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Abstract

Objective: Electroencephalography (EEG) is an important tool for neurological outcome 

prediction after cardiac arrest. However, the complexity of continuous EEG data limits timely 

and accurate interpretation by clinicians. We develop a deep neural network (DNN) model to 

leverage complex EEG trends for early and accurate assessment of cardiac arrest coma recovery 

likelihood.

Methods: We developed a multiscale DNN combining convolutional neural networks (CNN) 

and recurrent neural networks (long short-term memory [LSTM] ) using EEG and demographic 

information (age, gender, shockable rhythm) from a multicenter cohort of 1,038 cardiac arrest 

patients. The CNN learns EEG feature representations while the multiscale LSTM captures short-

term and long-term EEG dynamics on multiple time scales. Poor outcome is defined as a Cerebral 

Performance Category (CPC) score of 3-5 and good outcome as CPC score 1-2 at 3-6 months 

after cardiac arrest. Performance is evaluated using area under the receiver operating characteristic 

curve (AUC) and calibration error.

Results: Model performance increased with EEG duration, with AUC increasing from 0.83 (95% 

Confidence Interval [CI] 0.79-0.87 at 12h to 0.91 (95%CI 0.88-0.93) at 66h. Sensitivity of good 

and poor outcome prediction was 77% and 75% at a specificity of 90%, respectively. Sensitivity 

of poor outcome was 50% at a specificity of 99%. Predicted probability was well matched to the 

observation frequency of poor outcomes, with a calibration error of 0.11 [0.09-0.14].

Conclusions: These results demonstrate that incorporating EEG evolution over time improves 

the accuracy of neurologic outcome prediction for patients with coma after cardiac arrest.
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Introduction

Coma is a common clinical presentation after successful resuscitation from cardiac arrest 

(CA) due to transient cerebral hypoxia and ischemia.1,2 The electroencephalogram (EEG) 

after CA is highly abnormal, with improvement or deterioration of EEG patterns being 

predictive of which patients have the potential to eventually recover. Current guidelines 

recommend starting EEG monitoring early to rule out seizures and to identify signatures 

predictive of severe brain injury leading to poor outcomes.3,4 Persistent EEG background 

suppression, burst suppression with identical bursts, and seizure-like, i.e. ictal interictal 
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activity on a suppressed background predict poor outcomes with low false-positive rates. 

However, the large volume of continuous EEG data and limited availability of clinicians 

with expertise in EEG interpretation limit real-time applications of EEG for prognostication 

and management.

Machine learning (ML) approaches to EEG interpretation have the potential to address this 

problem. In addition, ML may increase EEG’s prognostic value by not only accurately 

estimating the prognostic significance of individual patterns at a given point in time but 

also by leveraging the dynamics of continuous EEG data over the course of neurological 

recovery from coma.5,6 Most ML studies in CA prognostication to date make predictions 

based on EEG patterns after a certain time window and do not leverage the evolution of 

the EEG data over time.6-10 However, a recent study showed that a time-sensitive model 

outperformed baseline methods that were time-insensitive6. This approach used standard 

quantitative EEG metrics such as burst-suppression ratio, band power, and spike frequency. 

However, other potentially relevant characteristics of the EEG signal may be lost when 

only predefined features are used. We hypothesized that a data-driven representation of 

EEG data might allow superior prognostication performance compared to approaches using 

hand-crafted features.

In this study, we developed a multiscale deep neural network that combines data driven 

features learned by a CNN with a long-short time memory recurrent neural networks 

(LSTM) to predict neurological outcome after CA. In this framework, EEG features are 

automatically learned from raw waveforms by the CNN, and temporal dependencies are 

modeled using LSTM. We propose a framework of multiscale CNN-LSTMs to capture both 

fine-grained information (EEG patterns within current time windows) and coarse-grained 

information (EEG evolution from the beginning to current time) in the EEG time series. The 

framework is designed to model short-term and long-term EEG dynamics during the time 

course of EEG monitoring as a real-time prediction model.

Materials and methods

Dataset.

Through the International Cardiac Arrest EEG Consortium (ICARE), we assembled EEG 

dataset including 1,038 CA subjects from seven hospitals in Europe and the U.S. The 

seven hospitals were Medisch Spectrum Twente (Enschede, Netherlands), Rijnstate Hospital 

(Arnhem, Netherlands), Erasmus Hospital (Brussels, Belgium), Yale New Haven Hospital 

(New Haven, CT, USA), Brigham and Women’s Hospital (Boston MA, USA), Beth Israel 

Deaconess Medical Center (Boston, MA, USA), and Massachusetts General Hospital 

(Boston MA, USA). EEG data were prospectively collected in all hospitals. The 19-channel 

EEG data were standardized by matching channel names, applying digital bandpass 

filters (0.5-30 Hz), and resampling to 100 Hz. Clinical data and outcome measures were 

prospectively collected in the two Dutch centers and retrieved from patient medical records 

in the remaining centers. The research protocol was approved by the Institutional Review 

Boards of participating hospitals (Partners Healthcare IRB #2013P001024).
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The ICARE dataset contains approximately 58,000 hours of clinical EEG data, demographic 

information (age, sex, and presence of a shockable rhythm), and functional neurological 

outcome from 3 to 6 months after CA. Good neurological outcome was defined as a CPC 

score of 1 or 2 (minimal to moderate neurologic disability), and poor outcome was defined 

as a CPC score of 3-5 (severe neurologic disability, persistent coma or vegetative state, or 

death) at 3 to 6-months11,12. Four institutions (MGH, BWH, YNH, and BIDMC) assessed 

best CPC scores retrospectively through chart review at 6 months and one (ULB) at 3 

months. In these institutions, CPC scores were not reviewed for patients who achieved a 

good outcome (CPC 1-2) or died by hospital discharge. Two institutions recorded CPC 

scores prospectively through phone or in-person interview for surviving patients (Medisch 

Spectrum Twente and Rijnstate Hospital).

The inclusion criteria included non-traumatic cardiac arrest, age≥18 years, return of 

spontaneous circulation (ROSC), Glasgow Coma Scale score ≤8 on admission, and 

management with targeted temperature management (TTM). Exclusion criteria were acute 

cerebral hemorrhage or acute cerebral infarction. The TTM protocol in each institution starts 

as soon as possible after admission to the emergency room or intensive care unit with 

external cooling pads. Goal temperature (32-34 °C or 36 °C) is maintained for 24 hours, 

and there is gradual rewarming at 0.25-0.5 °C to 37 °C. Systematic neuromuscular blockade 

during the hypothermia and rewarming phase of TTM was only pursued in one institution 

(MGH), and the remaining hospitals used neuromuscular blockade as needed for shivering 

or other clinical indications. Commonly used sedatives and standard dosing ranges are 

propofol (25-80 mcg/kg/h), midazolam (0.1 mg/kg/h), or fentanyl (25-200 mcg/h). Only one 

institution (ULB) used midazolam for sedation preferentially, with the remaining institutions 

using propofol.

Model development.

Fig. 1 shows the framework of our proposed model, which was composed of three 

parts: A CNN, a multiscale LSTM, and a baseline demographics model. A CNN was 

built to automatically extract features from consecutive 10 seconds of preprocessed EEG 

waveforms, which compressed the information and reduced feature dimensions. We used 

a recent model architecture13, which employed a neural architecture space search strategy 

to find a family of best models. The output dimension of the 61-layer CNN was 1,024. 

CNN features generated within consecutive 5-minute time windows (i.e. 30 outputs) were 

averaged as the inputs of LSTMs. The CNN was optimized to classify common pathologic 

EEG patterns in critically ill patients, including seizures and seizure-like rhythmic and 

periodic patterns (lateralized and generalized periodic discharges or rhythmic delta activity), 

as described in prior work14. In the present work, we use the CNN not for classification; 

rather, we used the activation pattern in the last hidden layer as a representation (feature 

vector) of the information contained in the EEG on a local (10 second) time scale. In 

cases of intermittent missing data (i.e. periods when EEG monitoring was temporarily 

interrupted), missing epochs were interpolated to values in the nearest available epochs.

Our multiscale CNN-LSTM model contains a set of LSTMs that aim to capture the 

dynamics of longitudinal EEG data on multiple time scales. We used bidirectional LSTMs 
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to learn time dependencies between time steps in time series in both forward and backward 

directions. The lower scale step made predictions based on the most recent 6h time blocks 

with fine-grained inputs (the EEG feature sequences with a 5-min time resolution). In 

contrast, the upper scale focused on temporal evolution over long time scales. In our 

framework, the lower LSTMs focus on fine-grained information, and the upper LSTMs 

deliver coarse-grained information (EEG evolution from the beginning to the current time 

with a lower time resolution). To avoid the vanishing gradient problem in model training 

during back-propagation through time, the whole feature sequence until the current time 

was down-sampled to a feature sequence with a fixed length (equivalent to 48h). Feature 

sequences with a shorter length were passed without down-sampling. Batch normalization 

and dropout were used to avoid overfitting during network training. The lower scale and 

upper scale LSTMs had two hidden layers with 50 and 40 neurons, respectively.

To incorporate clinical admission variables into the model, we developed a demographics 

model using a random forest classifier incorporating three clinical features: age, sex, 

and presence of a shockable rhythm. The outputs of the upper LSTMs, lower LSTM, 

and demographics model were averaged to obtain the final prediction probabilities of 

neurological outcome. We investigated model performance in the time range of 12-72h 

post-cardiac arrest with steps of 6h. For consecutive 6h time blocks, we built the models 

as described above. In order to leverage past information and obtain stable predictions, 

outputs of the combination models in prior time blocks were averaged as the final prediction 

probabilities at the current time.

Performance Evaluation.

To quantify the stability of model performance, we used 5-fold cross validation and 

reported average performance and 95% confidence intervals (CI). The area under the 

receiver operating characteristic curve (AUC-ROC) and calibration error (absolute deviation 

from diagonal line) were used as evaluation metrics. We compared the performance of 

our proposed model with several baseline models on the same dataset utilizing nine hand-

crafted quantitative EEG features (burst suppression ratio15, Shannon entropy, δ (0.5-4 

Hz), θ (4-7 Hz), α (8-15 Hz), β (16-31 Hz) band power, α/δ ratio, regularity7, and spike 

frequency16). We utilized several models incorporating these nine quantitative EEG features 

for comparison with our model: 1) Time-sensitive models: A) two types of benchmark 

deep neural networks Bi-LSTM and temporal convolutional network (TCN)17; B) Another 

time-dependent model called a sequence of generalized linear models (GLM) with Elastic 

Net regularization was proposed recently by our group, which allowed feature selection in 

the past and present feature sets6; C) Hidden Markov Models (HMM) are used in time series 

prediction by modeling states and their transition probabilities. 2) Time-insensitive model: 

A conventional time-independent benchmark classifier, a Random Forest, was also created 

to compare against prognostication performance of models that lack the ability to leverage 

temporal trends.

For reproducibility, computer codes to generate the figures and sample data are available at 

this link https://github.com/mghcdac/icare-dl.
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Results

Prediction Performance.

Poor outcome was observed in 665 (64%) subjects. Subject characteristics grouped by 

CPC scores are summarized in Table 1. Fig. 2a. shows that the proposed framework 

(combination of multiscale CNN-LSTM and demographics models) achieved the best 

performance among all models. The performance of the proposed model combining 

data-driven features, longitudinal EEG dynamics, and demographic information gradually 

improved over time with more EEG observations from an AUC of 0.83 [0.79-0.87] at 

12h to an AUC of 0.90 [0.87-0.93] at 72 h post-cardiac arrest. The best performance 

was obtained at 66 h with an AUC of 0.91 [0.88-0.93]. The proposed model achieved 

longitudinal improvement in prediction performance by leveraging prognostic information 

of both EEG and clinical variables, which supports the value of multimodal prognostication 

approaches for developing robust models for outcome prediction after cardiac arrest.

The performance of time dynamic (Bi-LSTM, TCN, GLM with Elastic Net and HMM) 

and time-insensitive prediction models using EEG exclusively was similar early on, but the 

performance of time dynamic models increased over time. The multiscale Bi-LSTM had 

superior performance in comparison to other models, specifically after 36h post-cardiac 

arrest. The best performance using only EEG was obtained by multiscale Bi-LSTMs with 

a mean AUC of 0.89 [0.85-0.91] at 72h post-cardiac arrest. Despite the limited number of 

available clinical variables across centers, the demographics model achieved relatively good 

performance, with a mean AUC of 0.73 [0.69-0.76]. Moreover, combining demographics 

and EEG features improved prediction performance, which indicates that demographics and 

EEG variables are complementary for neurologic outcome prediction post-cardiac arrest.

Because this analysis was retrospective and EEG monitoring duration was determined based 

on clinician’s judgment and patient clinical course, the duration of EEG recordings varied 

across individuals (Fig. 2b). Fig. 2c shows the ROC curves across time intervals. At 66 h 

after CA, for predicting good outcome, the model’s sensitivity was 39%, 60%, and 77% 

at specificity thresholds of 99%, 95%, and 90%, respectively; whereas specificity was 

23%, 49%, and 68% at sensitivity thresholds of 99%, 95%, and 90%. For predicting poor 

outcome, sensitivity was 50%, 66%, and 75% at specificity thresholds of 99%, 95%, and 

90%; whereas specificity was 22%, 48%, and 67% at sensitivity thresholds of 99%, 95%, 

and 90%.

We evaluated model generalizability by training the model on data from all hospitals except 

one holdout hospital, then testing the model on the held out institutions’ data as validation. 

Results are shown in Table 2. We see that the model performance varies between hospitals. 

The model consistently performed very well over time for some hospitals (e.g., Hospital # 3 

and # 5) with AUC values >90%. Model performance was worst for Hospital # 4, with a best 

AUC of 76%.

Model performance for Hospitals # 1 and # 6 increased over time from AUCs 83% early 

after CA to AUCs >90% later 54 hours after CA.
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Calibration Risk.

We evaluated model calibration by comparing prediction probabilities of poor outcomes 

with the proportion of patients who had poor outcomes. The calibration error was calculated 

as the absolute deviation from the diagonal line (perfect calibration). Calibration curves at 

different time intervals and corresponding calibration errors are shown in Fig. 2d. Although 

model calibration deteriorated somewhat over time, models remained well calibrated.

Individual-level Analysis.

We evaluated model performance for individual patients and CPC scores. Fig. 3a shows that 

the predicted poor outcome probabilities over time from our models for individual patients 

were stable and higher for patients with poor outcomes. Moreover, prediction performance 

improved progressively over time as more EEG data became available.

We compared prediction probabilities of poor outcome over time for individual CPC 

scores in Fig. 3b. The mean prediction probabilities for individual CPC scores followed 

the ordering of CPC scores, with the CPC 5 group having the highest mean prediction 

probabilities and the CPC 1 group the lowest. The mean prediction probabilities across CPC 

1-5 scores were 0.43, 0.43, 0.65, 0.74, and 0.76, respectively.

Visualization.

Fig. 4 illustrates some prediction examples for subjects with different CPC scores, showing 

multi-taper EEG spectrograms and samples of the corresponding raw EEG signals. The 

first patient shown had a good outcome with a CPC score of 1 and had continuous EEG 

with normal amplitudes early during recovery. After 36h, there was an increase in power 

across low frequencies. Model probability outputs were consistently low for poor outcome 

prediction. The CPC 2 patient had a continuous EEG early on as well, however, EEG 

amplitudes were lower and epileptiform discharges emerged later. The patient with CPC 3 

had isoelectric EEG at 12-24h post-cardiac arrest, followed by epileptiform discharges after 

36h. Poor outcome probabilities increased from 64% at 12h to 85% at 72h. The subject with 

CPC 4 had burst-suppression initially followed by an isoelectric EEG after 24h. Prediction 

probabilities for poor outcome, in this case, remained >80% across all time blocks. The 

last patient shown with a poor outcome (CPC 5) had increasing epileptiform discharges 

superimposed on a suppressed background with corresponding poor outcome probabilities 

>90% throughout.

Discussion

Various approaches have been proposed to predict neurologic outcomes in post-cardiac 

arrest coma in the literature. The Cerebral Recovery Index (CRI) method and its variants 

extracted several quantitative EEG features in the first 24 h after CA and trained random 

forest classifiers for prediction7,8,18. Maximal AUC was achieved in the original CRI paper 

at 18 h (0.94) using a hand-crafted parametric model with 5 QEEG features7; at 12 h (0.92) 

in the second CRI using a random forest model employing 9 QEEG features8; and at 12 h 

(0.94) in the third CRI employing 44 features in a random forest model18. These methods 

focused on favorable and unfavorable EEG patterns early after CA without considering the 
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temporal evolution of the EEG. Recently, the same group trained a convolutional neural 

network to predict outcomes at 12 and 24 h after CA9. The best performance with an 

AUC of about 0.90 was obtained at 12 h. Although the performance of these studies were 

relatively high (~0.90 AUC), the data used for evaluation were more homogenous and 

only 5-min artifact-free epochs at specific time points were used and analyzed. A recent 

time-sensitive model was proposed to progressively select critical features in prior time 

intervals using a GLM with Elastic Net6 model. Comparisons with the CRI model and 

several baseline models showed superior performance with the best AUC of 0.83 at 72 h.

Important differences between studies include: 1) The current data set is larger and 

more heterogeneous, coming from seven hospitals and three different countries. Our 

results show that model performance varies across institutes (Table 2). Possible reasons 

include differences in patient characteristics, care practices, and decision-making regarding 

withdrawal of care. 2) Model training and validation strategies differ across studies. 3) 

Model evaluation practices differ across studies. In our study, we used model calibration 

in addition to AUC for evaluation. Calibration provides a measure of a model’s ability to 

provide clinically relevant probabilistic estimates of risk, which can be done at the individual 

patient-level and across all predicted probabilities. Overall, the present work’s contributions 

thus include technical innovations with more complete use of the data, utlilization of 

temporal information, and increased automation; increased rigor of the investigation of 

model generalizability; and increased rigor and scale of model validation.

Our approach has several limitations. First, clinical information incorporated in our model 

was limited. We showed that including age, sex, and initial cardiac rhythm improved 

outcome prediction performance; however it is likely that additional clinical and ancillary 

information could improve performance even further.4,19-21 Second, although the prediction 

performance of our multiscale model was superior to other models, the interpretability of 

deep neural networks is limited when compared to other machine learning approaches using 

interpretable clinical features. Third, comparisons of the proposed prognostic method with 

other interpretable standard prognostication approaches needs further investigation. Fourth, 

physicians caring for these patients were not blinded to demographics or EEG data used to 

build these models, therefore our results might be influenced by self-fulfilling prophecies 

due early withdrawal of life-sustaining therapies. Future efforts in machine learning for 

neurological prognostication in cardiac arrest must focus on methods to support debiasing 

algorithm predictions as models are developed using patient outcomes that were censored 

by withdrawal of life-sustaining therapies. These biases are lessened by guidance from 

the European Resuscitation Council and American Heart Association about neurological 

prognostication practices in the participating hospitals, however variability in neurological 

prognostication among medical centers is a well-known barrier for building prognostic 

models that are robust and generalizable.22

Conclusion

Multiscale CNN-LSTM models predict potential for neurological recovery from coma 

following cardiac arrest by capturing short- and long-term EEG dynamics and demographic 

information.
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Fig. 1. The proposed model architecture.
The framework contains three components: CNNs, multiscale LSTMs and the demographics 

model. CNNs were used to extract features for every 10-s EEG segments. The outputs 

of CNN features were averaged as the inputs of Bi-LSTMs. The fine-grained Bi-LSTMs 

made predictions based on the most recent 6-h EEG features while the coarse-grained 

Bi-LSTMs aimed at the snapshots of EEG evolutions from the beginning to the current time. 

The modeling framework for EEG has two important novelty: EEG feature learning in a 

data-driven way and short-term and long-term time dynamic modeling. The demographics 

model made predictions based on the clinical variables age, sex and ventricular fibrillation. 

The outputs of all models were fused by averaging to obtain the final prediction probabilities 

of neurological outcomes.
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Fig. 2. Model performance of different models in outcome prediction.
a, Mean AUC values of different models within each 6-hour time interval. The proposed 

method (red line) performed best, exhibiting consistent improvement in performance with 

more observations (from mean AUC of 0.83 at 12 h to mean AUC of 0.90 at 72 h). 

b, Numbers of patients with EEG available with respect to time after cardiac arrest. c, 

Mean ROC curves at different time intervals. Shaded areas indicate the standard errors in 

5-fold cross validation. d, Calibration curves at different time intervals. The numbers are 

calibration errors (deviations from the diagonals).
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Fig. 3. Model performance of individual patients and CPC scores.
a, Individual prediction probabilities. Each row shows the output probabilities for one 

patient over consecutive 6h blocks, the darker the color, the higher the predicted probability 

of poor outcome. b, Predicted probabilities over time, grouped by final CPC scores. The 

overall mean predicted probabilities were consistent with the expected order of CPC scores.
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Fig. 4. Illustration of prediction results on sample patients.
Each row illustrates the mean multi-taper spectrogram and EEG waveforms in multiple 

time blocks. At the bottom of each spectrogram, prediction probabilities of the model 

for the corresponding EEG segments are shown. The time length of EEG snapshots was 

10 s while the spectrograms spanning a 5-min time window are shown. The proposed 

model made good predictions based on the EEG patterns. Continuous EEG contributes 

to lower prediction probabilities of poor outcomes while epileptiform discharges with flat 

background contribute to high prediction probabilities of poor outcomes.
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Table 1.

Subjects characteristics, grouped by CPC scores.

CPC group CPC 1 CPC 2 CPC 3 CPC 4 CPC 5

Number of patients 303 70 31 17 617

Age (years) 57 (15) 56 (15) 66 (11) 54 (21) 62 (16)

Female sex (%) 29 24 35 47 32

Shockable Rhythm (VFib/VT, %) 71 67 42 41 31

EEG start time (h) 17 (14) 16 (16) 16 (13) 20 (6) 20 (17)

EEG duration (h) 52 (33) 63 (44) 69 (51) 99 (60) 53 (40)

Out-of-hospital CA (N/A) * 232 (21) 50 (6) 17 (4) 14 (0) 439 (43)

TTM (N/A) * 261 (34) 61 (7) 26 (5) 11 (2) 514 (64)

VFib: ventricular fibrillation; VT: ventricular tachycardia; TTM: targeted temperature management; EEG start time (h) is relative to time of cardiac 
arrest. All numbers related to age and EEG expressed as mean (standard deviation).

*
For the number of out-of-hospital CA patients and TTM, we didn’t have all information available from different hospitals.
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Table 2.

Model performance for individual institutions (AUC, 95% confidence intervals)

Time
Interval 18 h 24 h 30 h 36 h 42 h

# 1 0.83 [0.72,0.94] 0.86 [0.78,0.95] 0.84 [0.75,0.93] 0.86 [0.78,0.94] 0.87 [0.78,0.95]

# 2 0.83 [0.74,0.93] 0.78 [0.69,0.87] 0.84 [0.77,0.91] 0.82 [0.75,0.90] 0.87 [0.81,0.93]

# 3 0.93 [0.87,0.99] 0.95 [0.91,0.99] 0.95 [0.90,0.99] 0.95 [0.91,0.99] 0.93 [0.88,0.97]

# 4 0.67 [0.56,0.78] 0.68 [0.58,0.78] 0.72 [0.63,0.81] 0.76 [0.66,0.85] 0.71 [0.60,0.83]

# 5 0.88 [0.83,0.92] 0.89 [0.85,0.93] 0.91 [0.87,0.94] 0.91 [0.88,0.95] 0.93 [0.89,0.96]

# 6 0.83 [0.73,0.93] 0.87 [0.78,0.95] 0.89 [0.81,0.97] 0.89 [0.82,0.96] 0.90 [0.83,0.96]

Time
Interval 48 h 54 h 60 h 66 h 72 h

# 1 0.87 [0.79,0.95] 0.90 [0.83,0.97] 0.91 [0.84,0.98] 0.91 [0.83,0.99] 0.91 [0.82,0.99]

# 2 0.87 [0.80,0.93] 0.87 [0.81,0.94] 0.86 [0.80,0.93] 0.88 [0.81,0.95] 0.87 [0.79,0.95]

# 3 0.91 [0.86,0.96] 0.92 [0.87,0.97] 0.94 [0.89,0.98] 0.96 [0.93,1.00] 0.97 [0.94,1.00]

# 4 0.61 [0.47,0.75] 0.55 [0.37,0.72] 0.54 [0.33,0.74] 0.53 [0.32,0.73] 0.60 [0.39,0.81]

# 5 0.92 [0.89,0.96] 0.91 [0.87,0.95] 0.91 [0.87,0.96] 0.91 [0.87,0.96] 0.90 [0.84,0.95]

# 6 0.90 [0.83,0.96] 0.90 [0.83,0.97] 0.93 [0.88,0.99] 0.94 [0.88,0.99] 0.98 [0.94,1.00]
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