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Abstract

Dietary restriction with adequate nutrition is the gold-standard for delaying aging and extending 

healthspan and lifespan in diverse species, including rodents and non-human primates. In this 

Review, we discuss the effects of dietary restriction in these mammalian model organisms, 

and discuss accumulating data that suggests that dietary restriction results in many of the 

same physiological, metabolic and molecular changes responsible for the prevention of multiple 

age-associated diseases in humans. We further discuss how different forms of fasting, protein 

restriction and specific reductions in essential amino acids such as methionine and the branched-

chain amino acids selectively impact AKT, FOXO, mTOR, nicotinamide adenine dinucleotide 

(NAD+), AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21), which 

are key components of some of the most important nutrient-sensing geroprotective signaling 

pathways that promote healthy longevity.

Introduction

Dietary restriction (DR) without malnutrition remains the most robust non-genetic 

intervention to date that can maximize lifespan and healthspan in rodents. It also extends life 

expectancy and safeguards against obesity, cancer, neurodegeneration, frailty, and a range 

of cardiometabolic conditions in rhesus monkeys; and in humans, it promotes adaptations 

that protect against these pathologies (Figure 1). This phenomenon was first discovered in 
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1917 by Osborne and was followed by hundreds of DR studies that expanded on its disease 

preventative and pro-longevity efficacy, founding the ‘biology of aging’ field1.

The mechanisms by which DR promotes health and longevity remained obscure until the 

1980s, when the first single gene mutations targeting key nutrient-sensing pathways, which 

drastically extended the lifespans of nematode worms, were discovered2. Since then, several 

more mutations that affect longevity have been found in invertebrates and their roles in 

the regulation of healthspan and lifespan has been confirmed in knockout and transgenic 

mouse models (Table 1). Understanding the mechanisms that underpin the beneficial effects 

of these mutations is essential to translating these findings to the clinic, through mechanism-

based therapeutic interventions.

In this review, we examine the research landscape of different forms of DR in rodents, 

non-human primates, and humans, focusing our attention on the metabolic and molecular 

adaptations that result in improved health. We also highlight new emerging scientific trends 

on the role of meal frequency and timing, and macronutrient composition, as potential 

mediators of some of the anti-aging and disease preventative effects of DR in rodents, 

non-human primates, and humans. As much of the mechanistic work regarding the role of 

specific pathways in the response to DR and macronutrients has been done in invertebrates, 

we will reference findings in other organisms as needed. However, the reader should remain 

aware that the role of these evolutionarily conserved pathways may not be precisely the 

same in mammals, and additional research may be needed to clarify if these pathways play 

the same role in DR, macronutrient restriction, or meal timing as they do in these model 

organisms. Understanding the molecular basis of DR and other dietary regimens may be 

crucial to developing dietary interventions or pharmaceuticals that can mimic some of the 

benefits of these regimens in the genetically heterogeneous human population.

DR and lifespan

In rodents, DR involves reducing ad libitum food intake by a given proportion (customarily 

10–50%) without malnutrition3. Food restriction has a non-linear dose-dependent impact 

on rodent lifespan that is strain and sex specific1,4,5. Lifespan increases to a maximum as 

food intake is reduced, but then rapidly declines when the restriction becomes excessive. 

Elegant experiments have also shown that the degree of DR that maximizes longevity and 

the amplitude of this response depend on genetic and, most likely, epigenetic factors. Indeed, 

even among genetically identical rodents, the same degree of food restriction leads to highly 

variable effects on lifespan6. Because different mice grow (in utero, postnatally, and during 

puberty) and reproduce at different rates, it is essential to perfectly match metabolism, 

growth, and fecundity to the optimal intake of food and nutrients, to avoid starvation or 

overfeeding, while maximizing health and longevity.

Understandably, there has been significant interest into whether DR can slow aging in 

humans. Dozens of studies, conducted by many independent groups over the last century, 

have found that the benefits of DR are observed in diverse species, including yeast, worms, 

flies and rodents. Studies in rhesus macaques show that the benefits of DR can also be 

observed in non-human primates. In a study conducted at the University of Wisconsin 
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(UW), the hazard ratio for survival was 1.86, indicating that at any time point monkeys that 

followed a 30% DR regime had almost half the rate of mortality of ad libitum fed controls7. 

Consistently, ageing-associated methylation drift in the UW DR monkeys was markedly 

delayed and their estimated biological age was 7 years younger than their chronological 

age8. Another study conducted by the National Institute on Aging (NIA) reported no 

difference in the Kaplan-Meier estimated survival in DR monkeys (of note, the study was 

not statistically powered for this outcome), but the average lifespan of DR animals was 

extremely high: 31.8 years9. Whereas the median and 10% survival of rhesus monkeys in 

captivity is ~26 and ~35 years of age, respectively, about one third of the NIA monkeys on 

late-onset DR lived over 40 years, and one monkey died at 44 (the equivalent of 135 years 

for a human)7,9.

Although the results and interpretations of these trials are still being debated, these findings, 

in conjunction with emerging new investigations in model organisms and humans, highlight 

two crucial points: (i) the impact of DR on reducing age-associated ailments appears 

conserved across species; (ii) the importance of study design, feeding regimen and diet 

formulation in modulating both lifespan and disease development and progression7,10. In 

Figure 2 (and more extensively in Supplementary information 1), we summarize the results 

of key randomized trials in rodents, monkeys, and humans on the effects of DR in preventing 

a wide range of diseases, highlighting similarities and differences.

DR and intrinsic aging

The reduced prevalence of chronic diseases in animals subjected to DR does not completely 

explain the increase in maximal lifespan, because DR animals at any time appear 

physiologically younger and less frail than age-matched controls. Approximately one-third 

of DR rodents die at a very old age without any gross histological lesion at necropsy11, 

suggesting that death may be due to intrinsic aging rather than ageing-related pathologies. 

Similarly, 20% of Ames dwarf mice and 47% of growth hormone receptor knockout 

(GHR-KO) mice, which are both long-lived and share similar growth hormone signalling 

deficits, do not develop any obvious lethal pathological lesions (i.e. known cause of 

death), suggesting that organ integrity can be preserved during aging in mammals12. For 

example, normal aging is associated with a progressive decline in left ventricular diastolic 

function and heart rate variability, and DR counteracts these physiological changes in 

rodents and humans13,14. Lower insulin/insulin growth factor-1 (IGF-1) and transforming 

growth factor beta (TGFβ) signaling13,15, increase in antioxidant mechanisms16,17, enhanced 

mitochondrial function18,19 and improved proteostasis and autophagy20–23 may explain 

some of the beneficial effects of DR.

In mammals ageing is also associated with presbycusis, and DR prevents it, at least in 

part, by inhibiting apoptosis of the cochlear ganglion cells via sirtuin 3 (SIRT3)-induced 

activation of isocitrate dehydrogenase 2 (IDH2) and increased mitochondrial NADPH 

levels24. Sarcopenia is another universal aging feature, and DR delays the decline in skeletal 

muscle mass and strength, and the incidence of frailty by Fried’s index in both rodents 

and primates25,26, likely in part by upregulating proteostatic, lipid synthetic and RNA 

processing pathways27. In human skeletal muscle, long-term DR upregulates protein quality 
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control (as seen by an increase in the chaperones HSP-70 and Grp78) and the autophagic 

proteins LC3 and beclin-1, both necessary for the formation of autophagosomes and cargo 

engulfment22. Moreover, as in rodents, chronic DR induces a PCG-1α-dependent increase of 

genes involved in mitochondria biogenesis18,28.

Intense investigations in multiple non-mammalian model organisms are uncovering genetic 

and epigenetic pathways as well as microbial factors involved in the regulation of 

ageing and age-associated diseases, including nutrient sensing, genomic and protein 

homeostasis (for example, AKT/FOXO/mTOR, FGF21/GCN2/ATF4, AMPK and sirtuin 

pathways) (Fig. 3)29. Remarkably, several of these genes and molecular determinants 

control mammalian longevity and nutrient-inducible pathophysiological processes, including 

cellular senescence, intra- and inter-cellular reprogramming, and telomere and stem-cell 

function. DR has also been shown to promote stem cell self-renewal and physiologic or 

injury-induced tissue regeneration in multiple organs (e.g. intestine, brain, skeletal muscle 

and bone marrow), partially through inhibition of mTOR complex 1 (mTORC1) signaling 

(Box 1)30,31.

Geroprotective mechanisms of DR

Several metabolic pathways that have a role in the ageing-associated cellular and organismal 

decline are modulated by DR (Fig. 3).

Downregulation of growth hormone and Insulin/IGF-1 signaling

In the 1980’s, a mutation in age-1, which encodes a subunit of phosphoinositide 3-kinase 

(PI3K), was found to extend the lifespan of C. elegans32; soon after, a mutation in daf-2 was 

identified which more than doubled the lifespan2. Daf-2 is a regulatory gene that encodes 

a mammalian orthologue of the insulin/IGF-1 receptor (IIR)33 and requires daf-16, which 

encodes a FOXO transcription factor2. Other mutants in the insulin signaling pathway that 

can extend lifespan were soon identified in Drosophila melanogaster, including mutants 

in insulin receptor (InR)34 and insulin receptor substrate (IRS)-like signaling protein, 

chico35,36.

Overlapping these breakthroughs, the long-lived Ames Dwarf mice were discovered; these 

animals carry the ‘longevity’ gene, Prop1df (a pituitary-specific homeodomain transcription 

factor) and live ~50% longer than their normal siblings37. These mice, as well as the long-

lived Snell Dwarf mice (which have a mutation in the anterior pituitary transcriptional factor, 

Pit1, also known as Pou1f1), are extremely small, and have very low levels of thyroid-

stimulating hormone (TSH), prolactin, growth hormone (GH) and IGF-137. DR potentiates 

the longevity effect of dwarfism in the Ames mice, while GH treatment eradicated this 

beneficial effect38. Consistently, it was found that GH deficiency alone markedly delays 

aging and produces the longest-lived laboratory mouse on record39. As 30% DR in the GH 

receptor knockout mice (GHR-KO) mice failed to produce any further extension of overall 

or median longevity40, suppression of the somatotropic axis may be one of the key longevity 

DR mechanisms.
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GHR-KO mice have profoundly suppressed circulating levels of IGF-I, higher insulin 

sensitivity, and markedly lower cancer incidence12. Humans born with GHR deficiency 

are also protected from cancer and diabetes, but do not have an increased lifespan41. 

Improved insulin sensitivity is a widely conserved response to DR in mammals and has been 

proposed as a key longevity mechanism of DR42, but recent data show that improvements 

in organismal insulin sensitivity are not required for DR to promote leanness, reduce frailty, 

and extend lifespan in mice43.

Both long-lived Snell mice and GHR-KO mice show lower AKT activity, decreased 

glial fibrillary acidic protein (GFAP) phosphorylation and increased chaperone-mediated 

autophagy than control animals44. Deletion of GH-R in macrophages seems to be one 

of the important actors linking reduced NLRP3 inflammasome-induced inflammation and 

longevity in GHRKO mice; inhibition of the GHR/IGF1 axis preserves the naive T-cell pool 

and prevents the age-associated activation of the inflammasome in response to accumulation 

of cellular damage45.

As reviewed elsewhere1,46, these and other findings support the idea that reduced insulin/

IGF-1 signaling is crucial for lifespan extension. Consistently, genetic and pharmacological 

interventions that reduce insulin/IGF-1 signaling also extend mice lifespan. Initial work 

with mice heterozygous for the IGF-1 receptor found that these mice lived approximately 

~30% longer than wild-type mice47, but the control mice in this study were comparatively 

short-lived; independent replication of this experiment found only a small, female-specific 

increase in the lifespan of Igf1r+/− mice48. Deletions of the insulin receptor specifically 

in adipose tissue, Irs1 in the whole body, and Irs2 heterozygosity in the whole body or 

selectively in the mouse brain likewise extend lifespan48–52. Loss of pregnancy-associated 

plasma protein A (PAPP-A), a metalloproteinase for IGF-1 binding proteins, extends 

lifespan when deleted constitutively or in adult mice53,54. Finally, late-life inhibition of 

IGF-1 signaling using an antibody targeted to the IGF-1 receptor was recently shown to 

improve longevity55. Overall, it is likely that reduced insulin/IGF-1 signaling contributes to 

the beneficial effects of DR, and strategies to reduce signaling through this pathway may 

have translatable potential to promote healthy aging.

Reduced mTORC1 signaling is a conserved mechanism for lifespan extension

One of the most important DR-induced molecular mechanisms downstream of insulin/IGF-1 

signaling is the mTOR serine/threonine protein kinase (Fig. 2). mTOR is the catalytic core 

of two distinct protein complexes, mTORC1 and mTORC2, each of which are composed 

of distinct protein subunits that phosphorylate different substrates56. Briefly, mTORC1 is 

responsive to a wide range of environmental stimuli, including the availability of amino 

acids, glucose, oxygen, cholesterol, and insulin/IGF-1, whereas mTORC2 is primarily an 

effector of PI3K signaling. mTORC1 is acutely sensitive to the drug rapamycin, whereas 

mTORC2, owing to its structure57,58, is inhibited only by high levels of rapamycin over 

extended periods of time59–61. mTORC1 integrates numerous environmental signals that 

indicate when conditions are favorable for the anabolic processes it controls, which include 

ribosomal biogenesis, protein translation, autophagy, lipogenesis and nucleotide biogenesis. 

The regulation of mTORC1 has been reviewed in detail56 and is briefly outlined in Box 1.

Green et al. Page 5

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mTORC1 activity is reduced in Ames and Snell Dwarf mice62, and several different genetic 

models of reduced mTORC1 signaling, including mice heterozygous for mTOR and mLST8 
(which encodes a subunit of mTORC1), mice expressing a hypomorphic allele of mTOR, 

and those lacking the mTORC1 substrate S6K1, have extended lifespan59,63,64. The initial 

studies on mTOR were conducted in invertebrates (reviewed in65), but in 2009 it was found 

that rapamycin extends lifespan in aged mice66. Since then several independent laboratories 

have confirmed the ability of rapamycin to prolong lifespan in multiple strains of mice, 

even when treatment is intermittent or conducted for only a short period of time67,68 (and 

reviewed in69). As summarized in Supplementary information 2, rapamycin and DR have 

similar positive effects on many age-related pathologies in mice; and in a recent small study, 

rapamycin even improved diastolic and systolic cardiac function in middle-aged dogs70.

There has been significant interest in rapamycin as a potential DR mimetic, but rapamycin 

has several side effects that have precluded its wide-scale use; these include the 

dysregulation of blood glucose and lipid homeostasis as well as immunosuppression59,71–73. 

These side effects are probably mediated by “off-target” inhibition of mTORC2, which 

is disrupted by chronic treatment with rapamycin in vivo in mice59,60. Although whole 

body or tissue-specific (brain, liver, or adipose tissue) deficiency of mTORC2 signaling 

impairs metabolic health and reduces lifespan in wild-type and long-lived mice43,74–76, 

mTORC2 activity has been positively associated with longevity in flies and in some (but 

not all) studies using worms77–80. Two drugs that extend mice lifespan, acarbose and 

17-α estradiol, boost hepatic mTORC2 signaling81, and mTORC2 activity is elevated in 

long-lived Snell dwarf mice and GHR-KO mice62,81. There has been significant interest in 

identifying rapamycin dosing regimens or drugs with greater specificity for mTORC1 that 

could deliver the beneficial DR-mimetic effects of rapamycin while minimizing negative 

side effects67,72,73,82,83.

Given the similarity of the beneficial effects of DR and mTORC1 inhibition, and the clear 

link between DR and reduced mTORC1 activity, it is widely accepted that mTORC1 has 

a role in the response to DR. In yeast, deletion of TOR1 is epistatic with DR; that is, DR 

does not further extend the lifespan of yeast lacking TOR184. However, genetic analysis of 

the interaction between DR and TOR in worms and flies has not clearly demonstrated an 

epistatic relationship. In C. elegans, several studies have linked various DR regimens to TOR 

signaling, but also identified TOR-independent longevity mechanisms activated by DR85–88, 

whereas in flies, rapamycin extends lifespan at every level of calorie intake89. Extensive 

mammalian metabolomic and transcriptomic studies in blood, liver, and white adipose 

tissue suggest that rapamycin and DR have distinct, largely non-overlapping effects90–94. 

Additional research is warranted to fully evaluate the impact of different forms of DR on 

mTORC1 signaling.

Activation of GCN2 and reduced protein synthesis

GCN2 is another evolutionarily conserved serine/threonine kinase that functions as 

an amino-acid sensing metabolic switch to control various nutritionally responsive 

mechanisms, including immune system homeostasis95 and tumor cell growth96, and to 

coordinate integrated stress responses and the inflammasome97. When GCN2 is activated 
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through binding to uncharged tRNAs or by ribosome stalling98–100, the protein kinase 

phosphorylates the α-subunit of eukaryotic initiation factor 2 (eIF2)101, blocking the 

translation of most mRNAs101, while stimulating the translation of a select set of proteins, 

including activating transcription factor 4 (ATF4)102,103 (Fig. 3). ATF4 is a transcription 

factor that upregulates genes necessary to adapt to amino acid or protein restriction (a 

dietary regimen distinct from DR that involves the specific reduction of protein intake 

while overall calories are not restricted; see below), including the energy balance hormone 

fibroblast growth factor 21 (FGF21)104.

Gcn2-knockout mice (Gcn2 is also known as Eif2ak4) that are subjected to protein 

restriction have a delayed metabolic response to protein restriction, including a two week 

delay in the induction of FGF21 and FGF21 mediated metabolic phenotypes (see below)105. 

While the response to acute protein restriction may be dependent on activation of FGF21 

through the GCN2-ATF4 axis, chronic protein restriction works upstream of GCN2 to 

directly activate ATF4, thereby stimulating FGF21 through alternate pathways105. Although 

activation of GCN2 is not sufficient to directly inhibit mTORC1, it is required for mTORC1 

inhibition upon leucine and arginine deprivation106. Interestingly, this mTORC1 inhibition 

seems to occur, at least initially, independently of ATF4 activation, as it is not required for 

early repression of mTORC1 during leucine deprivation; however, phosphorylation of eif2α 
by GCN2 is essential, though not sufficient alone, to inhibit mTORC1106.

While GCN2 has not been heavily investigated as a mediator of DR in mammals, GCN2 in 

C. elegans is required for both DR and TOR inhibition to extend lifespan, linking these two 

key amino acid sensing and longevity-regulating pathways107. Understanding how GCN2 

regulates the response to DR in mammals will clearly be an important area for future 

research.

Multiple effects of FGF21 signalling

Liver-derived FGF21 is implicated in many key metabolic pathways that are altered under 

nutritional stress108. FGF21 is a potent regulator of the effects of protein as well as specific 

amino acids restriction on metabolism, notably by increasing insulin sensitivity and energy 

expenditure109. FGF21 stimulates insulin-independent glucose uptake in the cells of both 

mice and humans109,110, and facilitates adaptive behavioral changes in feeding through 

signaling to the brain111.

The importance of FGF21 in the response to PR has been seen across multiple rodent 

models as well as in humans. In male Sprague Dawley rats and C57BL/6J mice, chronic 

PR induces an increase in both hepatic expression and circulating levels of FGF21109,112. In 

humans, 4–6 weeks of protein restriction is sufficient to increase circulating FGF21109,112. 

Changes in hepatic Fgf21 expression can be induced within 24 hours by switching rats to a 

low protein diet, followed by a 10-fold increase in circulating FGF21 after only 4 days109. 

In mice lacking Fgf21, protein restriction is unable to provoke shifts in food intake, energy 

expenditure and weight gain109,111.

As FGF21 is also powerfully induced by fasting, there has been significant interest in 

understanding if FGF21 mediates the effects of DR. Unfortunately, a straightforward 
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assessment of how FGF21 levels are regulated by DR is confounded by time of feeding 

effects113. However, treatment of mice with recombinant FGF21 or transgenic expression of 

FGF21 promotes glucose tolerance and insulin sensitivity, and FGF21 overexpressing mice 

are resistant to diet-induced obesity110. Moreover, FGF21 transgenic overexpression extends 

mouse lifespan without reducing calorie intake or modulating mTORC1 signaling114. While 

future research will be needed to further clarify the role of FGF21 in the response to 

protein restriction and DR, FGF21 analogues are being pursed as a possible therapy for age-

related diseases, including diabetes115, non-alcoholic fatty liver disease116, and Alzheimer’s 

disease117.

Activation of sirtuins, conserved regulators of lifespan

The lifespan extending effects of sirtuins, a family of nicotinamide adenine dinucleotide 

(NAD+)–dependent deacetylases, was originally discovered when a mutation in the silencing 

regulating gene Sir4 was found to extend the replicative lifespan of yeast. It was later 

demonstrated that this effect on yeast lifespan required silent information regulator 2 (Sir2), 

the homologue of mammalian SIRT1, and that overexpression of Sir2 increased yeast 

replicative lifespan118. Importantly, Sir2 and several yeast Sir2 homologues are required 

for DR to extend yeast lifespan119,120. Sir2 homologues also regulate the lifespan of worms 

and flies and play a part in their response to DR121,122, although these effects have not been 

observed consistently in different studies123.

There are seven mammalian sirtuin family members (SIRT1–7), with different subcellular 

localizations. SIRT1 (with highest sequence homology to yeast Sir2), SIRT6 and SIRT7 are 

nuclear; SIRT3, SIRT4 and SIRT5 are mitochondrial; and SIRT2 is largely cytoplasmic, 

but shuttles in and out of the nucleus124,125. While all of the mammalian sirtuins are 

(NAD+)–dependent deacetylases, other enzymatic activities have been reported for some of 

these enzymes, including ADP-ribosylation (SIRT 4 and 6)126,127 and demalonylation and 

desuccinylation (SIRT5)128,129. SIRT1 and SIRT2 have also been reported to act as lysine 

decrotonylases, and SIRT1–4 can remove lipoic acid from lysine130.

Sirtuins are linked to diet and metabolism via their need for NAD+. The ability of DR to 

extend the lifespan of yeast is dependent not only on Sir2, but also on the NAD+ synthesis 

pathway enzyme Npt1119. Pnc1, a key enzyme in the NAD+ salvage pathway, is induced 

by DR in yeast via a TOR-mediated pathway and is required for DR-mediated lifespan 

extension in both yeast and worms131–133. Adipose-specific overexpression of NAMPT, 

which is the rate limiting enzyme in a major NAD+ synthesis pathway, was recently shown 

to elevate NAD+ levels in multiple tissues, improve multiple measures of metabolic health, 

cognition, and physical performance, and extend the lifespan of female mice134. Nutritional 

supplementation with NAD+ or NAD+ precursors is being actively investigated as a way to 

promote healthy aging and intervene in diseases by activating sirtuins (reviewed in135).

A number of studies have found that DR induces SIRT1 expression in multiple tissues 

in rats and in human cells136, and humans on DR have increased levels of SIRT1 in 

skeletal muscle137. SIRT3 and SIRT5 are also induced by DR in mice138,139. Conversely, 

overnutrition by high fat diet feeding lowers SIRT1 expression in mouse adipose tissue140, 
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and SIRT1 levels are lower in the adipose tissue of obese humans141, as well in Alzheimer’s 

disease142.

The role of mammalian sirtuins has been primarily investigated in mice in which sirtuins 

are deleted or overexpressed, either in specific tissues or universally. Whole body deletion 

of Sirt1 blocks the ability of DR to extend lifespan, although these results are complicated 

by the short lifespan of Sirt1−/− mice143. Mice genetically modified to overexpress SIRT1 

are lean, metabolically active with reduced circulating cholesterol, insulin and improved 

glucose tolerance144. While whole body overexpression of SIRT1 does not increase murine 

lifespan145, hypothalamic-specific overexpression caused a significant extension of lifespan 

in both males and females146. SIRT2 is a tumor suppressor147, and its overexpression 

rescues the lifespan of progeroid mice lacking BubR1148. Deletion of Sirt3 shortens 

lifespan149, while increased Sirt3 levels improve the regenerative capacity of hematopoietic 

stem cells150. Deletion of SIRT6 and SIRT7 increases frailty and shortens lifespan151,152, 

while healthspan and lifespan is increased in transgenic male mice overexpressing SIRT6 

(MOSES)153,154; overexpression of SIRT7 extends the lifespan of a mouse model of 

Hutchinson-Gilford Progeria Syndrome155.

The molecular mechanisms by which sirtuins regulate metabolism have been actively 

investigated. SIRT1 deacetylates and activates the transcriptional coactivator PGC1α by 

promoting its nuclear localization156,157. SIRT1 in the liver up-regulates the transcription 

of the mTORC2 component Rictor, enhancing glucose homeostasis, while liver-specific 

deletion of Sirt1 increases oxidative stress158. SIRT1 overexpression suppresses senescence, 

whereas its inhibition accelerates it in human endothelial cells159,160. Sirt3 is essential for 

the DR-mediated reduction in oxidative damage, via enhancement of the mitochondrial 

glutathione antioxidant defense system, not only in the cochlear cell, but also in the 

neocortex and liver24. This may be due to an inability of SIRT3-KO mice to lower their 

acetyl CoA levels in response to DR161. Interestingly, a polymorphism in the SIRT3 gene 

has been associated with male centenarians in a European population162. SIRT6 promotes 

DNA stability and suppresses senescence by enhancing DNA double-strand break repair, 

perhaps via activation of PARP127,163,164. SIRT6-dependent repression of LINE1 elements, 

which induce inflammation and DNA damage, may be another important mechanism165.

Taken together, the data collected thus far suggests that the sirtuin family of enzymes likely 

plays an important role in the response to DR. Research is continuing to define the targets 

and enzymatic functions of the sirtuins, and the role of each sirtuin in regulating metabolism, 

healthspan, and longevity.

Oxidative Stress and AMPK signalling

The oxidative stress theory of aging postulates that the accumulation of oxidative damage 

shortens lifespan. As reviewed elsewhere166, several rodent studies have shown that aged 

DR animals and long-lived mouse mutants have reduced markers of oxidative damage. 

Similar reduced oxidation has been found in humans subjected to DR17. In support of 

this theory, mice overexpressing human catalase, which protects from oxidative stress by 

converting hydrogen peroxide to water and oxygen, localized to the mitochondria are long-

lived167.
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This theory is not supported by experiments manipulating many other oxidative stress 

response genes. The lifespan of Sod1−/− mice lacking CuZn superoxide dismutase is 

reduced168,169, but mice one copy of Sod2 deleted, leading to increased DNA damage, 

or lacking Sod3, which have increased lipid peroxidation and higher sensitivity to oxidative 

stress, have a normal lifespan169,170. Deletion of Gpx1 (encoding Glutathione peroxidase 

1) or loss of MsrA (encoding Methionine sulfoxide reductase A) also result in increased 

lipid or protein peroxidation and increased susceptibility to oxidative stress without affecting 

lifespan171,172. Studies crossing these mice to induce deletions of multiple oxidative stress 

genes have confirmed that increased oxidative stress is generally not highly deleterious to 

lifespan169,171,173.

New surprising findings in C. elegans suggest that DR may increase reactive oxygen species 

and induce an oxidative stress resistance response that is essential for its pro-longevity 

effect16,174. Intriguingly, this effect, named mitochondrial hormesis or mitohormesis, is 

dependent on AMPK (AMP-dependent kinase), a sensor of nutrient status and mitochondrial 

stress that regulates many cellular processes, including mTORC1 via phosphorylation of 

Raptor and TSC2175,176. While the mitohormesis hypothesis has not been formally tested 

in mice, chemical inhibition of glycolysis by D-glucosamine extends the lifespan of C. 
elegans and C57BL/6 mice, possibly via increasing reactive oxygen species177. Moreover, 

supplementation with antioxidants block the beneficial effects of exercise in humans178,179, 

and might even increase cancer risk180. In summary, the data suggests that the benefits of 

DR are probably not mediated by reduced oxidative stress.

Effects of specific dietary manipulations

Until recently, reduced intake of calories, rather than of specific nutrients, was considered 

key for the life-extension effects of DR. It is now clear that the old adage ‘a calorie is just 
a calorie’ is incorrect, as new data support a model whereby diet composition as well as 

timing of food intake have crucial roles in regulating key aging pathways181,182.

Protein Restriction

Early studies in rodents on protein restriction had mixed results, probably owing to 

differences in dietary protein quality and the degree of restriction182. More recently, interest 

in PR has been rekindled by the finding that, in flies, total protein restriction or specific 

essential amino acid restrictions can extend lifespan independently of calorie intake183–185. 

Studies in rodents have confirmed that protein restriction independent of caloric intake 

promotes longevity186,187, and as described in Supplementary information 3, PR can impact 

a range of ageing-related conditions in both rodents and humans. These observations, and 

work on fruit flies done primarily by the Partridge laboratory, has resulted in a strengthening 

of the theory that it is the reduction in protein, and not calories, that drives the lifespan 

extension of DR184. However, the amount of protein restriction during DR studies is smaller 

than during carefully controlled protein restriction studies, and recent analyses suggest 

that these interventions act through independent mechanisms188. Indeed in recent studies 

on rodents short-term protein restriction did not replicate the physiological and metabolic 
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effects of DR189,190, and long-term protein restriction only extends the lifespan of male 

mice, while DR extends the lifespan of both sexes43,187.

Estimated daily protein intake for adults in many Western Societies is approximately 90–

100g (of which ~70–85% is animal protein), roughly twice the amount recommended by 

the US Institute of Medicine191. Accumulating data indicate that excessive protein intake 

may cause insulin resistance and type 2 diabetes and induce other long-term negative 

health consequences by overstimulating the the AKT−mTOR pathway and inhibiting FGF21 

signaling192. In a weight loss trial, consuming a relatively high protein diet (1.3 g/kg/day) 

completely prevented the improved insulin sensitivity observed in women consuming a 

normal protein diet (0.8 g/kg/day) who lost the same amount of body weight193. High 

protein intake, therefore, counteracts the beneficial effects of weight loss on insulin 

resistance, and potentiates the pro-aging and pro-cancer effects induced by compensatory 

hyperinsulinemia in the face of significant reductions in abdominal and liver adiposity.

In contrast, long-term adherence to physiologically adequate protein diets (0.8–1 g/kg per 

day) has been found to be beneficial in retrospective and prospective studies192, and a 

recent randomized clinical trial found that short-term PR significantly reduced fat mass and 

improved blood glucose levels in middle-aged overweight and mildly obese males without 

caloric restriction112. The benefits of lower protein consumption may start in early life: 

newborns fed a lower protein-content formula (similar to that found in human milk) had a 

reduced risk of childhood obesity than infants consuming an isocaloric high protein-content 

formula194. Although the effect of protein restriction on human lifespan is unknown, the 

longest living population in the world, the Okinawans, have traditionally eaten a diet 

containing 9% calories from protein195.

As dietary amino acids are reduced by protein restriction, the activity of mTORC1, which 

is responsive to amino acid levels, is also reduced186,196. As discussed above, protein 

restriction increases FGF21 levels in rodents and humans via activation of GCN2 and 

ATF4105,109,111,112,197. GCN2 is essential for the acute response to protein restriction. Gcn2 
knockout mice have increased FGF21 levels after only 2 weeks on protein restriction105, 

indicating that GCN2 is only required for the initial induction of FGF21.

Restriction of specific amino acids: methionine

It has been proposed that a selective reduction of specific, essential amino acids might be 

sufficient to extend healthspan and lifespan, independent of total protein and calorie intake. 

Methionine, threonine, tryptophan and branched chain amino acids (BCAAs) have all been 

identified as potential candidates.

In 1993, Orentreich and colleagues observed that lifelong ~80% methionine restriction (MR) 

resulted in a 30% increase in lifespan in male rats198; these findings were subsequently 

confirmed in mice199. As illustrated in Supplementary information 4, methionine reduction 

has strong beneficial effects on the metabolic health of rodents, and reduced consumption 

of methionine potentially contributes to the health of humans consuming vegan diets. 

Methionine plays a unique role in translation, as methionine is specified by the AUG 

start codon and is thus required for translation initiation of most proteins. Methionine 
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restriction thus has a dramatic effect on protein translation, strongly downregulating protein 

synthesis200. In addition to these effects, which may be beneficial for healthy aging, 

methionine also has important and unique metabolic roles and effects that have been 

implicated in the benefits of methionine restriction.

Many of the metabolic adaptations to methionine reduction have been attributed to the 

actions of the hormone FGF21, levels of which are upregulated by methionine restriction 

or depletion in both young and aged mice201–203. As with protein restriction, a reduced 

dietary intake of methionine increases energy expenditure by promoting a FGF21-dependent 

browning of white adipose tissue204. Browning refers to a phenotypic switch where white 

adipose tissue becomes enriched in mitochondria and upregulates expression of uncoupling 

protein 1 (UCP1). This promotes thermogenesis and energy expenditure, resulting in 

reduced adiposity. This effect is independent of GCN2, and induced by the activation of the 

eIF2a kinase PERK205 as a consequence of methionine restriction-induced oxidative stress 

resulting from a depletion of glutathione. Dietary supplementation with cysteine blocks the 

effect of methionine restriction on FGF21 levels, adiposity, and energy expenditure205,206.

Alterations in dietary methionine levels strikingly and rapidly lead to changes in the levels 

of its metabolites — the universal methyl donor SAM and cysteine, a key precursor of 

antioxidant glutathione and the gaseous messenger hydrogen sulfide (H2S)207. SAM is 

crucial for histone and DNA methylation; and methionine restriction causes substantial 

reductions of SAM levels and alterations to both DNA and histone methylation208–210. 

Changes in the levels of metabolites such as SAM and S-adenosylhomocysteine (SAH) 

are thought to drive the protection against hepatic DNA hypomethylation with age in 

adult mice208, and might account for the stronger effects on metabolic health seen with 

methionine restriction rather than leucine restriction on hepatic lipogenic gene expression 

and circulating FGF21211. H2S, a powerful vasodilator, is endogenously produced via the 

trans-sulfuration pathway, and may help protect from multiple age-related diseases207,212. 

Production of H2S is required for DR to extend C.elegans lifespan213. Finally, methionine 

restriction activates AMPK in mice214, which is required for the lifespan extension induced 

by increased synthesis of the SAM in yeast215.

SAM levels are also sensed by the mTORC1 protein kinase via SAMTOR, and a reduction 

in SAM leads to decreased mTORC1 signaling216. However, even complete methionine 

depletion does not significantly alter hepatic mTORC1 activity, and mice lacking liver 

TSC1, which have constitutively active hepatic mTORC1, respond normally to methionine-

deprived diet203. Thus, at least in the liver, reduced mTORC1 signaling does not mediate 

many of the metabolic effects of methionine restriction. Further research will be required to 

fully define the molecular mechanisms underlying the geroprotective effects of methionine 

restriction.

Restriction of BCAAs

As summarized in Supplementary information 4, increased blood levels of BCAAs (leucine, 

isoleucine, and valine) are associated with obesity and diabetes in humans. In mice, 

dietary BCAA restriction recapitulates many of the beneficial effects of protein restriction, 

including reduced adiposity, improved glucose tolerance, and elevated energy expenditure, 
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but not increased FGF21112,217. These effects can be largely recapitulated by restricting 

isoleucine, and the beneficial metabolic effects of protein restriction are dependent on 

isoleucine restriction218. Conversely, high BCAA diets are associated with enlarged fat 

mass, increased body weight, hyperphagia, and insulin resistance217,219,220. BCAAs are 

potent mTORC1 agonists, and dietary and circulating BCAAs levels are correlated with 

mTORC1 activation in mouse liver186. Reintroduction of BCAAs to a protein restricted 

diet blocks the effects on mTORC1 signaling221, highlighting the critical role of dietary 

BCAAs in mTORC1 activity. Although the Ames dwarf mouse has low levels of circulating 

BCAAs222, the effects of BCAAs on the longevity and healthspan in this long-lived genetic 

model are only now being explored.

A low BCAA diet was recently shown to increase survival in Drosophila223, and a 67% 

restriction of dietary BCAAs increases the survival of two different progeroid mouse 

models187. Similarly, initiation of a BCAA-restricted diet very early in life (3 weeks of age) 

not only improved metabolic heath, but in wild-type male mice reduced frailty and extended 

lifespan by over 30%187. This lifespan extension was associated with a male-specific 

reduction in mTORC1 activity. However, beginning a 50% or 80% BCAAs restricted diet 

at 12 weeks of age, or a 67% BCAA restricted diet at 16 months of age, improved body 

composition and glucose homeostasis, but did not increase mouse lifespan187,219. Finally, 

further supporting a negative effect of dietary BCAAs on mammalian healthspan and 

lifespan, dietary supplementation with additional BCAAs results in a hyperphagia-induced 

reduction in mouse lifespan219.

Tryptophan or Threonine Restriction

Studies in the 1970’s and 1980’s reported that tryptophan restriction increases overall and 

maximum lifespan of mice and rats, and delays aging-associated pathologies including 

cancers224–226. However, it was only recently found that tryptophan restriction may be 

an evolutionarily conserved geroprotective intervention as administration of ibuprofen, an 

inhibitor of tryptophan uptake, extends the lifespan of yeast, worms and flies227. Tryptophan 

is catabolized via the kynurenine pathway, and its metabolites include NAD+, which is a key 

regulator of metabolism and an essential co-factor for the activity of the sirtuin family of 

enzymes228.

While the effects of tryptophan restriction on aging in mammals has not been the direct 

subject of investigation again until recently, one recent study found that the serum level of 

tryptophan was associated with onset of diabetes229. There is also a negative correlation 

between tryptophan levels and cognitive function in humans230. Finally, restriction of 

dietary tryptophan induces expression of FGF21 and recapitulates metabolic effects of a 

protein restriction diet in mice231. Much work remains to be done to examine if tryptophan 

restriction can promote healthy aging in mice or in humans.

A recent study surveyed the nine dietary essential amino acids to try and identify the 

amino acids responsible for the metabolic effects of a protein restricted diet, as modeled 

by a diet in which 5% of the calories were derived from casein. Intriguingly, in this 

dietary setting, restriction of threonine mimicked the effects of protein restriction, increasing 

energy expenditure and increasing insulin sensitivity231. Restriction of threonine induces 
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the hormone FGF21, and the effects of threonine restriction were shown to be FGF21-

dependent231. Levels of an enzyme in the threonine catabolic pathway, GCAT (glycine-C-

acetyltransferase), decline with age in C. elegans and mice, and downregulation of this gene 

with RNAi extends the healthspan of C. elegans232. Overall, while this work is suggestive 

that threonine restriction may promote health and longevity, this remains to be formally 

tested in mice and in humans.

Impact of meal frequency and timing

Unlike most humans practicing DR who typically cut calories at every single meal, hungry 

DR rodents devour their once-a-day restricted food allotment in 1 to 4 hours (depending 

on the mouse strain) followed by a daily prolonged period of fasting233,234. Recently, 

and as discussed below, interventions such as meal feeding that involve the imposition 

of a daily fasting period have been shown to have metabolic benefits and extend the 

lifespan of mice235–237. We recently utilized a series of dietary regimens to dissect the 

contributions of reduced calorie intake and an imposed fasting period to the metabolic, 

molecular, and geroprotective effects of DR238. We found that imposed daily fasting is 

required to observe DR-induced changes in insulin sensitivity and fuel selection, as well 

as for the geroprotective effects of DR on frailty, cognition, and lifespan238. Moreover, we 

determined that a prolonged daily fast without restricting calories is sufficient to recapitulate 

the metabolic phenotypes and transcriptional signature of a DR238. Thus, fasting between 

meals is a critical component of DR in rodents.

These observations coupled with the beneficial effect on murine healthspan and lifespan of 

alternate-day fasting, even independently of weight loss, has opened a new exciting field 

of translational research that is gaining momentum. Intermittent fasting in rodent models 

usually refers to a 24-hr complete fast every other day, while in humans it refers to a 

variety of regimes such as complete fasting or severe DR (e.g. 500–600 calories per day) on 

alternate days or 2 non-consecutive days per week (5:2 diet). Another form of intermittent 

fasting is time-restricted feeding, which involves consuming all daily food in a 4- to 12-h 

time window and fasting for the remainder of the day. Prolonged, periodic fasting, lasting for 

two to 7 consecutive days, and repeated cyclically, is an extreme form of DR that might have 

benefits for specific clinical indications.

An often overlooked problem in translating rodent findings to humans is that humans can 

fast for much, much longer than mice (Fig. 4). A 24-hr fast-feed cycle in mice most likely 

equates to recurrent ~5 days fast-feed cycles in humans. Another consideration is that 

laboratory rodents during the feast days consume a nutritionally balanced chow; in contrast, 

most people practicing different forms of intermittent fasting, prolonged, periodic fasting or 

time-restricted feeding eat the unhealthy Western-like obesogenic food that has been shown 

to cause negative consequences on metabolic and gut microbiome health even during DR, 

and potentiate vitamin and mineral deficiencies193,239–241. Finally, unlike laboratory rodents 

many obese adults take a range of medications (e.g., antidiabetic and antihypertensive 

agents) that could have serious negative and potentially fatal consequences when coupled 

with fasting, including hypotension and severe hypoglycemia242.
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Impact of intermittent fasting on lifespan and healthspan

A 24-hour fast every other day or twice per week extends lifespan in mice and rats. The 

ability of IF to extend lifespan, as well as the magnitude of life extension, depends on 

background strain and age of initiation; intermittent fasting started at 10 months of age 

caused a 15% reduction in mean and maximal lifespan of A/J mice243. Intermittent fasting 

in rodents also reduces the incidence of a wide range of chronic diseases, including stroke, 

cardiomyopathy, hypertension, diabetes, and several neurodegenerative diseases due to its 

stimulatory effect on synaptic plasticity244. Cancer protection, however, is not universal, 

and several studies (especially in laboratory rats)245,246 report a cancer promoting effect of 

intermittent fasting that may be mediated at least in part by TGF-β1247.

Several common pathways are induced by chronic DR and intermittent fasting. These 

include activation of multiple transcriptional factors induced by metabolic/hormonal 

modifications that lead to reduced oxidative stress and inflammation, and enhanced 

autophagy, mitophagy, and tissue repair capacity248,249. In mice, a 24-hr fast increases 

intestinal stem cell function through induction of fatty acid oxidation; molecular deletion 

of carnitine acyltransferase I (the rate-limiting enzyme in fatty acid oxidation) reduces the 

numbers and function of gut stem cells250. Alterations of gut microbiota composition seem 

to play a role in mediating some of the effects of intermittent fasting on energy expenditure 

by selectively upregulating monocarboxylate transporter 1 and UCP1 expression in brown 

adipose tissue in rodents251, but not in humans252.

A peculiar characteristic of intermittent fasting that does not apply to chronic DR (when 

the restricted allotment of food is equally distributed during the day) is the metabolic 

switch with a transient elevation of plasma non-esterified fatty acids and ketone bodies that 

occur during fasting. β-OH butyrate binds to two G protein-coupled receptors, GPR109a 

and GPR41,253,254 and by acting as an endogenous histone deacetylase inhibitor causes a 

wide range of modifications of gene expression and downstream signaling pathways that 

protects against oxidative stress255. However, mice and humans regulate ketones differently 

in response to acute fasting; in adult C57BL/6J mice, plasma ketones begin to increase after 

just 4–7 hours of fasting, and peak at about 24 hours256. In contrast, in adult humans the 

production of ketone bodies after an overnight fast is negligible; plasma β-OH-B levels start 

to creep up after 18–24 hours, and progressively increase (more rapidly in women than 

in men), peaking at 4–7 mM after 2 weeks fasting257258. Intermittent fasting in rodents 

exerts neuroprotective effects by increasing Brain-derived neurotrophic factor (BDNF) 

concentrations259. However, several clinical trials of intermittent fasting have reported 

a significant reduction of circulating BDNF levels260,261, confirming that the metabolic 

adaptations to alternate day fasting in mammals with a very high-metabolic rate such as 

young rodents cannot be compared with those of middle-aged human adults.

While there have been no studies using intermittent fasting in non-human primates, 

several short-term randomized clinical trials (summarized in Supplementary information 

5) have shown potentially favorable effects of fasting in humans. However, not all studies 

have demonstrated beneficial effects, and unlike in rodents where some of the metabolic 

adaptations of intermittent fasting are independent of food intake and weight loss, well-

conducted human studies suggest that energy restriction is required to improve health262. 
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Thus, the translatable lessons that can be learned from intermittent fasting studies in rodents 

may be limited.

Prolonged, periodic fasting

In contrast to intermittent fasting, which consists of frequent short periods without or 

with limited amounts of food, prolonged, periodic fasting lasts more than 24 hours and is 

repeated once or twice a month. Because water-only fasting for more than 48–60 hours 

is deadly in mice, an alternative is to feed them reduced portions of a diet low in protein 

and carbohydrate, and high in unsaturated fat, providing between 10 and 50% of normal 

ad libitum intake. 16-mo old C57BL/6 mice fed a fasting-mimicking diet for four days 

twice per month had reduced weight and visceral fat accumulation, while preserving lean 

and bone mass. This fasting-mimicking diet regimen reduced cancer burden, rejuvenated the 

immune system, improved motor and memory performance, and increased median, though 

not maximum lifespan by 11%263.

Weekly 3-days of fasting-mimicking diet suppresses autoimmunity, and induces 

oligodendrocyte precursor cell regeneration and axonal remyelination in a murine 

experimental autoimmune encephalomyelitis model264. This suggests that a fasting-

mimicking diet might work by activating stem cell-based or other regenerative processes 

through transient inhibition of the AKT, PKA and mTOR pathways265. Similarly, weekly 4-

days of fasting-mimicking diet can cure both type 2 and type 1 diabetes, restoring pancreatic 

insulin production in a streptozotocin mouse model of type 1 diabetes by causing a stepwise 

expression of SOX17 and PDX1, followed by NGN3-driven generation of insulin-producing 

β cells266. Whether or not a fasting-mimicking diet can regenerate β-cells in patients with 

type 1 diabetes can be easily tested in a clinical study, because unlike multiple sclerosis, 

this autoimmune disease is not relapsing-remitting, and C-peptide is an excellent marker of 

therapeutic efficacy.

Preclinical data have shown that both prolonged fasting and fasting-mimicking diets can 

induce a differential stress resistance response in tumor-bearing mice that has the potential 

to maximize chemotherapy toxicity to cancer cells while protecting normal cells267,268. 

Increased resistance to stress during fasting is associated with improved activity of 

chemotherapeutic agents by reducing circulating IGF-1, insulin and leptin and by inhibiting 

AKT–mTOR signalling via upregulation of EGR1 and PTEN269. By inhibiting the stress-

responsive enzyme heme oxygenase-1 (HO-1), fasting increases T cell-dependent targeted 

killing of cancer cells in murine models of breast and melanoma cancer270.

In a recent randomized clinical trial of women with HER2-negative stage II/III breast 

cancer, 4 days of fasting-mimicking diet a week was able to reinforce the radiological and 

pathological tumor response to neoadjuvant chemotherapy and reduced DNA damage to 

T-cells271. In this trial (in contrast to previous results reported in a non-randomized parallel 

study263), a fasting-mimicking diet significantly reduced circulating insulin levels but did 

not change serum IGF-1 or IGFBP-3 concentrations, while increasing inflammation as 

assessed by C-reactive protein271. Very small preliminary clinical studies suggest that fasting 

before and during chemotherapy may reduce adverse events of chemotherapy and improve 

quality of life272,273.
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Time restricted feeding

Preclinical and epidemiological data show that consuming food out of sync with the day/

night cycle and/or over an extended time frame impairs metabolic health274. In mice, 

time restricted feeding (8-hour daily access to food) is thought to regenerate disrupted 

circadian clock rhythms, and protect against obesity, fatty liver disease, insulin resistance, 

hyperinsulinemia and inflammation independently of caloric and fat intake235. These 

positive metabolic effects are attributed to a fine tuning of circadian clock genes in 

response to metabolic modulation of mTOR, CREB and AMPK pathway activity235,236, 

even when weekend ad libitum “cheat days” are permitted. Disrupting circadian oscillations 

by genetic manipulations of clock genes that encode circadian rhythmicity (e.g. Clock, Per1, 

and Cry genes) induces obesity, alters glucose metabolism and reduces lifespan in mouse 

models275–277, and irregular feeding uncouples peripheral clocks from the central pacemaker 

inducing insulin resistance and glucose intolerance278.

Data on early time-restricted feeding (from 6am to 2pm) in non-human primates are limited 

to a study of geriatric vervet monkeys showing a significant increase in HDL-cholesterol 

and reverse cholesterol efflux but not change in adiposity275. This is consistent with 

findings from a randomized clinical trial involving women affected by polycystic ovary 

syndrome showing that early meal timing (980 kcal breakfast, 640 kcal lunch, and 190 

kcal dinner) is associated with more weight loss, higher insulin sensitivity, lower circulating 

testosterone, and increased ovulation rate than controls eating isocaloric diets with a later 

meal pattern (190 kcal breakfast, 640 kcal lunch, and 980 kcal dinner)279. A five-week, 

randomized, crossover, isocaloric and eucaloric controlled feeding trial in males with 

prediabetes found that independently of weight loss early time-restricted feeding (6-hr 

feeding period, with dinner before 3 pm) did not improve glucose, IL-6 and C-reactive 

protein levels, but ameliorated insulin sensitivity, β cell responsiveness and blood pressure; 

however, early- time-restricted feeding markedly increased plasma triglycerides and total 

cholesterol280. A number of small short-term (2–4 months) pilot studies in overweight 

individuals suggest a beneficial effect of time-restricted feeding (~8–12 hours per day) on 

body weight and composition281, but the large TREAT randomized clinical trial challenges 

these findings. It shows that overweight or obese men and women randomized to time-

restricted feeding diets(access to food for 8 hours per day) did not experience weight loss 

or any cardiometabolic or glucose homeostatic improvements over 3 months282. While 

the underlying molecular changes that may dictate the beneficial effect of time-restricted 

feeding in humans is largely unknown, 30 consecutive days of dawn till dusk fasting (~14 

hour fast) in healthy humans showed an anti-cancer and anti-diabetes serum proteomic 

signature283. Long-term randomized clinical trials are warranted to establish the efficacy of 

time-restricted feeding to improve metabolic health in primary and secondary prevention of 

other cardiometabolic conditions.

Conclusions

Many questions about the effects of DR and its clinical translatability remain unanswered. 

Research over the next decade will focus on understanding how precise dietary components 

– amino acids, specific sugars, fats and microbial metabolites – regulate health and 
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longevity, and how these components interact with a DR diet, exercise and cognitive training 

and other lifestyle factors in a mechanistic way. In addition, the continued development of 

tools for conditional gene inactivation and mutation will permit a greater range of epistasis 

experiments to identify pathways required for DR to extend healthspan and lifespan. While 

we believe that promoting healthy eating and habits is the most cost-effective way to prevent 

multiple chronic diseases and promote human and environmental health284, identification of 

these pathways may also help to further the development of geroprotective agents that might 

potentiate the effects of healthy lifestyles.

Finally, a crucial point to consider is that humans are genetically heterogeneous, and 

experiments examining the interaction of diet and strain in mice have demonstrated 

that genetic and epigenetic background determines the response to dietary interventions, 

including DR. Our hope is that in the near future, these findings will be clinically translated 

using a personalized food-as-medicine approach, to identify how each person can best 

improve their health and potentially extend their lifespan by optimizing what, when and how 

much they eat.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1:

Regulation of mTORC1 Activity by Amino Acids and Growth Factors

mTORC1 is recruited to the lysosomal surface by heterodimers of the Rag family of 

small GTPases, which interact with the mTORC1 subunit Raptor when RagA/RagB is 

bound to GTP and RagC/RagD is bound to GDP (see the figure). The nucleotide binding 

state of the Rags is controlled by amino acids via several different protein complexes 

with guanine nucleotide exchange factor (GEF) or GTPase activating protein (GAP) 

activity, each of which is sensitive to different amino acids. These complexes include 

the Ragulator, a GEF activity for RagA and RagB; GATOR1, a GAP for RagA and 

RagB, and the FLCN complex, a GAP for Rag C and Rag D. Despite the massive 

amount of work already done to define the molecular mechanisms by which nutrients and 

environmental cues act to regulate mTORC1, more continues to be discovered, and key 

recent discoveries are highlighted below.

The GEF activity of Ragulator is modulated by multiple amino acids via lysosmal 

v-ATPase and SLC38A9. Specific sensors for the amino acids leucine (SESTRIN1, 

SESTRIN2, and SESTRIN3) and arginine (CASTOR1 and CASTOR2) have been 

identified; when levels of the sensed amino acids are low, these proteins inhibit 

GATOR2 activity to indirectly modulate the GAP activity of GATOR1 towards RagA 

and RagB. SAMTOR is a recently discovered indirect methionine sensor for mTORC1; 

SAMTOR regulates GATOR1 activity in response to levels of the methionine metabolite 

S-adenosylmethionine (SAM)216, which is extremely responsive to methionine levels 

both in cell culture and in vivo210. Another recent finding was the discovery that 

GATOR1 action upon RagA/B allows the recruitment of the FLCN complex to the 

lysosome297,298. At the lysosome, FLCN acts to preserve lysosomal levels of leucine 

and mTORC1 activity by blocking accumulation of PAT1, a lysosomal amino acid 

transporter299; phosphorylation of FLCN by CDK4 is required for FLCN to depart the 

lysosome and allow the Rags to recruit mTORC1300. Finally, a new study suggests that 

while the RagGTPases are critical for the sensing of exogenous amino acids, lysosomal-

derived amino acids activate mTORC1 via a RagGTPase-independent mechanism that 

requires the homotypic fusion and vacuole protein sorting (HOPS) tethering complex301. 

Surprisingly, in the context of lysosomal derived amino acids the Rag-GATOR pathway 

acts as a negative regulator of mTORC1. A detailed mechanism for the regulation of 

mTORC1 by lysosomal-derived amino acids remains to be determined.

The Rags also play a role in glucose sensing by mTORC1302,303. Glucose itself is not 

sensed by mTORC1; instead, the glycolytic intermediate dihydroxyacetone phosphate 

(DHAP) is detected via a GATOR2 and GATOR1 dependent mechanism304. The precise 

molecular sensor of DHAP that modulates GATOR activity and the nucleotide-loading 

status of the Rags remains unknown.

At the lysosome, mTORC1 is activated by the Rheb-GTPase, which binds to the mTOR 

protein kinase and allosterically realigns the kinase-site residues, activating its ability to 

phosphorylates substrates305; disruption of this interaction inhibits mTORC1 signaling83. 

The nucleotide loading status of Rheb is controlled by the Tuberous Sclerosis Complex 
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(TSC, which comprises TSC1, TSC2 and TBC1D7306), which acts as a GAP for Rheb; 

the activity of TSC is controlled by many different kinases, which phosphorylate different 

residues and proteins within the TSC complex56. Intriguingly, the RagGTPases help to 

recruit TSC to lysosomes in response to amino acid or growth factor restriction307. Many 

details around this process are unknown, but GATOR2 seems to act as a regulator of 

TSC2 phosphorylation via this process, and Sestrin2 has likewise been implicated in the 

phosphorylation of TSC2308.
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Figure 1 |. The Hallmarks of dietary restriction.
This schematic enumerates the proven biological adaptations induced by dietary restriction 

(DR) that have a protective effect against ageing-related pathologies and diseases across 

rodents, non-human primates, and humans. These protective effects include the prevention 

of obesity and diabetes, cardiovascular disease, cancer, kidney disease, autoimmune and 

inflammatory conditions and cancer, leading to increased healthspan and lifespan. It is 

not yet clear what combination of transcriptional, epigenetic, proteomic, metabolomic, 

and microbiota changes drive such benefits of DR on healthspan and lifespan. Relevant 

references can be found in Supplementary information 1.
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Figure 2 |. Multiple molecular pathways engaged by dietary restriction.
Dietary restriction (DR) results in reduced consumption of most macronutrients, including 

carbohydrates and specific amino acids, the building blocks of proteins. Reduced levels 

of glucose and its catabolite dihydroxyacetone phosphate (DHAP) are sensed by AMP-

activated protein kinase (AMPK) and mTOR complex 1 (mTORC1), resulting in increased 

AMPK activity and decreased mTORC1 signaling, mediated through activation of TSC 

as well as modulation of the Rag-GATOR pathway that controls lysosomal localization 

of mTORC1. Downstream of mTORC1, ribosomal biogenesis and protein synthesis are 

downregulated and autophagy is increased. Decreased levels of methionine, branched-

chain amino acids (BCAAs), or of protein similarly reduce mTORC1 signaling via the 

Rag-GATOR pathway. Decreased levels of protein and amino acids are also sensed 

by the integrated stress response pathway via GCN2, eukaryotic translation initiation 

factor eIF2α and cAMP-dependent transcription factor ATF4, leading to the induction 

of the pro-longevity hormone fibroblast growth factor 21 (FGF21). Reduced levels of 

carbohydrates and calories lead to decreased insulin/insulin-like growth factor 1 (IGF-1) 

signaling, which leads to decreased activity of the PI3K/mTOR complex 2 (mTORC2)/AKT 

signaling cascade that normally inhibits forkhead box protein O (FOXO)-dependent gene 

transcription, as well as decreased mTORC1 activity. Decreased levels of methionine lead to 

decreased levels of the metabolite S-adenosyl methionine (SAM), altering DNA and histone 

methylation. Collectively, DR induces repair and recycling pathways, including autophagy, 

mitophagy, DNA repair, and oxidant defense, and enhances stem cell function. As a result, 

cell senescence is downregulated and proteostasis is improved. Together these positive 

effects on cell and tissue function (shown in blue) contribute to extension of lifespan and 
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healthspan. Proteins or protein complexes with kinase activity are depicted in red. SIRT1, 

sirtuin 1.

Green et al. Page 37

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3 |. Species-specific effects of fasting on ketone bodies production and survival.
Remarkable differences in biological adaptations to fasting exist between mice and humans 

that should be considered when determining how studies from rodent models can inform 

human trials. Because of their high-energy metabolism, most strains of mice starve to death 

after a 48–60 hour fast. In contrast, even lean men and women can undergo a 57–73 days 

of water-only fasting before death occurs, and some severely obese individuals can fast for 

more than a year. Similarly, serum ketone levels increase after approximately 4–7 hours of 

fasting and peak after 24 hours in rodents, whereas in humans ketone bodies usually start to 

increase after 18–24 hours of fasting and do not peak until 2 weeks.
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Table 1:

Genetic mouse models of extended longevity

Genetic Intervention Genetic background Sex Lifespan extension Phenotype Ref

Inhibition of growth hormone signaling

Snell dwarf mice 
(dw/dw)

Snell dwarf mice 
(C3H/HeJ × DW/J)F1 

background

Male and 
female

Average lifespan 
increased by 42%

Reduced body size, impaired 
growth hormone defects. 
Homozygous loss of function 
mutation in Pit-1

285,286

Ames dwarf mice 
(df/df)

Heterogeneous 
genetic background.

Male and 
female

Average lifespan 
increased by 64% (F) 
and 49% (M)

Reduced body size, impaired 
growth hormone defects
Homozygous loss of function 
mutation in Prop-1

37,287–289

Little mice (lit/lit) C57BL/6J Male and 
female

Average lifespan 
increased by 23% (M) 
and 25% (F)

Slow growth excessive fat. 
Mutation in GH-releasing 
hormone (GHRH) receptor gene. 
Very low GH. Low fat diet for 
obesity prevention.

GH Receptor 
Knockout (Laron 
Dwarf) Mice GHR/BP 
−/−

129Ola and BalbC Male and 
female

Average lifespan 
increased by 55% (M) 
and 38% (F)

Slow growth and reduced body 
weight after birth. Disruption 
of the GH receptor⧸GH-binding 
protein (GHR⧸GHBP). Redced 
body size. Significantly lower 
IGF-1 levels

39,290,291

AC5 KO 129/SvJ × C57BL/6 Male and 
female

Median lifespan 
increased by ~30%

Resistant to cardiac stress. 
Lower BW and GH.

292

Transgenic 
overexpression of 
FGF21

C57BL/6J Male and 
female

Median lifespan 
increased by 30% (M) 
and 39% (F)

Blunts GH/IGF-1 signaling 
pathway in liver.

114

Inhibition of mTOR signaling

mTOR(Δ/Δ) mTOR 
expressed at 25% of 
WT

129S1 and C57BL/
6Ncr

Male and 
female

Median lifespan 
increased by 22% (M) 
and 19% (F)

Reduced mTORC1 and 
mTORC2 activity. Smaller than 
WT.

64

mtor+/− mlst8+/− C57BL6/129S5 Male and 
female

Median lifespan 
increased by n.s. (M) 
and 14.4% (F)

Decreased mTORC1 activity. 
Normal glucose tolerance and 
insulin sensitivity

59

S6K1−/− C57BL/6 Male and 
female

Median lifespan 
increased by n.s. (M) 
and 19% (F)

Reduced fat mass and increased 
food intake (F)

63

Transgenic 
overexpression of 
human TSC1

Male and 
female

Median lifespan 
increased by n.s. (M) 
and 12.3% (F)

293

αMUPA mice NIH FVB/N inbred 
mouse line

Female Median lifespan 
increased by 16%

Consume 20% less food and 
exhibit 20% reduced body 
weight. Overproduce urokinase-
type plasminogen activator 
(uPA) in the brain.

294

Inhibition of iInsulin/IGF-1 signaling

Igf1r+/− mice 129/Sv genetic 
background

Female Average lifespan 
increased by 16% (M, 
n.s.) and 33% (F)

Heterozygous IGF-1 receptor 
knockouts. Greater resistance to 
oxidative stress

47

FIRKO mice C57BL/6J × FVB/NJ Male and 
female

Average lifespan 
increased by 18%

Fat-specific insulin receptor 
knockout. Reduced fat mass.

49

Irs1−/− mice C57BL/6J × FVB/NJ Male and 
female

Median lifespan 
increased by 16% (M) 
and 32% (F)

Delayed age‐sensitive markers in 
female Irs1−/− mice

51,52
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Genetic Intervention Genetic background Sex Lifespan extension Phenotype Ref

Irs2+/− mice C57BL/6J Male and 
female

Median lifespan 
increased by 17%

Insulin resistant 50

Brain-specific Irs2+/− 

mice
C57BL/6J Male and 

female
Median lifespan 
increased by18%

Insulin resistant, increased 
metabolic flexibility

50

Brain-specific Irs2−/− 

mice
C57BL/6J Male and 

female
Median lifespan 
increased by 14%

Insulin resistant, increased 
metabolic flexibility

50

Irs2−/− mice C57BL/6J × FVB/NJ Male and 
female

Median lifespan 
decreased by 86% (M) 
and 23% (F)

Significantly shortens lifespan 51

Akt1+/– mice C57BL/6 Male and 
female

Average lifespan 
increased by 8% (M) 
and 15% (F)

Decreased TOR signaling 
and suppressed mitochondrial 
activity

295

Altered sirtuin function or expression

Whole body Sirt1 
overexpression

C57BL6/CBA Male and 
female

No significant change in 
lifespan

No change in longevity, 
protected from development of 
age-associated diseases

145

Brain specific 
Sirt1-overexpressing 
(BRASTO) transgenic 
mice

C57BL/6J Male and 
female

Median lifespan 
increased by9% (M) 
and 16% (F)

Enhanced neural activity 146

Sirt3−/− C57BL6/J × 129Sv Male Median lifespan 
decreased by 19%

Shortened lifespan and severe 
cardiac damage

149

Sirt6-transgenic mice C57BL/6J and BALB/
cOlaHsd

Male and 
female

Average lifespan 
increased by 15.7% (M) 
and n.s. (F)

Reduced serum IGF-1 (M) 153

ATRAP‐KO C57BL/6 ? Median lifespan 
decreased by 18%

Age‐related pathological 
changes in the kidney correlated 
with decreased expression of the 
prosurvival gene, Sirtuin1.

296

Adipose-specific 
overexpression of 
NAMPT

C57BL/6J Male and 
female

Median lifespan 
increased by n.s. (M) 
and 13.4% (F)

Increased wheel running, and 
better sleep quality, glucose 
tolerance, pancreatic beta cell 
function, and cognitive function 
with aging

134

n.s.: Not significant; ?: Not stated in the original research.
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Table 2 |

Impact of dietary restriction on common ageing-associated pathologies and physiological decline on different 

mammalian species.

Organism Human Non-human primates Rodents

Effects on body weight and metabolism

Body weight ↓ ↓ ↓

Fat mass ↓ ↓ ↓

Insulin sensitivity ↑ ↑ ↑

Inflammation ↓ ↓ ↓

Effects on cardiovascular disease

Atherosclerosis ↓ ? ↓ 
a

Diastolic dysfunction ↓ ? ↓

Cardiomyopathy ? ↓ ↓

Blood pressure ↓ ↓ ↓

Cholesterol ↓ ↓ ↓

Heart rate variability ↑ ? ↑

Effects on neurodegenerative disease

Memory ? ? ↑

Cognitive function ? ? ↑ 
c

Neuronal survival ? ↑ ↑

Amyloid deposition ?
? 

b ↓ 
c

Effects on longevity and other chronic diseases

Lifespan ? ↑ ↑

Obesity ↓ ↓ ↓

Type 2 diabetes ↓ ↓ ↓

Fatty liver disease ↓ ? ↓

Kidney disease ? ? ↓

Cancer incidence ↓ ↓ ↓

Autoimmune disease ? ? ↓

Sarcopenia and frailty ? ↓ ↓

Footnote: Up arrows: increase or improvement; down arrows: decrease or decline; question marks: unknowns.

a
in apolipoprotein E deficient mice.

b
Amyloid peptides were decreased in DR squirrel monkeys but were unchanged in DR rhesus macaques.

c
In Alzheimer’s Disease mouse model. Relevant references can be found in Supplementary information 1.
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