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Abstract
Analysis of plant pollen can provide valuable insights into the existing spectrum of microorganisms in the environment. When
harvesting bee-collected pollen as a dietary supplement for human consumption, timely preservation of the freshly collected
pollen is fundamental for product quality. Environmental microorganisms contained in freshly collected pollen can lead to
spoilage by degradation of pollen components. In this study, freshly collected bee pollen was sampled at different locations
and stored under various storage conditions to examine the hypothesis that storage conditions may have an effect on the
composition of microorganisms in pollen samples. The samples were analyzed using 16S and 18S amplicon sequencing and
characterized by palynological analysis. Interestingly, the bacterial communities between pollen samples from different locations
varied only slightly, whereas for fungal community compositions, this effect was substantially increased. Further, we noticed that
fungal communities in pollen are particularly sensitive to storage conditions. The fungal genera proportion Cladosporium and
Mycosphaerella decreased, while Zygosaccharomyces and Aspergillus increased during storage. Aspergillus and
Zygosaccharomyces fractions increased during storage at 30 °C, which could negatively impact the pollen quality if it is used
as a dietary supplement.
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Introduction

The existing spectrum of microorganisms in the environment
can be revealed in pollen samples from plants (Anderson et al.
2013; Manirajan et al. 2019). Pollen, the male gametophyte of
gymnosperms and angiosperms, represents the main protein
and lipid source for honey bees (Apis mellifera). It provides a
full spectrum of not only nutrients, mainly amino acids and
lipids, but also carbohydrates, minerals, vitamins, and en-
zymes (Feás et al. 2012; Pascoal et al. 2014; Avni et al.

2014; Kostić et al. 2015). Bee-collected pollen consists of
pollen grains from flowering plants (including bushes and
trees), as well as nectar and salivary secretion from the bees.
It is collected by foraging honey bees and transported to the
hive in the pollen baskets known as corbicula on their hind
legs (Kevan and Baker 1983; Willmer 2011). After storage
and microbe-mediated maturation in honeycomb cells, pollen
is called “bee bread” and is consumed by nurse bees to pro-
duce protein-rich larval food supported by secretions of spe-
cialized glands (Lindauer 1952; Cridge et al. 2015). Bee pol-
len is perceived as a useful dietary supplement for humans, as
it providesmany necessary nutrients, especially a high amount
of protein (± 20%) including essential amino acids like leu-
cine, isoleucine, and valine, depending on the botanical origin
(Paramás et al. 2005; Carpes et al. 2009; Martins et al. 2011;
Feás et al. 2012; Nicolson and Human 2013; Taha et al. 2019).

The nutrient composition and microbiological quality of
bee pollen depend strongly on its geographic and botanical
origin, the weather at the time of collection, as well as on
the post-harvest processing procedure by the bee keeper
(Hani et al. 2012; Nogueira et al. 2012; Corby-Harris et al.
2014; De-Melo et al . 2015, 2016; Dinkov 2016;
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Disayathanoowat et al. 2020). When gathering of the pollen is
not followed by drying or another processing step, growth of
microorganisms can compromise pollen quality, leading to
negative side effects like fermentation or mycotoxin produc-
tion (González et al. 2005; Hani et al. 2012; Fatrcová-
Šramková et al. 2016). The taxonomical identity of the iden-
tified microorganisms in fresh bee pollen suggests that the
initial microbial community composition is rather arbitrary
and may change in composition to more opportunistic micro-
organisms with unwanted characteristics that grow well under
warm storage conditions (González et al. 2005; Hani et al.
2012). Following the hypothesis that storage conditions may
impact the composition of microorganisms, resulting in the
spoilage of pollen, we measured the differences in the micro-
organism composition of freshly harvested bee pollen and
compared it with the same pollen after storage under different
temperature treatments. This experimental approach aimed to
identify the most relevant microorganisms that cause spoilage
and identify the most favorable storage condition for preserv-
ing pollen quality during and after the harvest.

Previous studies have used cultivation-dependent methods,
e.g., bacterial and fungal colony counts on agar plates
(Bonvehí and Jordà 1997; González et al. 2005; Estevinho
et al. 2012; Feás et al. 2012; Bárbara et al. 2015; De-Melo
et al. 2015; Dinkov 2018), and cultivation-independent
methods, such as 16S-rRNA amplicon sequencing to charac-
terize the microbial composition in fresh, dried of frozen bee
pollen to evaluate the risk of microbial hazards (Anderson
et al. 2014; Corby-Harris et al. 2014; Mauriello et al. 2017;
Moreno Andrade et al. 2018).

Recently, Disayathanoowat et al. (2020) analyzed the
abundances of bacterial and fungal communities in fresh bee
pollen and in “bee bread” that was stored for 72 h within the
hive using amplicon sequencing and plate counting. They
showed that abundance of bacteria was declining, while the
fungal population remained at stable numbers during in-hive
storage. However, to our knowledge, there is no information
available about changes in bacterial and fungal communities
in pollen being stored outside of the hive under defined con-
ditions. Furthermore, taxonomic information about changes in
the microbial communities of stored pollen are missing.
Consequently, the present study was designed to assess the
qualitative changes by next-generation sequencing of 16S and
18S PCR-amplicons in the microbial communities of pollen.
Samples were stored under different conditions, to simulate
how the composition of the microorganisms can be affected
by wrong processing or non-harvesting of pollen.

Materials and methods

Sampling Bee pollen was collected on 1 day in the month of
June in 2 consecutive years at three different locations: Baden-

Wuerttemberg, Southern Germany (Hohenheim in 2018 (H),
Forbach in 2019 (F), and Nuertingen in 2019 (N)) (Figure S1).
To minimize the presence of any potential microorganism on
the pollen traps before, the traps were cleaned intensively with
70% ethanol and installed in front of one hive per site to
collect pollen loads from returning honey bees (Apis
mellifera) (Detroy and Harp 1976). The freshly collected pol-
len was divided at the same day of collection and allocated to
four different groups “fresh,” “cold,” “room temperature,” and
“warm.” Condition “cold” simulated a storage in the refriger-
ator and “room temperature” a storage without refrigeration
after harvesting. The condition “warm” simulated unharvested
pollen in the trap or pollen was left on environmental condi-
tions of a hot summer day. The samples representing each
group were further divided into triplicate samples of 3 g and
filled into 2 mL tubes (VWR International, Bruchsal,
Germany). Group “fresh” was stored immediately at − 80 °C
until extraction, while the other groups were incubated at dif-
ferent temperatures for 7 days (168 h) and thereafter stored at
− 80 °C until extraction. Group “cold” was incubated at cold
temperatures (4 °C), group “room temperature”was incubated
at 25 °C, and group “warm” was incubated at 30 °C and 75%
humidity (humidity was adjusted with a saturated sodium
chloride solution). All samples were incubated with open lids
in humidity chambers (Figure S2) and samples of the groups
“warm” and “room temperature” were further incubated in a
warming cabinet (Binder, Tuttlingen, Germany) and samples
of group “cold” were placed in a refrigerator (Siemens,
Munich, Germany).

Pollen samples in Hohenheim were collected directly by
the authors; samples from Forbach and Nuertingen were col-
lectedwith the help of voluntary beekeepers. All samples were
received from privately owned bee colonies, so no exact grid
references are given, and no permits were needed for this
study.

Palynological analysis A palynological analysis of all pooled
samples of each location was performed. All pollen samples
were mechanically homogenized by using a mortar, followed
by weighing 100 mg homogenized pollen in a 50-mL tube
(Buddeberg, Mannheim, Germany) containing 10 mL
demineralized water and a drop of dish soap (Friedle et al.
2021). For each sample, 500 pollen grains were determined.
Pollen morphology was identified using a light microscope
(10 × 40; VWR International, Bruchsal, Germany).

DNA extraction To analyze the microbial community, DNA
was extracted from all 36 bee pollen samples using a TRIzol
protocol (D’Alvise et al. 2018; Seeburger et al. 2020). An
aliquot of 50 mg pollen was weighted in to a 2 mL lysis tube
with 50 μL 0.1 mm glass/zirconia beads and 500 μL TRIzol
(Invitrogen, ThermoFisher Scientific, Schwerte, Germany).
The samples were homogenized in a bead beater (FastPrep-
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24, MP Biomedicals, Eschwege, Germany) at 5.5 ms−1 for
50 s and incubated for 5 min at room temperature (RT).
After adding 100 μL chloroform, shaking for 15 s, and further
incubation for 5 min at RT, two phases were separated by
15 min centrifugation at 12,000×g and 4 °C. The aqueous
phase was transferred to another tube for RNA extraction,
which can be used for further experiments. To the other phase,
250 μL back extraction buffer (4 M guanidine thio-cyanate,
50 mM sodium citrate, 1 M TRIS) were added and extracted
by shaking for 15 s. After 10 min incubation at RT and cen-
trifugation (as before), the aqueous supernatant was trans-
ferred to a new tube and precipitated by mixing with 200 μL
isopropanol, followed by centrifugation (as before). The su-
pernatant was discarded, and 500 μL 75% ethanol were added
to wash the sediment. After short centrifugation (5 min;
2000×g; 4 °C), the supernatant was removed and the sediment
dried for 10min at RT. An aliquot of 50μL 8mMNaOHwere
added to redissolve the sediment and the solution was centri-
fuged for 10 min at 12,000×g at RT to remove membrane
lipids. The supernatant was transferred to a new tube and
mixed with 4.25 μL 0.1 M HEPES and 0.5 μL RNAse A
(10 mg ml−1 Amresco). The DNA extracts were then incubat-
ed for 1 h at 37 °C and stored at −20 °C until analysis. The
DNA concentrations were determined using Qubit fluorome-
ter (Thermo Fisher Scientific, Schwerte, Germany) and
showed concentrations < 1 ng/μL. Some of the DNA extracts

requiring additional purification were thereafter precipitated
with absolute ethanol; pH was adjusted to 5.5 with 5 μL
3 M sodium acetate solution, then the sample was mixed with
125 μL cold ethanol (absolute). After incubation (15 min at 4
°C) and centrifugation (20 min; 17,000×g; 4 °C), the super-
natant was removed, the sediment was dried for 5 min at RT
and dissolved in 20 μL nuclease-free water.

PCR and amplicon sequencing Amplicons (using a volume of
10 μL in a 20 ng template) of the V3–V4 region in the bacte-
rial 16S-rRNA-gene and amplicons of the ITS1 region in the
fungal 18S-rRNA-gene were generated and Illumina-
sequenced in 2018 by Eurofins Genomics (Ebersberg,
Germany) (“Dataset 1”). The PCR conditions followed by
library preparation and sequencing were described previously
(D’Alvise et al. 2018). Primers for the V3–V4 region of the
16S-rRNA gene were 5′-TACGGGAGGCAGCAG (F) and
5′-CCAGGGTATCTAATCC (R) (Turner et al. 1999;
Kisand and Wikner 2003). Primers for the fungal ITS1 region
were 5′-GGAAGTAAAAGTCGTAACAAGG (F) and 5′-
GCTGCGTTCTTCATCGATGC (R) (White et al. 1990).
Amplicons from samples in 2019 were Illumina-sequenced
by StarSEQ (Mainz, Germany) (“Dataset 2”). Primers for
the V3–V4 region of the 16S-rRNA gene were 5′-CCTA
CGGGAGGCAGCAG (F) and 5′-GGACTACNNGGGTA
TCTAAT (R) (Klindworth et al. 2013). Primers for the fungal

Table 1 Classification of pollen
diversity in the samples Classification Hohenheim 2018 Forbach 2019 Nuertingen 2019

Aceraceae_Acer - 42% -

Boraginaceae_Phacelia 19% - -

Brassicaceae_Sinapis-T 10% - -

Malvaceae_Tilia 8% - 8%

Oleaceae_Ligustrum - 0.2% 16%

Plantaginaceae_Plantago 14% 3% 5%

Ranunculaceae - 12% -

Rosaceae_Aruncus dioicus - 0.4% 42%

Rosaceae_Filipendula 10% - 2%

Sapindacaea_Aesculus 0.4% 10% -

Others 38% 33% 28%

Table 2 Sequences and OTUs
within the raw data and after
filtering with IMNGS and
QIIME2

Dataset 1 2018 (H) Dataset 2 2019 (F, N)

Bacteria Fungi Bacteria Fungi

Raw data Sequences 164,508 1,013,947 108,399 2,893,070

OTUs 453 1093 2215 5763

IMNGS/QIIME2 OTUs 56 131 33 1998

Mean OTUs/sample 40.2 23.2 21.8 357.7
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ITS1 region were 5′-CTTGGTCATTTAGAGGAAGTAA
(F) and 5′-GCTGCGTTCTTCATCGATGC (R) (White
et al. 1990; Gardes and Bruns 1993), an obviously modified
and improved set compared to the one from Eurofins
Genomics. For all primer sets, efficacies were reported to be
high and evaluated by the standardized procedures of the
companies.

The clean sequencing reads from the bacterial 16-rRNA-
gene, as provided after quality control and trimming by the

sequencing company, were analyzed on the IMNGS server
platform (Lagkouvardos et al. 2016). Quality filtering showed
%Q30 values of about 90% of the expected amplicon sizes.
Analyses were performed without further trimming using a
total abundance threshold of 0.1%, and the reads were binned
on a 1% difference criterium (Edgar 2013; Lagkouvardos et al.
2016). Sequences from the fungal 18S-rRNA-gene were ana-
lyzed by StarSEQ using the QIIME2 platform. The taxonomic
classification of the representative OTU sequences were con-
trolled and refined by BLAST-searches against reference ma-
terial in the NCBI database (https://blast.ncbi.nlm.nih.gov).

Statistical analysis Differences in the relative abundances of
bacterial and fungal OTUs between locations and treatments
were analyzed using an ANOVA-type generalized linear
model (GLM). Since the analyzed relative abundances are
bounded between zero and one, the data are generated by beta
distribution (Ferrari and Cribari-Neto 2004). The model was
estimated using the betareg package (Cribari-Neto and Zeileis
2010). To identify significant differences in the microbial
communities between the different locations and storage con-
ditions, a single-step multiple comparison test (Tukey’s test)
was performed. The reported p-values were corrected for mul-
tiple testing. All statistical analyses were performed using R
version 3.6.2. with a significance level of p = 0.05.

Results

Characterization of pollen diversity

The palynological analysis showed, as expected, differences
in pollen diversity at each location sites. At location H, pollen
composition showed a high variety with 19% Phacelia sp.,
14% Plantago sp., 10% Filipendula sp. and Sinapsis-type.
Location N predominantly showed pollen of 42% Aruncus
sp. and 16% Ligustrum sp., followed by 8% Tilia sp.
Location F was dominated by 42% Acer sp. followed by
12% pollen from Ranunculacaea and 10% Aesculus sp.
(Table 1, Table S1).

Quantitative data of amplicon sequencing

The total bacterial and fungal sequences and the total number
of operational taxonomic units (OTUs) from 16S (bacteria)
and 18S (fungi) before and after IMNGS/QIIME2 analyzing
are shown in Table 2. After filtering (> 0.1%) and binning, 38
different bacteria genera and 33 different fungal genera were
obtained, and their relative abundances were calculated
(Table S2 and Table S3). A cut-off of 10% was performed
for statistical analysis to obtain the most abundant bacteria and
fungi (Table S4 and Table S5).

Table 3 Bacterial phyla composition with bacterial genera calculated
with total reads in all samples (Dataset 2)

Actinobacteria (3%) Arthrobacter

Bacteroidetes (4%) Apibacter

Bacteroides

Chryseobacterium

Epilithonimonas

Flavobacterium

Pedobacter

Cyanobacteria (0.1%) Cyanobium

Firmicutes (44%) Fusicatenibacter

Lactobacillus

Lactococcus

Staphylococcus

Proteobacteria (48%) Acinetobacter

Actibacterium

Arsenophonus

Batronella

Bradyrhizobium

Carnimonas

Citrobacter

Duganella

Erwinia

Escherichia

Frischella

Gilliamella

Gluconacetobacter

Halotalea

Massilia

Neokomagataea

Pantoea

Pectobacterium

Phaseolibacter

Pseudomonas

Rickettsia

Rosenbergiella

Saccharibacter

Serratia

Snodgrassella

Sphingomonas
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Differences between Dataset 1 and Dataset 2

Given the fact that for technical reasons the samples of 2018
(Dataset 1, H) and of 2019 (Dataset 2, F and N) were proc-
essed by different companies, a stringent comparison between
both is not recommended. In particular, we noticed a high
deviation in the fungal composition between Dataset 1 and
Dataset 2 (Table 2), because primers with different binding
specifications were used by the sequencing companies for the
fungal ITS1 region. Analyses from Dataset 1 provided only
data from Ascomycota, likely as a result of using non-fungi-
specific primers (see “PCR and amplicon sequencing”).
Consequently, the fungal composition from Dataset 1 consists
of only three different genera in the samples and probably the
full spectrum of fungal diversity in the pollen samples was not
revealed in Dataset 1. Therefore, results from Dataset 1 were
removed and all subsequent statistical analysis was performed
only with Dataset 2. For the sake of completeness, the results

of Dataset 1 are listed additionally in the supplemental mate-
rial (Table S6, Table S7, and Figure S3).

Microbial diversity in fresh and stored bee pollen

The most abundant bacterial phyla in all samples were
Proteobacteria (48%) and Firmicutes (44%), followed by
Bacteroidetes (4%), Actinobacteria (3%), and Cyanobacteria
(0.1%) in each of which between one and 26 different bacterial
genera have been identified (Table 3). The main bacterial genera
in Dataset 2 were Lactobacillus (2–76%), Pseudomonas (5–
42%), and Acinetobacter (1–25%) (Fig. 1a) (Table S4). The
percentage of Acinetobacter was higher in pollen after warm
storage than in fresh pollen, while Pseudomonas and
Rosenbergiella were less abundant after warm storage than in
fresh pollen (Fig. 2). However, only a significant difference be-
tween storage conditions “room temperature – warm” could be
found for Lactobacillus (GLM; p = 0.039; Tukey; p = 0.043). In

Fig. 1 Stack bar chart, showing
the composition of bacterial (a)
and fungal (b) communities of
Dataset 2 (F and N 2019) (filtered
on minimum of 10% average) in
fresh and stored bee pollen
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contrast, the source location of the pollen samples was associated
with a significant difference in relative abundance of all bacterial
genera (GLM; p < 0.001), except Rosenbergiella (GLM; p =
0.264) (Table S6). Location F was characterized by a high pro-
portion of Lactobacillus (60–76%) and low proportion of
Pseudomonas (5–12%),while locationN showed lowproportion
of Lactobacillus (2–4%) and high proportion of Pseudomonas
(29–42%) (Fig. 1a).

The fungal phyla from Dataset 2 are composed of 71%
Ascomycota, 21% Basidiomycota, 0.15% Motiellellomycota,
and unclassified (3.1%) (Table 4). The phylum Ascomycota
consisted of 32 different fungal genera that were found in all
samples. The main representatives of the Ascomycota genera
in all analyzed samples were Cladosporium (10–45%),
Podosphaera (1–30%), Mycosphaerella (5–20%), and
Zygosaccharomyces (0–50%) (Fig. 1b) (Table S5).
Significant differences between the storage conditions could
be shown for fungal communities (GLM; p < 0.001), except
for Podosphaera (GLM; p = 0.084) (Table S8) .
Zygosaccharomyces and Aspergillus showed significant dif-
ferences between “fresh – warm,” “cold – warm,” and “room
temperature – warm” conditions (Tukey; p < 0.001)
(Table S9), while Cladosporium showed significant differ-
ences between “fresh – warm” and “room temperature –

warm” conditions (Tukey; p < 0.001). The proportion of
Cladosporium under “fresh” and “room temperature” storage
conditions was significantly higher than under “warm” condi-
tions (location N), while proportions of Zygosaccharomyces
and Aspergillus significantly increased under warm storage
conditions in all samples (Fig. 3). Furthermore, all locations
showed also significant differences for every fungal genus
(GLM; p < 0.001).

Discussion

The microorganism composition in bee pollen is affected by
plant source, geographical origin, and bee keeper activities
(Nogueira et al. 2012; De-Melo et al. 2016). In this study,
we analyzed the botanical origin of the collected bee pollen
samples. The pollen composition differed in all pollen sam-
ples; therefore, the influence of the botanical origin on the
microorganism composition can be supported by the results
of this study. We showed as well that the location has a sig-
nificant influence on the bacterial and fungal communities
associated with fresh, bee-collected pollen (GLM; p <
0.001). In addition, the composition and the changes of com-
position of microorganisms are influenced by the

Fig. 2 Box plots chart (created with R 3.6.2), showing that the empirical distribution of bacterial genera differs between locations and storage conditions.
The estimated interquartile range is represented as a box and a line spans from the observed minimum to the observed maximum
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geographical origin of the pollen samples. However, we only
included two different location sites for analysis. In order to
support this statement, future studies have to be done with a
larger number of samples. Major changes of microorganism
composition in bee pollen occurred during storage under sim-
ulated “warm” conditions. Therefore, this study confirms our
hypothesis that different storage conditions have a significant
effect on the composition of microorganisms in pollen. The
results demonstrate clearly that pollen has to be removed from
the trap and processed immediately to prevent unwanted mi-
croorganism growing, instead of leaving pollen in the trap
during hot environmental conditions. The results of this study
are based on the abundances of sequences; culture-based

experiments should also be followed in further studies to sup-
port the statements of this study.

Interestingly, the effect of the storage conditions on the
microbial communities seems to be different for bacteria and
fungi. With regard to the bacterial composition, a significant
difference between storage conditions could only be identified
for Lactobacillus (GLM; p = 0.039). Lactobacillus, represent-
ed by the species Lactobacillus kunkeii, is a core gut bacteri-
um that has been found in all of the analyzed samples and
could be detected in earlier studies. It is also present in corbic-
ula pollen, “beebread,” and in floral nectar (Anderson et al.
2013; Kwong and Moran 2016). The proportion of
Lactobacillus changes significantly between room tempera-
ture and warm conditions (Tukey; p = 0.043). Nevertheless,
differences between storage conditions could also be deter-
mined for other bacteria. Acinetobacter is a bacterium needing
aerobic growth condition and has been found not only in dif-
ferent environments, mainly in nectar of plants, but also in
corbicula pollen, beebread, and in the intestinal tract of honey
bees (Apis mellifera) (Fridman et al. 2012; Kim et al. 2014;
Donkersley et al. 2018; Disayathanoowat et al. 2020). A small
increase of Acinetobacter was observed during storage in
warm conditions. Other studies also showed an increase of
Acinetobacter in in-hive stored “bee bread” because it prefers
a sugar-rich habitat (Fridman et al. 2012; Disayathanoowat
et al. 2020). Two bacterial genera that are commonly found
in plant material like nectar are Pseudomonas and
Rosenbergiella (Fridman et al. 2012; Halpern et al. 2013). In
contrast to fresh pollen, both tended to show a slight decrease
during storage under warm conditions. Based on these results,
it is reasonable to assume that beside changes in temperature,
other factors that might influence the growth of bacteria have
to be considered. Previous studies showed that the bacterial
population tends to decrease under long-term storage in-hive,
related to the low pH value in the hive (Anderson et al. 2014;
Disayathanoowat et al. 2020). Environments with a low pH
value show a high concentration of hydrogen ions, which
tends to reduce bacterial growth, whereas the growth of fungi
is increased (Rousk et al. 2009).

In contrast to the bacteria, we observed a consistently high
influence of the storage conditions on the changes in fungal
genus composition (GLM; p < 0.001). The fungus
Cladosporium was the most abundant fungus in the freshly
collected samples. It is ubiquitously found in indoor and out-
door environments such as air and soil (Zalar et al. 2007). In
this study, we showed that the relative fraction of
Cladosporium decreases during storage, especially under
warm conditions. The fungal genera Podosphaera and
Mycosphaerella can be isolated from plant environments
and are both known to be plant pathogens (Crous et al.
2006; Baiswar et al. 2010; Garibaldi et al. 2012). Both were
identified in freshly collected pollen as well as in stored pol-
len, but their proportion generally decreased during storage.

Table 4 Fungal phyla composition with fungal genera calculated with
total reads in all samples (Dataset 2)

Ascomycota (71%) Alpinaria

Alternaria

Aspergillus

Aureobasidium

Bettsia

Blumeria

Cladosporium

Debaryomyces

Didymella

Epicoccum

Erysiphe

Fusarium

Geosmithia

Leptosphaeria

Metschnikowia

Monilinia

Monodictys

Mycosphaerella

Neodevriesia

Neosetophoma

Penicillium

Periconia

Phaeotheca

Podosphaera

Pseudoophiobolus

Pyrenophora

Ramularia

Septoria

Taphrina

Tetracladium

Trichomerium

Zygosaccharomyces

Basidiomycota (21%)

Motiellellomycota (0.15%)

Unclassified (3.1%)
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However, several groups of fungi have been identified that
grown more strongly under warm and humid storage condi-
tions, especially Zygosaccharomyces and Aspergillus.
Previous studies have also shown that fungal composition
changes during storage of bee bread (Sinpoo et al. 2017;
Detry et al. 2020; Disayathanoowat et al. 2020). Sinpoo
et al. (2017) demonstrated that the high diversity of fungal
communities in bee bread decreased significantly during stor-
age time. The most dominated fungal species in corbicular
pollen were Cladosporium and Aspergillus, whereas also
Zygosaccharomyces dominated in stored bee bread. Detry
et al. (2020) also showed that the high abundance of yeast
decreased within increasing storage time. However, also the
yeast Zygosaccharomyces dominated clearly in aged bee
bread. The yeast genus Zygosaccharomyces is very
osmotolerant yeast species and has a high tolerance for differ-
ent sugars. Therefore, it is known as notorious spoilage organ-
ism of sugar-rich foods and beverages such as candy, fruit
juices, sugar syrups, and wine (Martorell et al. 2007;
Zuehlke et al. 2013; Aneja et al. 2014; Marvig et al. 2014).
Zygosaccharomyces spp. are also normal members of the fun-
gal gut communities of honey bees (Yun et al. 2018); conse-
quently, they can be transmitted from the bee saliva to the

pollen. In this study, Zygosaccharomyces spp. was identified
as the most prolifically growing microorganisms in bee pollen
stored under warm temperatures. Therefore, it seems likely
that Zygosaccharomyces can spoil bee pollen in warm and
humid storage conditions, as they producing ethanol or carbon
dioxide from sugar. Pollen, used as food supplement for hu-
man, should not contain any spoilage yeast, otherwise the
aroma and sensory can be influenced by fermentation
(Sperber and Doyle 2009). However, since the yeast is prob-
ably already being transferred from the bees to the pollen, it is
very important to prevent their reproduction and growth. The
growth of such yeasts can be prevented by freezing or cooling.
In our study, we did not observe any increase in the
Zygosaccharomyces proportion at 4 °C. Other studies showed
as well that Zygosaccharomyces growth is clearly reduced
even at 8 °C (Marvig et al. 2014). Also, an increase in the
Aspergillus proportion in the samples stored under warm con-
ditions has to be observed with regard to human nutrition.
Aspergillus is extremely halo- and osmotolerant (Stratford
et al. 2019) and the genus contains a number of highly
mycotoxigenic species (González et al. 2005). Some species
of this fungal genus have been identified as pathogens in in-
sects, animals, and humans (Foley et al. 2014; Dagenais and

Fig. 3 Box plots chart (created with R 3.6.2), showing that the empirical distribution of fungal genera differs between locations and storage conditions.
The estimated interquartile range is represented as a box and a line spans from the observed minimum to the observed maximum
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Keller 2009). In food, Aspergillus spp. can spoil as visible
growth of black mold, discoloration, or in producing myco-
toxins. The effects of mycotoxins on human health are com-
plex and can cause cancerogenic effects or central nervous
system damage (Sperber and Doyle 2009). Since the growth
of Aspergillus can cause major effects on human health, it is
particularly important to prevent the growing in pollen sam-
ples. Another study reported findings of mycotoxin-producing
Aspergillus spp. in “ready-to-eat” pollen samples from Spain
(González et al. 2005). The fungal contamination in the study
from González et al. indicated that the post-harvest pollen
processed negatively impacted pollen quality. Incorrect stor-
age or drying conditions as well as non-daily harvest were
pointed out as reasons for the contamination.

In conclusion, pollen stored under warm conditions
showed the clearest changes in fungal composition, compared
to the freshly collected pollen (Tukey; p < 0.001). Growth of
fungi from the genera Zygosaccharomyces or Aspergilluswas
likely the cause of spoilage. Therefore, during processing of
freshly harvested bee pollen, it is important to prevent growth
of these spoilage microorganisms. This is most conveniently
achieved by harvesting daily, followed by processing the pol-
len directly to refrigeration or, even better, freezing.
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