Skip to main content
. 2021 Dec 8;4:643424. doi: 10.3389/frai.2021.643424

TABLE 5.

Results of the proposed MagNet and existing algorithms on the proposed ID Age nder databases using frames/images as input.

Database Features EER (%) ACER (%)
Snapchat LBP Määttä et al. (2011) 27.1 ± 4.3 27.3 ± 4.1
LPQ Ojansivu and Heikkilä (2008) 28.7 ± 4.0 30.4 ± 3.8
BSIF Kannala and Rahtu (2012) 30.2 ± 7.0 30.2 ± 6.9
VGG-16 Simonyan and Zisserman (2015) 17.7 ± 2.4 18.4 ± 2.3
GoogLeNet Szegedy et al. (2015) 28.1 ± 5.1 29.1 ± 4.9
S-MIL Li et al. (2020a) 16.9 ± 3.6 18.2 ± 2.7
XceptionNet Rossler et al. (2019) 19.7 ± 4.7 23.6 ± 3.1
ResNet-18 Kumar et al. (2020) 30.0 ± 5.9 31.6 ± 5.7
Proposed (MagNet) 18.0 ± 0.4 17.6 ± 0.3
Identity Morphing LBP Määttä et al. (2011) 0.6 ± 0.2 0.9 ± 0.1
LPQ Ojansivu and Heikkilä (2008) 6.1 ± 0.3 6.2 ± 0.2
BSIF Kannala and Rahtu (2012) 6.2 ± 0.4 6.2 ± 0.2
VGG-16 Simonyan and Zisserman, (2015) 4.7 ± 1.1 9.7 ± 1.0
GoogLeNet Szegedy et al. (2015) 12.3 ± 2.1 11.5 ± 0.9
S-MIL Li et al. (2020a) 9.4 ± 1.2 11.7 ± 1.8
XceptionNet Rossler et al. (2019) 7.9 ± 2.4 9.1 ± 1.1
ResNet-18 Kumar et al. (2020) 8.5 ± 1.8 10.6 ± 1.2
Proposed (MagNet) 0.0 ± 0.0 0.2 ± 0.0
FaceApp LBP Määttä et al. (2011) 1.3 ± 0.8 2.7 ± 0.7
LPQ Ojansivu and Heikkilä (2008) 1.2 ± 0.4 1.3 ± 0.3
BSIF Kannala and Rahtu (2012) 30.3 ± 4.4 30.5 ± 4.5
VGG-16 Simonyan and Zisserman (2015) 18.3 ± 2.5 21.4 ± 2.3
GoogLeNet Szegedy et al. (2015) 23.7 ± 2.1 24.5 ± 2.7
S-MIL Li et al. (2020a) 8.6 ± 1.8 12.3 ± 1.2
XceptionNet Rossler et al. (2019) 10.2 ± 3.6 14.7 ± 1.8
ResNet-18 He et al. (2016) 16.2 ± 3.3 14.8 ± 1.6
Proposed (MagNet) 0.4 ± 0.7 2.5 ± 0.4

Result of the best performing algorithm is highlighted in bold.