
LIFE: A Generalizable Autodidactic Pipeline for 3D OCT-A Vessel 
Segmentation

Dewei Hu1, Can Cui1, Hao Li1, Kathleen E. Larson2, Yuankai K. Tao2, Ipek Oguz1

1Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, 
USA

2Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA

Abstract

Optical coherence tomography (OCT) is a non-invasive imaging technique widely used for 

ophthalmology. It can be extended to OCT angiography (OCT-A), which reveals the retinal 

vasculature with improved contrast. Recent deep learning algorithms produced promising vascular 

segmentation results; however, 3D retinal vessel segmentation remains difficult due to the lack 

of manually annotated training data. We propose a learning-based method that is only supervised 

by a self-synthesized modality named local intensity fusion (LIF). LIF is a capillary-enhanced 

volume computed directly from the input OCT-A. We then construct the local intensity fusion 

encoder (LIFE) to map a given OCT-A volume and its LIF counterpart to a shared latent space. 

The latent space of LIFE has the same dimensions as the input data and it contains features 

common to both modalities. By binarizing this latent space, we obtain a volumetric vessel 

segmentation. Our method is evaluated in a human fovea OCT-A and three zebrafish OCT-A 

volumes with manual labels. It yields a Dice score of 0.7736 on human data and 0.8594 ± 0.0275 

on zebrafish data, a dramatic improvement over existing unsupervised algorithms.
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1 Introduction

Optical coherence tomography (OCT) is a non-invasive imaging technique that provides 

high-resolution volumetric visualization of the retina [19]. However, it offers poor contrast 

between vessels and nerve tissue layers [9]. This can be overcome by decoupling the 

dynamic blood flow within vessels from stationary nerve tissue by decorrelating multiple 

cross-sectional images (B-scans) taken at the same spatial location. By computing the 

variance of these repeated B-scans, we obtain an OCT angiography (OCT-A) volume that 

has better visualization of retinal vasculature than traditional OCT [15]. In contrast to other 

techniques such as fluorescein angiography (FA), OCT-A is advantageous because it both 

provides depth-resolved information in 3D and is free of risks related to dye leakage or 
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potential allergic reaction [9]. OCT-A is popular for studying various retinal pathologies 

[4,14]. Recent usage of the vascular plexus density as a disease severity indicator [12] 

highlights the need for vessel segmentation in OCT-A.

Unlike magnetic resonance angiography (MRA) and computed tomography angiography 

(CTA), OCT-A suffers from severe speckle noise, which induces poor contrast and vessel 

discontinuity. Consequently, unsupervised vessel segmentation approaches [2,3,22,28,33] 

developed for other modalities do not translate well to OCT-A. Denoising OCT/OCT-A 

images has thus been an active topic of research [5,13,24]. The noise is compounded in 

OCT-A due to the unpredictable patterns of blood flow as well as artifacts caused by residual 

registration errors, which lead to insufficient suppression of stationary tissue. This severe 

noise level, coupled with the intricate detail of the retinal capillaries, leads to a fundamental 

roadblock to 3D segmentation of the retinal blood vessels: the task is too challenging for 

unsupervised methods, and yet, obtaining manual segmentations to train supervised models 

is prohibitively expensive. For instance, a single patch capturing only about 5% of the 

whole fovea (Fig. 4f) took approximately 30 h to manually segment. The large inter-subject 

variability and the vast inter-rater variability which is inevitable in such a detailed task make 

the creation of a suitably large manual training dataset intractable.

As a workaround, retinal vessel segmentation attempts have been largely limited to 2D 

images with better SNR, such as the depth-projection of the OCT-A [10]. This only produces 

a single 2D segmentation out of a whole 3D volume, evidently sacrificing the 3D depth 

information. Similar approaches to segment inherently 2D data such as fundus images have 

also been reported [17]. Recently, Liu et al. [20] proposed an unsupervised 2D vessel 

segmentation method using two registered modalities from two different imaging devices. 

Unfortunately, multiple scans of a single subject are not typically available in practice. 

Further, the extension to 3D can be problematic due to inaccurate volumetric registration 

between modalities. Zhang et al. proposed the optimal oriented flux [18] (OOF) for 3D 

OCT-A segmentation [32], but, as their focus is shape analysis, neither a detailed discussion 

nor any numerical evaluation on segmentation are provided.

We propose the local intensity fusion encoder (LIFE), a self-supervised method to segment 

3D retinal vasculature from OCT-A. LIFE requires neither manual delineation nor multiple 

acquisition devices. To our best knowledge, it is the first label-free learning method with 

quantitative validation of 3D OCT-A vessel segmentation. Fig. 1 summarizes the pipeline. 

Our novel contributions are:

• An en-face denoising method for OCT-A images via local intensity fusion (LIF) 

as a new modality (Sect. 2.1)

• A variational auto-encoder network, the local intensity fusion encoder (LIFE), 

that considers the original OCT-A images and the LIF modality to estimate the 

latent space which contains the retinal vasculature (Sect. 2.2)

• Quantitative and qualitative evaluation on human and zebrafish data (Sect. 3)
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2 Methods

2.1 Local Intensity Fusion: LIF

Small capillaries have low intensity in OCT-A since they have slower blood flow, and are 

therefore hard to distinguish from the ubiquitous speckle noise. We exploit the similarity of 

vasculature between consecutive en-face OCT-A slices to improve the image quality. This 

local intensity fusion (LIF) technique derives from the Joint Label Fusion [29] and related 

synthesis methods [7,24,27].

Joint label fusion (JLF) [29] is a well-known multi-atlas label fusion method for 

segmentation. In JLF, a library of K atlases with known segmentations (Xk, Sk) is 

deformably registered to the target image Y to obtain (Xk, Sk). Locally varying weight 

maps are computed for each atlas based on the local residual registration error between Y 

and Xk. The weighted sum of the Sk provides the consensus segmentation S on the target 

image.

JLF has been extended to joint intensity fusion (JIF), an image synthesis method that 

does not require atlas segmentations. JIF has been used for lesion in-painting [7] and cross-

modality synthesis [27]. Here, we propose a JIF variant, LIF, performing fusion between the 

2D en-face slices of a 3D OCT-A volume.

Instead of an external group of atlases, for each 2D en-face slice X of a 3D OCT-A 

volume, adjacent slices within an R-neighborhood {X−R, …, X+R} are regarded as our group 

of ’atlases’ for X. Note that the atlas X0 is the target X itself, represented as the image with 

a red rim in Fig. 1. We perform registration using the greedy software [31]. While closely 

related, we note that the self-fusion method reported in [24] for tissue layer enhancement is 

not suitable for vessel enhancement as it tends to substantially blur and distort blood vessels 

[13].

Similar to a 1-D Gaussian filter along the depth axis, LIF has a blurring effect that improves 

the homogeneity of vessels without dilating their thickness in the en-face image. Further, 

it can also smooth the speckle noise in the background while raising the overall intensity 

level, as shown in Fig. 2a/2b. In order to make vessels stand out better, we introduce the 

contrast enhanced local intensity fusion (CE-LIF)1 in Fig. 2c. However, intensity fusion of 

en-face images sacrifices the accuracy of vessel diameter in the depth direction. Specifically, 

some vessels existing exclusively in neighboring images are inadvertently projected on the 

target slice. For example, the small red box in Fig. 2 highlights a phantom vessel caused 

by incorrect fusion. As a result, LIF and CE-LIF are not appropriate for direct use in 

application, in spite of the desirable improvement they offer in visibility of capillaries (e.g., 

large red box). In the following section, we propose a novel method that allows us to 

leverage LIF as an auxiliary modality for feature extraction during which these excessive 

projections will be filtered out.

1https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html.
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2.2 Cross-Modality Feature Extraction: LIFE

Liu et al. [20] introduced an important concept for unsupervised feature extraction. Two 

depth-projected 2D OCT-A images, M1 and M2, are acquired using different devices on 

the same retina. If they are well aligned, then aside from noise and difference in style, the 

majority of the anatomical structure would be the same. A variational autoencoder (VAE) is 

set as a pix2pix translator from M1 to M2 in which the latent space L12 keeps full resolution.

L12 = fe(M1) and M2′ = fd(L12) (1)

If M2 is well reconstructed (M2′ ≈ M2), then the latent feature map L12 can be regarded as 

the common features between M1 and M2, namely, vasculature. The encoder fe is considered 

a segmentation network (Seg-Net) and the decoder fd a synthesis network (Syn-Net).

Unfortunately, this method has several drawbacks in practice. Imaging the same retina 

with different devices is rarely possible even in research settings and unrealistic in 

clinical practice. Furthermore, the 3D extension does not appear straightforward due to 

the differences in image spacing between OCT devices and the difficulty of volumetric 

registration in these very noisy images. In contrast, we propose to use a single OCT-A 

volume X and its LIF, XLIF, as the two modalities. This removes the need for multiple 

devices or registration, and allows us to produce a 3D segmentation by operating on 

individual en-face OCT-A slices rather than a single depth-projection image. We call the 

new translator network local intensity fusion encoder (LIFE).

Figure 3 shows the network architecture. To reduce the influence of speckle noise, we train 

a residual U-Net as a denoising network (Dn-Net), supervised by LIF. For the encoder, we 

implement a more complex model (R2U-Net) [1] than Liu et al. [20], supervised by CE-LIF. 

As the decoder we use a shallow, residual U-Net to balance computational power and 

segmentation performance. The reparameterization trick enables gradient back propagation 

when sampling is involved in a deep network [16]. This sampling is achieved by S = μ + σ 
· ε, where ϵ ∈ N(0, 1), and μ and σ are mean and standard deviation of the latent space. The 

intensity ranges of all images are normalized to [0, 255]. To introduce some blurring effect, 

both L1 and L2 norm are added to the VAE loss function:

Loss = a∑
i, j

∣ Y (i, j) − Y ′(i, j) ∣ + b
N ∑

i, j
(Y (i, j) − Y ′(i, j))2

(2)

where (i,j) are pixel coordinates, N is the number of pixels, Y is CE-LIF and Y′ is the output 

of Syn-Net. a = 1 and b = 0.05 are hyperparameters. Equation 2 is also used as the loss for 

the Dn-Net, with the LIF image as Y, a = 1 and b = 0.01.

As discussed above, LIF enhances the appearance of blood vessels but also introduces 

phantom vessels because of fusion. The set of input vessel features V in X will thus be a 

subset of VLIF  in XLIF. Because LIFE works to extract V ∩ VLIF , the phantom features 

that exist only in VLIF  will be cancelled out as long as the model is properly trained without 

suffering from overfitting.
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2.3 Experimental Details

Preprocessing for Motion Artifact Removal.—Decorrelation allows OCT-A to 

emphasize vessels while other tissue types get suppressed (Fig. 4a). However, this requires 

the repeated OCT B-scans to be precisely aligned. Any registration errors cause motion 

artifacts, such that stationary tissue is not properly suppressed (Fig. 4b). These appear as 

horizontal artifacts in en-face images (Fig. 4c). We remove these artifacts by matching the 

histogram of the artifact B-scan to its closest well-decorrelated neighbor (Fig. 4d).

Binarization.—To binarize the latent space L12 estimated by LIFE, we apply the 2nd 

Perona-Malik diffusion equation [26] followed by the global Otsu threshold [25]. Any 

islands smaller than 30 voxels are removed.

Dataset.—The OCT volumes were acquired with 2560×500×400×4 pix. (spectral × lines 

× frames × repeated frames) [6,23]. OCT-A is performed on motion- corrected [11] OCT 

volumes using singular value decomposition. We manually crop the volume to only retain 

the depth slices that contain most of the vessels near the fovea, between the ganglion cell 

layer (GCL) and inner plexiform layer (IPL). Three fovea volumes are used for training and 

one for testing. As the number of slices between GCL and IPL is limited, we aggressively 

augment the dataset by randomly cropping and flipping 10 windows of size [320, 320] for 

each en-face image. To evaluate on vessels differing in size, we labeled 3 interacting plexus 

near the fovea, displayed in Fig. 4e. A smaller ROI (120 × 120 × 17) cropped in the center 

(Fig. 4f) is used for numerical evaluation.

To further evaluate the method, we train and test our model on OCT-A of zebrafish eyes, 

which have a simple vessel structure ideal for easy manual labeling. This also allows us to 

test the generalizability of our method to images from different species. Furthermore, the 

fish dataset contains stronger speckle noise than the human data, which allows us to test the 

robustness of the method to high noise. 3 volumes (480 × 480 × 25 × 5 each) are labeled for 

testing and 5 volumes are used for training. All manual labelling is done on ITKSnap [30].

Baseline Methods.—Due to the lack of labeled data, no supervised learning method 

is applicable. Similar to our approach that follows the enhance + binarize pattern, we 

apply Frangi’s multi-scale vesselness filter [8] and optimally oriented flux (OOF) [18,32] 

respectively to enhance the artifact-removed original image, then use the same binarization 

steps described above. We also present results using Otsu thresholding and k-means 

clustering.

Implementation details.—All networks are trained on an NVIDIA RTX 2080TI 11GB 

GPU for 50 epochs with batch size set to 2. For the first 3 epochs, the entire network uses 

the same Adam optimizer with learning rate of 0.001. After that, LIFE and decoder are 

separately optimized with starting learning rates of 0.002 and 0.0001 respectively in order to 

distribute more workload on the LIFE. Both networks decay every 3 epochs with at a rate of 

0.5.
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3 Results

Figure 5 displays examples of extracted latent images. It is visually evident that LIFE 

successfully highlights the vasculature. Compared with the raw input, even delicate 

capillaries show improved homogeneity and separability from the background. Figure 6 

illustrates 2D segmentation results within the manually segmented ROI, where LIFE can 

be seen to have better sensitivity and connectivity than the baseline methods. Figure 6 also 

shows a 3D rendering (via marching cubes [21]) of each method. In the middle row, we 

filtered out the false positives (FP) to highlight the false negatives (FN). These omitted FP 

areas are highlighted in yellow in the bottom row. It is easy to see that these FPs are often 

distributed along horizontal lines, caused by unresolved motion artifacts. Hessian-based 

methods appear especially sensitive to motion artifacts and noise; hence Frangi’s method 

and OOF introduce excessive FP. Clearly, LIFE achieves the best preservation in small 

capillaries, such as the areas highlighted in white boxes, without introducing too many FPs.

Figure 7 shows that LIFE has superior performance on the zebrafish data. The white boxes 

highlight that only LIFE can capture smaller branches.

Figure 8 shows quantitative evaluation across B-scans, and Table 1 across the whole volume. 

Consistent with our qualitative assessments, LIFE significantly (p ≪ 0.05) and dramatically 

(over 0.20 Dice gain) outperforms the baseline methods on both human and fish data.

Finally, we directly binarize LIF and CE-LIF as additional baselines. The Dice scores on the 

human data are 0.5293 and 0.4892, well below LIFE (0.7736).

4 Discussion and Conclusion

We proposed a method for 3D segmentation of fovea vessels and capillaries from OCT-A 

volumes that requires neither manual annotation nor multiple image acquisitions to train. 

The introduction of the LIF modality brings many benefits for the method. Since LIF is 

directly computed from the input data, no inter-volume registration is needed between the 

two modalities input to LIFE. Further, rather than purely depending on image intensity, LIF 

exploits local structural information to enhance small features like capillaries. Still, there 

are some disadvantages to overcome in future research. For instance, LIFE cannot directly 

provide a binarized output and hence the crude thresholding method used for binarization 

influences the segmentation performance.

Acknowledgements.

This work is supported by NIH R01EY031769, NIH R01EY030490 and Vanderbilt University Discovery Grant 
Program.

References

1. Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK: Recurrent residual CNN based on u-net 
(r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955 (2018)

2. Aylward SR, Bullitt E: Initialization, noise, singularities, and scale in height ridge traversal 
for tubular object centerline extraction. IEEE Trans. Med. Imaging 21(2), 61–75 (2002). 
10.1109/42.993126 [PubMed: 11929106] 

Hu et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Bozkurt F, Köse C, Sarı A: A texture-based 3d region growing approach for segmentation of ica 
through the skull base in cta. Multimedia Tools Appl. 79(43), 33253–33278 (2020)

4. Burke TR, et al. : Application of oct-angiography to characterise the evolution of chorioretinal 
lesions in acute posterior multifocal placoid pigment epitheliopathy. Eye 31(10), 1399–1408 (2017) 
[PubMed: 28983094] 

5. Devalla SK, et al. : A deep learning approach to denoise OCT images of the optic nerve head. Sci. 
Rep 9(1), 1–13 (2019) [PubMed: 30626917] 

6. El-Haddad MT, Bozic I, Tao YK: Spectrally encoded coherence tomography and reflectometry: 
Simultaneous en face and cross-sectional imaging at 2 gigapixels per second. J. Biophotonics 11(4), 
e201700268 (2018) [PubMed: 29149542] 

7. Fleishman GM, et al. : Joint intensity fusion image synthesis applied to MS lesion segmentation. In: 
MICCAI BrainLes Workshop, pp. 43–54 (2017)

8. Frangi AF, Niessen WJ, Vincken KL, Viergever MA: Multiscale vessel enhancement filtering. In: 
Wells WM, Colchester A, Delp S (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, 
Heidelberg (1998). 10.1007/BFb0056195

9. Gao S, et al. : Optical coherence tomography angiography. IOVS 57(9), OCT27–OCT36 (2016)

10. Giarratano Y, et al. : Automated and network structure preserving segmentation of optical 
coherence tomography angiograms. arXiv preprint arXiv:1912.09978 (2019)

11. Guizar-Sicairos M, Thurman ST, Fienup JR: Efficient subpixel image registration algorithms. Opt. 
Lett 33(2), 156–158 (2008) [PubMed: 18197224] 

12. Holló G: Comparison of peripapillary oct angiography vessel density and retinal nerve fiber layer 
thickness measurements for their ability to detect progression in glaucoma. J. glaucoma 27(3), 
302–305 (2018) [PubMed: 29303879] 

13. Hu D, Malone J, Atay Y, Tao Y, Oguz I: Retinal OCT denoising with pseudo-multimodal fusion 
network. In: MICCAI OMIA, pp. 125–135 (2020)

14. Ishibazawa A, et al. : OCT angiography in diabetic retinopathy: a prospective pilot study. Am. J. 
Ophthalmol 160(1), 35–44 (2015) [PubMed: 25896459] 

15. Jia Y, et al. : Split-spectrum amplitude-decorrelation angiography with optical coherence 
tomography. Opt. Express 20(4), 4710–4725 (2012) [PubMed: 22418228] 

16. Kingma DP, Welling M: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

17. Lahiri A, Roy AG, Sheet D, Biswas PK: Deep neural ensemble for retinal vessel segmentation in 
fundus images towards achieving label-free angiography. In: IEEE EMBC, pp. 1340–1343. IEEE 
(2016)

18. Law MWK, Chung ACS: Three dimensional curvilinear structure detection using optimally 
oriented flux. In: Forsyth D, Torr P, Zisserman A (eds.) ECCV 2008. LNCS, vol. 5305, pp. 
368–382. Springer, Heidelberg (2008). 10.1007/978-3-540-88693-8_27

19. Li M, Idoughi R, Choudhury B, Heidrich W: Statistical model for oct image denoising. Biomed. 
Opt. Express 8(9), 3903–3917 (2017) [PubMed: 29026678] 

20. Liu Y, et al. : Variational intensity cross channel encoder for unsupervised vessel segmentation 
on oct angiography. In: SPIE Medical Imaging 2020: Image Processing, vol. 11313, p. 113130Y 
(2020)

21. Lorensen WE, Cline HE: Marching cubes: a high resolution 3d surface construction algorithm. 
SIGGRAPH Comput. Graph 21(4), 163–169 (1987)

22. Lorigo LM, et al. : CURVES: curve evolution for vessel segmentation. Med. Image Anal 5(3), 
195–206 (2001) [PubMed: 11524226] 

23. Malone JD, El-Haddad MT, Yerramreddy SS, Oguz I, Tao YK: Handheld spectrally encoded 
coherence tomography and reflectometry for motion-corrected ophthalmic OCT and OCT-A. 
Neurophotonics 6(4), 041102 (2019) [PubMed: 32042852] 

24. Oguz I, Malone JD, Atay Y, Tao YK: Self-fusion for OCT noise reduction. In: SPIE Medical 
Imaging 2020: Image Processing, vol. 11313, p. 113130C (2020)

25. Otsu N: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern 
9(1), 62–66 (1979)

Hu et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Perona P, Malik J: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern 
Anal. Mach.Intell 12(7), 629–639 (1990)

27. Ufford K, Vandekar S, Oguz I: Joint intensity fusion with normalized cross-correlation metric for 
cross-modality MRI synthesis. In: SPIE Medical Imaging 2020: Image Processing, vol. 11313 
(2020)

28. Vasilevskiy A, Siddiqi K: Flux maximizing geometric flows. IEEE Trans. Pattern Anal. Mach. 
Intell 24, 1565–1578 (2001)

29. Wang H, Suh JW, Das SR, Pluta JB, Craige C, Yushkevich PA: Multiatlas segmentation with joint 
label fusion. IEEE PAMI 35(3), 611–623 (2012)

30. Yushkevich PA, et al. : User-guided 3D active contour segmentation of anatomical structures: 
significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006) [PubMed: 
16545965] 

31. Yushkevich PA, Pluta J, Wang H, Wisse LE, Das S, Wolk D: Fast automatic segmentation of 
hippocampal subfields and medial temporal lobe subregions in 3T and 7T T2-weighted MRI. 
Alzheimer’s Dement. 7(12), P126–P127 (2016)

32. Zhang J, et al. : 3d shape modeling and analysis of retinal microvasculature in oct-angiography 
images. IEEE TMI 39(5), 1335–1346 (2020)

33. Zhao S, Tian Y, Wang X, Xu P, Deng Q, Zhou M: Vascular extraction using mra statistics and 
gradient information. Mathematical Problems in Engineering 2018 (2018)

Hu et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Overall pipeline. * indicates LIF and CE-LIF provide supervision for Dn-Net and LIFE in 

training process respectively.
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Fig. 2. 
Modalities of en-face OCT-A. Large red box highlights improvement in capillary visibility. 

Small red box points out a phantom vessel.
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Fig. 3. 
Network architecture

Hu et al. Page 11

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
(a-d) Horizontal motion artifacts and their removal. (e,f) Three manually labelled vessel 

plexuses. Only the branches contained within the ROI were fully segmented; any branches 

outside the ROI and all other trees were omitted for brevity.
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Fig. 5. 
The latent image L12 from LIFE considerably improves vessel appearance.
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Fig. 6. 
2D slice and 3D marching cubes rendering of segmentation results on human retina, with 

Gaussian smoothing, σ = 0.70. Red, green, blue show three different branches; yellow 
highlights false positives. LIFE is the only method that can recover the 3D structure and 

connectivity of the capillaries outside the largest vessels without causing excessive FP 

(yellow). White boxes highlight LIFE’s improved sensitivity.
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Fig. 7. 
Segmentation result of zebrafish retina with the same rendering setting in Fig. 6.
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Fig. 8. 
Quantitative result evaluation for (left) human and (right) zebrafish data. TPR: true positive 

rate, FPR: false positive rate, Acc: accuracy.
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Table 1.

Quantitative evaluation of human and zebrafish segmentation. TPR: true positive rate, FPR: false positive rate. 

Bold indicates the best score per column.

Algorithm TPR FPR Accuracy Dice

Human Fish Human Fish Human Fish Human Fish

k-means 0.3633 0.4167 0.0042 0.0303 0.9440 0.9228 0.5152 0.6249

Otsu 0.4403 0.4356 0.0076 0.0346 0.9472 0.9191 0.5772 0.6399

Frangi+bin 0.4900 0.2117 0.0419 0.0002 0.9198 0.9489 0.5002 0.4212

OOF+bin 0.6826 0.3775 0.0748 0.0165 0.9053 0.9350 0.5414 0.6247

LIFE+bin 0.6613 0.4999 0.0104 0.0153 0.9627 0.9386 0.7736 0.8594
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