | ||
---|---|---|---|---|---|---|---|
| |||||||
Ours () | 0.861 | 0.919 | 0.810 | 0.104 | 0.603 | 0.119 | |
| |||||||
Ours () | 0.847 | 0.904 | 0.798 | 0.150 | 0.597 | 0.118 | |
| |||||||
Ours () | 0.865 | 0.850 | 0.880 | 0.209 | 0.636 | 0.045 | |
Only 2.5D | 0.859 | 0.866 | 0.853 | 0.278 | 0.620 | 0.028 | |
Stacked 2D | 0.828 | 0.801 | 0.858 | 0.584 | 0.640 | 0.088 | Ablation Study |
Smaller Patch | 0.858 | 0.850 | 0.868 | 0.236 | 0.644 | 0.040 | |
U-Net | 0.835 | 0.803 | 0.871 | 0.597 | 0.694 | 0.087 | |
| |||||||
FLEXCONN [12] | 0.707 | 0.624 | 0.832 | 0.667 | 0.546 | 0.393 | |
MIMoSA [15] | 0.424 | 0.530 | 0.370 | 0.851 | 0.544 | 0.316 |