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Abstract

We show dense voxel embeddings learned via deep metric learning can be employed to produce a 

highly accurate segmentation of neurons from 3D electron microscopy images. A “metric graph” 

on a set of edges between voxels is constructed from the dense voxel embeddings generated 

by a convolutional network. Partitioning the metric graph with long-range edges as repulsive 

constraints yields an initial segmentation with high precision, with substantial accuracy gain 

for very thin objects. The convolutional embedding net is reused without any modification to 

agglomerate the systematic splits caused by complex “self-contact” motifs. Our proposed method 

achieves state-of-the-art accuracy on the challenging problem of 3D neuron reconstruction from 

the brain images acquired by serial section electron microscopy. Our alternative, object-centered 

representation could be more generally useful for other computational tasks in automated neural 

circuit reconstruction.
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I. Introduction

NEURONAL connectivity can be reconstructed from a 3D electron microscopy (EM) image 

of a brain volume [1], [2]. A challenging and important subproblem is the segmentation 

of the image into neurons. One state-of-the-art approach applies a convolutional network 
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to detect neuronal boundaries [3]-[6], which are postprocessed to yield a segmentation. 

Impressive accuracy has been obtained via this approach, and it has proven hard to beat. For 

example, the boundary detection net of [5] has remained at the top of the leaderboard of the 

SNEMI3D neuron segmentation challenge1 for the past three years. All the leading entries 

of the CREMI challenge2 are also boundary detection nets [6], [7].

Alternatives to boundary detection have been proposed. For example, one can train a 

convolutional net to iteratively extend one object at a time, as in flood-filling nets (FFNs, 

[8], [9]) and MaskExtend [10]. Cross-classification clustering [11] introduces a multi-

object tracking technique based on convolutional/recurrent nets. Among such alternative 

approaches, FFNs have successfully been employed to densely reconstruct neurons from 

several real world datasets [9], [12], [13], and follow very closely the boundary detection 

net of [5] on the SNEMI3D leaderboard. Nevertheless, none of them have so far displaced 

boundary detection nets from the top of the SNEMI3D and CREMI leaderboards.

This paper will show that dense voxel embeddings from deep metric learning can be 

segmented to significantly outperform the state-of-the-art strong boundary detection net 

of [5], the same architecture that leads the SNEMI3D challenge. Convolutional nets are 

trained to assign similar embedding vectors to voxel pairs within the same objects and 

well-separated vectors to voxels from different objects [14], [15]. This general approach is 

by now well-known, but has most often been applied to segment images that contain only 

a few objects, or a few well-separated instances of each object. Brain images from serial 

section EM, in contrast, contain many densely intertwined branches of neurons.

Our postprocessing of the voxel embeddings from deep metric learning contains several key 

elements. First, affinities between voxel pairs are computed from embeddings generated by 

a convolutional net operating on 3D patches of limited size. The affinities from overlapping 

patches are stitched and blended to cover the entire image volume (Fig. 1). Following [16], 

we use the term “metric graph” to refer to an affinity graph generated by deep metric 

learning. Second, the metric graph is segmented by the recently proposed Mutex Watershed 

[17], which exploits long-range as well as short-range affinities. Third, the segmentation 

is improved by agglomerating pairs of objects with similar mean embedding vectors. 

Combining these three elements significantly outperforms the state-of-the-art boundary 

detection net of [5].

The rationale for the above elements is as follows. The restriction to patches of limited 

size is required by the memory constraint of the GPU. It also has the effect of making the 

problem easier for the net by limiting the number, size, and complexity of objects contained 

in the patch.

Naively, one might attempt to stitch and blend embeddings rather than affinities, but this is 

problematic if the embeddings from two patches are inconsistent in the overlap region.

1 http://brainiac2.mit.edu/SNEMI3D/home 
2 https://cremi.org/ 
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A great deal of previous work has relied solely on nearest neighbor affinities for 

segmentation [5], [6]. For example, even when long-range affinities were predicted during 

training, segmentation at test time was based only on nearest neighbor affinities [5]. A 

previous application of deep metric learning to 2D neuron segmentation used only nearest 

neighbor affinities at test time [16], but we found that this did not yield state-of-the-art 

segmentation accuracy in 3D. By employing the Mutex Watershed [17] we were able to 

leverage long-range affinities to improve segmentation accuracy.

The Mutex Watershed and mean affinity agglomeration [5], [6] suffer from a failure 

mode caused by self-contact. For example, a dendritic spine occasionally bends back and 

contacts the shaft or an adjacent dendritic spine. Such self-contact is problematic because 

the existence of a boundary there is local evidence that the two contacting parts of the 

neuron should lie in two different segments. This local evidence may cause the segmentation 

algorithm to make a split error. We show that many of the self-contact errors can be 

corrected by agglomerating segments with similar mean embedding vectors.

Our work has three novelties. First, we apply deep metric learning to 3D neuron 

reconstruction (Sec. III-A), building on previous work in 2D [16]. Second, we combine 

the Mutex Watershed with a convolutional net trained to generate voxel embeddings (Sec. 

III-B), whereas it was originally combined with a net trained to directly predict affinities 

[17]. Third, we recognize the self-contact failure mode, and propose a method of correction 

using mean embedding agglomeration (Sec. III-C).

Remarkably, we find that deep metric learning outperforms boundary detection by a wide 

margin, when quantified by variation of information [18] or number of errors. Qualitatively, 

the accuracy gains come from avoiding split errors for very thin objects and for objects with 

self-contact.

II. Related Work

A. Boundaries vs. Objects

State-of-the-art methods for serial section EM images (reviewed in [2]) employ 

convolutional nets to detect neuronal boundaries [5], [6], for which affinity graphs [19] 

have been widely adopted as underlying representations.

One could argue that the task of detecting boundaries does not force the net to learn 

about objects, and that more object-centered representations could be critical for further 

improvements in accuracy. FFNs [8], [9] and MaskExtend [10] extend a single object at 

a time. Cross-classification clustering [11] extends multiple objects simultaneously. Deep 

metric learning can also be seen as object-centered, but all objects in the image are 

processed simultaneously.

B. Postprocessing of Affinity Graphs

Affinity graphs are partitioned to produce an oversegmentation into supervoxels, typically 

using watershed-type algorithms [20]. Supervoxels can be greedily agglomerated based on 

simple statistics such as mean affinity [5] or percentiles of binned affinity [6]. Supervoxels 
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can also be agglomerated by optimizing a global objective for graph partitioning, as in the 

Multicut problem [4].

Recently, [17] has proposed the Mutex Watershed, a greedy algorithm for partitioning 

signed graphs with both attractive/repulsive edges. This algorithm obviates the need for 

explicit seeds and tunable thresholds for partitioning, and directly produces a deterministic 

segmentation, bypassing supervoxel generation. The Mutex Watershed has more recently 

been integrated into GASP [7], a generalized framework for signed graph partitioning, and 

has also been extended to incorporate semantics for joint graph partitioning and labeling 

[21].

C. Refinement of Neuron Segmentation

Biological domain knowledge such as geometric [22] or semantic [23], [24] properties 

of neurons can be leveraged for agglomeration of supervoxels. Further refinement of 

segmentation is possible with error detection and correction based on convolutional 

nets [25], [26]. Unsupervised embeddings of neuronal morphology [27] and supervised 

classification of neuronal compartments [28] have recently been proposed to detect and 

correct certain types of merge errors.

We propose mean embedding agglomeration (Sec. III-C) to refine segmentation by 

agglomerating pairs of objects with similar mean embedding vectors. Independently of 

our work,3 [30] has proposed to use mean embeddings as one of the several features for 

agglomerating supervoxels in the 3D instance segmentation of indoor scene. Unlike their 

method, mean embeddings are our sole feature for agglomeration, and our computation of 

mean embeddings is restricted to a focused region at the contact between objects, thereby 

increasing agglomeration accuracy.

D. Deep Metric Learning for 2D Neuron Segmentation

Our work builds on a previous application of deep metric learning to 2D neuron 

segmentation [16]. Using the loss function of [15], they train a 2D convolutional net to 

generate dense embeddings, from which nearest neighbor affinities between pixels are 

computed. The resulting affinity graph, called “metric graph,” [16] is then partitioned with 

connected components to yield a segmentation.

We extend their method to 3D neuron reconstruction, which requires fundamental changes 

in the way we generate and exploit the dense embeddings. While they trained a 2D 

convolutional net to generate dense embeddings on the entire 2D image slice, the extent 

of 3D dense embeddings is severely limited by the memory constraint of the GPU during 

both training and inference.

Moreover, a 2D image slice contains neuronal cross sections of relatively simple shape, 

which are often locally confined within a small space and thus well-isolated. In contrast, 

a 3D image volume contains intertwined branches of neurons with complex morphology, 

which extend from one end of the volume to another most of the time. As a consequence, 

3Our work has been available in preprint form [29].
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increasing the input size in 2D would not necessarily increase the size and complexity of 

contained objects, whereas doing so in 3D would obviously increase the both. This poses a 

fundamental challenge to learning dense embeddings in 3D.

E. Dense Embeddings via Deep Metric Learning

The concept of learning dense embeddings with convolutional nets first appeared in [31]. 

The core idea is to densely map each pixel in the image to a vector in the embedding space, 

such that the learned embeddings are useful for downstream tasks. The first applications 

of dense embeddings include semantic segmentation [31] and multi-person pose estimation 

[32].

Dense embeddings soon started to gain popularity in the problem of semantic instance 

segmentation [14], [15]. In this approach, the loss function encourages the embedding 

vectors to form discriminative clusters for each object instance, and the clustered 

embeddings are directly utilized to produce an instance segmentation. While [14] 

implements an embedding loss by randomly sampling image pixel pairs, the loss function 

proposed by [15] is centered around mean embeddings and their interactions. The latter has 

extensively been applied to a wide variety of computer vision problems [30], [33]-[36].

Instead of the Euclidean embedding of [14], [15], the hyper-spherical embedding based on 

cosine similarity has also been proposed in several applications [37]-[41]. Notably, [39]-[41] 

show that locally exerting inter-cluster repulsive forces only to spatially neighboring 

instances is effective at cell segmentation and tracking from light microscopy images, which 

contain sparsely dispersed and well-isolated cells as opposed to the densely packed and 

intertwined neurons in EM images.

Our proposed method bears similarities with the method of [42] for instance segmentation 

of fibers in polymer material. Using the loss of [15], they train a 3D convolutional net to 

learn dense voxel embeddings for local patches of 3D CT scans. The main difference is in 

postprocessing; they directly segment each patch-wise embeddings and then iteratively stitch 

the segmentations between neighboring patches with overlap. Their simple stitching strategy 

based on the distance between segmented fibers was prone to merge errors [42].

III. Methods

A. Loss Function

We use the loss function of [15], which was applied by [16] to 2D neuron segmentation. 

They refer to it as “means-based loss,” because the mean embeddings of distinct objects act 

as cluster centers. The “internal” term of (1) pulls embeddings toward the respective cluster 

centers, the “external” term of (2) pushes distinct cluster centers apart from each other, and 

the regularization term of (3) prevents all cluster centers from deviating too far from the 

origin:

ℒint = 1
C ∑

c = 1

C 1
Nc

∑
i = 1

Nc
‖μc − xi‖2, (1)
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ℒext = 1
C(C − 1) ∑

cA = 1

C
∑

cB = 1

C

cA ≠ cB

max(2δd − ‖μcA − μcB‖, 0)2,
(2)

ℒreg = 1
C ∑

c = 1

C
‖μc‖ . (3)

Here C is the number of ground truth objects, Nc is the number of voxels in object c, μc is 

the mean embedding for object c, xi is an embedding for voxel i, ∥·∥ is the L1 norm, δd is 

the margin for the external loss term (2). We choose δd = 1.5 following [15], [16]. Note that 

only those voxels that belong to the ground truth objects (i.e., foreground objects) are taken 

into account in (1)-(3). The embeddings for background voxels are not included in the loss.

The embedding loss ℒembedding is a weighted sum of the three terms, 

ℒembedding = αℒint + βℒext + γℒreg, where α = β =1 and γ = 0.001 as in [16].

Besides the embedding loss, we additionally predict a voxel-wise background mask (Fig. 1) 

using the standard binary cross-entropy loss. The total loss is a sum of the embedding and 

background losses, ℒtotal = ℒembedding + ℒbackground.

It is challenging for a convolutional net to generate embedding vectors that are uniform 

across neurons, because of their complex and extended morphologies. For achieving 

approximate uniformity in 3D, we found the means-based loss of [15] to be superior to 

other proposed loss functions for deep metric learning, much as [16] found in 2D.

Sometimes parts of the same neuron may seem to be distinct objects when they are restricted 

to a local patch of limited context. For achieving better generalization performance, [16] 

found it critical to locally recompute connected components of the ground truth objects in 

each training patch, and then remove from (2) the pairwise interactions between the locally 

split object parts. We confirmed their finding in our preliminary experiment, and therefore 

used the same trick.

B. Segmentation with Metric Graph

We define an affinity aij ∈ [0, 1] between a pair of voxels i and j by

aij = max 2δd − ‖xi − xj‖
2δd

, 0
2
, (4)

where xi and xj are embeddings for the voxel i and j, respectively. Note that this definition 

is directly derived from the term max (2δd − ∥μCA − μCB∥, 0)2 in (2); we simply normalize 

it to [0, 1] after replacing the mean embeddings μCA, μCB with the voxel embeddings xi, 

xj. The affinity aij approaches 1 as xi and xj get closer in the embedding space, whereas aij 

approaches 0 as xi and xj become more distant.
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Once the embedding net generates dense voxel embeddings for a local image patch, we 

can construct a patch-wise metric graph [16] whose nodes are voxels and edge weights are 

metric-derived affinities between voxel pairs.

Reference [16] explored only the simplest possible form of metric graph and postprocessing, 

i.e., nearest neighbor metric graph partitioned by connected components clustering. 

However, we found in our 3D experiments that nearest neighbor affinities are occasionally 

noisy, primarily due to the noisy embeddings for the background voxels, which were 

excluded from the embedding loss and thus did not receive explicit training signals (Supp. 

Fig. S6).

To address this issue, and to push the segmentation accuracy further, we augmented our 

metric graph and its postprocessing by (a) incorporating long-range affinities into the 

metric graph and exploiting them as repulsive constraints during graph partitioning, and 

(b) removing noisy affinities from the metric graph using a voxel-wise background mask 

predicted by the embedding net (Fig. 1).

To mask out noisy affinities, we first defined background voxels by thresholding the 

predicted real-valued background mask with θmask (empirically chosen on the validation 

set), and then removed the background voxels (nodes) along with every incident affinities 

(edges) from the metric graph.

The resulting “foreground-restricted” metric graph (Fig. 1) was used as input to the Mutex 

Watershed [17], a recently proposed algorithm for partitioning a graph with both attractive/

repulsive edges. They trained a 2D convolutional net to directly predict affinities on a small 

predefined set of short and long-range edges, thus only a fixed graph could be generated. We 

have no such limitation; affinities on any edge can be dynamically computed from the dense 

voxel embeddings, being much more flexible.

C. Mean Embedding Agglomeration

We observed that both the Mutex Watershed [17] for our proposed method and mean affinity 

agglomeration [5] for the baseline (Sec. III-D) make systematic split errors on objects with 

self-contact (Fig. 2). These greedy clustering/agglomeration algorithms suppress localized 

mistakes in the input graph by averaging out noisy affinities (mean affinity agglomeration) 

or by putting long-range repulsive constraints as a safeguard in locations with more 

certainty (the Mutex Watershed). However, they often fail to reconcile the local evidence for 

disconnectivity at self-contacts (e.g., white box in Fig. 2) with the evidence for connectivity 

elsewhere (e.g., yellow box in Fig. 2), if the former precedes the latter in greedy decision 

making.

To address this systematic failure mode, we detected the candidates for self-contact split 

errors based on a simple and intuitive heuristic. Specifically, we first constructed a region 

adjacency graph (RAG) from the initial segmentation, where nodes are segments and edges 

represent spatial adjacency, i.e., whether two segments are contacting each other. Then the 

foreground-restricted metric graph was reused to compute an agglomeration score S of each 
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individual contact between adjacent segments. To compute S, we averaged nearest neighbor 

affinities between interfacing voxels at each contact.

We selected a pair of adjacent segments as candidate if (a) they have multiple contacts, 

and (b) the highest S among the multiple contacts is above a certain threshold θself-contact 

(chosen empirically on the training and validation sets). Intuitively, self-contact splits should 

have at least two contacts, false split and self-contact (Fig. 2), and the false split is likely to 

have high agglomeration score.

Each candidate is a triplet (s1, s2, (x, y, z)), where s1 and s2 are the pair of candidate 

segments and (x, y, z) is the centroid coordinate of the contact with the highest S. Given 

a list of candidates detected by the heuristic, we reused the embedding net without any 

modification to make an agglomeration decision (Fig. 2). Specifically, we generated dense 

voxel embeddings on each local image patch centered on (x, y, z), and then computed mean 

embeddings μs1 and μs2 of the restrictions of s1 and s2 to a central “focal” widow of size px 

× py × pz (e.g., yellow box in Fig. 2). The two candidate segments were agglomerated if the 

L1 distance d = ∥μs1 − μs2∥ is below a predetermined threshold θd. The parameters px, py, pz, 

and θd were determined empirically on the training and validation sets.

D. Establishing a Strong Baseline

As a strong baseline, we reproduced the state-of-the-art result of [5], which is currently 

leading the SNEMI3D benchmark challenge. They train a 3D variant of U-Net [43] 

to directly predict nearest neighbor affinities as a primary training target [19], and long-

range affinities as an auxiliary training target. The predicted nearest neighbor affinities 

are then partitioned with a variant of watershed algorithm [20] to produce an initial 

oversegmentation. Although the costly 16× test-time augmentation [3], [5] produced the best 

result (the top entry of the SNEMI3D leaderboard), mean affinity agglomeration without 

test-time augmentation was shown to be competitive while being efficient [5]. Therefore, we 

included both postprocessing methods in our strong baseline results.

Additionally, we performed a preliminary experiment with baseline models to test the 

following hypothesis: can we obtain segmentation with comparable accuracy from the 

images with lower resolution? This is an important question because connectomics is facing 

an imminent challenge of scaling up to petascale data [44]. We performed dual experiments 

with the original images (voxel resolution: 6 × 6 × 29 nm3) and 2 × in-plane-downsampled 

images (voxel resolution: 12 × 12 × 29 nm3), and found no significant drop in accuracy 

(Supp. Fig. S13). Therefore, we performed our main experiment exclusively using the 2× 

in-plane-downsampled images.

IV. Experimental setup

A. Dataset

Since its 2013 launch, the SNEMI3D benchmark challenge has catalyzed remarkable 

progress in automated neuron reconstruction algorithms [3]-[5], [11]. As mentioned earlier, 

self-contact is a major failure mode for one of the leading SNEMI3D submissions [5]. 

We noticed a qualitative difference in neuronal morphology between SNEMI3D’s training 
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and test sets. While the test set contains large spiny dendrites with many self-contacting 

spines, the training set barely contains them. Therefore we decided to create a training set 

containing more examples of self-contact.

We used the publicly available AC3/AC4 dataset,4 which is a superset of SNEMI3D. AC3 

and AC4 are human-labeled subvolumes from the mouse somatosensory cortex dataset of 

[45], which was acquired by serial section EM. The sizes of AC3 and AC4 are 1024 × 1024 

× 256 and 1024 × 1024 × 100 voxels, respectively, at 6 × 6 × 29 nm3 voxel resolution. We 

used AC4 and the bottom 116 slices of AC3 for training, the middle 40 slices of AC3 for 

validation, and the top 100 slices of AC3 for testing.

The SNEMI3D training set is AC4 only, and the SNEMI3D test set is the top 100 slices 

of AC3. In other words, this paper’s training set is the SNEMI3D training set plus some 

of AC3. This paper’s test set is the same as the SNEMI3D test set, except that extra image 

padding was obtained from the full image stack of [45],5 and used at test time only to 

provide enough image context for preventing systematic drop in accuracy near the dataset 

edge.

Since this paper uses an enlarged training set, we are retraining the leading SNEMI3D 

submission [5] and using it as a strong baseline for comparison in our main experiment 

(Sec. V). We note that SNEMI3D has not, strictly speaking, been a blind challenge since the 

publication of AC3/AC4 [45]. Submissions to SNEMI3D are on an honor system. To enable 

objective comparison with other methods, we have also retrained our proposed method 

strictly under the SNEMI3D challenge setup and submitted the result to the leaderboard 

(Supp. Note). Our code and data will be made available at https://github.com/seung-lab/

devoem.

B. Network Architecture

We used a modified version of the “Residual Symmetric U-Net” architecture of [5]. We 

used a 128 × 128 × 20 voxel input patch for both training and inference, using 2× in-plane-

downsampled images. The net produces as output 24-dimensional dense voxel embeddings, 

as well as a single channel background mask. These outputs are then spatially cropped to 

96 × 96 × 16 in order to reduce uncertainty near the patch border. To give more expressive 

power, we linearly scaled the embeddings with a learnable scalar parameter, which was 

initialized to 0.1 at the beginning of training. For upsampling, we used the bilinear resize 
convolution [46], i.e., bilinear upsampling followed by a pointwise (1 × 1 × 1) convolution. 

Further details are illustrated in Supp. Fig. S8.

C. Data Augmentation

We used the same training data augmentation as in [5]. This includes flip & rotation by 90°, 

brightness & contrast perturbation, warping, simulated misalignment, simulated out-of-focus 

and missing sections.

4 https://software.rc.fas.harvard.edu/lichtman/vast/AC3AC4Package.zip 
5 https://neurodata.io/data/kasthuri15/ 
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Additionally, we introduced a novel “slip interpolation” that substitutes the slip-type 

simulated misalignment of [5] (Supp. Fig. S10). Specifically, we simulated the slip-type 

misalignment only in the input, not in the target. The mismatch between the input and 

target forces the nets to ignore any slip misalignment in the input and produce smoothly 

interpolated target prediction.

D. Training Details

We performed all experiments with PyTorch. We trained our nets on four NVIDIA Titan X 

Pascal GPUs using synchronous gradient update. We used the AMSGrad variant [47] of the 

Adam optimizer [48], with α = 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 10−8. We used a single 

training patch (i.e., minibatch size of 1) for each model replica on GPUs at each gradient 

step. We trained the baseline and embedding nets for three and five days, respectively, and 

selected the model checkpoints at the lowest validation error.

E. Inference

We used the overlap-blending inference of [5]. Both the baseline and embedding nets used 

the most conservative output overlap of 50% in x, y, and z-dimension. The embedding net’s 

output cropping incurred nearly 2× overhead relative to the baseline, which did not use 

output cropping. This is because the 50% overlap between cropped outputs amounts to the 

overlap higher than 50% between inputs, thus increasing the coverage factor for each input 

voxel.

F. Metric Graph & Postprocessing

To construct the metric graph as input to the Mutex Watershed [17], we used three nearest 

neighbor attractive edges and nine long-range repulsive edges. Specifically, each edge is 

characterized by an offset vector. An affinity map for a given edge is constructed by 

computing a map of metric-derived affinities (using (4) in Sec. III-B) between a reference 

grid of voxels and another grid of voxels shifted by the characteristic offset vector. The list 

of (x, y, z) offset vectors we used is (−1,0,0), (0,−1,0), (0,0,−1), (0,0,−2), (−5,0,0), (0,−5,0), 

(−5,−5,0), (−5,5,0), (−5,0,−1), (0,−5,−1), (−5,0,1), and (0,−5,1). These 12 edges (or offset 

vectors) yield 12 affinity maps that comprise the resulting metric graph (Supp. Fig. S12).

We grid searched the postprocessing parameters strictly on the training and validation sets. 

Selected parameters were θmask = 0.6, θself-contact = 0.25, θd = 1.5, and px × py × pz = 32 × 

32 × 5.

G. Evaluation

For quantitative evaluation of segmentation quality, we adopted the widely-used variation of 

information (VI), [18], [49], VI = VIsplit + VImerge = H(S∣T) + H(T∣S), where H (·∣·) is the 

conditional entropy, S is the segmentation proposal, and T is the ground truth segmentation.
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V. Results

A. Quantitative Analysis

Table I shows the quantitative evaluation of different methods on the test set. To evaluate 

segmentation quality, we adopted the widely-used variation of information (VI) error metric 

[18]. Metric graph followed by the Mutex Watershed produced an initial segmentation 

with high precision, which is indicated by the low VImerge of 0.0163. However, the initial 

segmentation largely suffered from the systematic self-contact split errors (Sec. V-C), which 

are reflected in the high VIsplit of 0.1025.

Remarkably, mean embedding agglomeration healed almost all of these self-contact split 

errors (Sec. V-C), resulting in a precipitous drop in VIsplit from 0.1025 to 0.0276. With 

this substantial improvement, our proposed method outperformed all baselines in VI. We 

found that the slight increase in VImerge from 0.0163 to 0.0194 after mean embedding 

agglomeration was caused by the correct agglomeration of a self-contacting glia fragment, 

which already contained a small merge error. As exemplified by this, VI is sensitive to the 

size of erroneous objects, and thus tends to hide underlying qualitative difference especially 

when comparing highly accurate methods. Therefore, we will present rigorous qualitative 

analyses in the following sections.

B. Improvements on Very Thin Objects

Neuronal branches, or neurites, can become very thin, such as in the thinnest part of axons 

and dendritic spine necks [50]. Being capable of tracing such thin neurites is crucial for 

reconstructing neuronal connectivity. Qualitatively, we observed that our proposed method 

performs substantially better on very thin objects compared to the baseline. Visualization 

reveals how the object-centered representation of dense voxel embeddings could outperform 

the boundary-centered representation of the baseline on the thin objects (Fig. 3-4).

Fig. 3 compares segmentation accuracy of the baseline and proposed methods on a very thin 

spine neck that is parallel to the imaging plane. The thinnest parts (yellow arrowheads in 

Fig. 3) are so severely constricted that it is extremely difficult for the boundary-centered 

baseline to learn and represent the object continuity. In contrast, our embedding net was 

able to assign similar vectors across the constricted parts, yielding a metric graph that could 

represent the object continuity adequately (Fig. 3).

Further examples of extremely thin parts of neurites in different orientations are shown in 

Fig. 4a (oblique spine neck) and Fig. 4b (vertical axonal branch). The thinnest parts are 

again so severely constricted that their cross sections are barely recognizable in the EM 

images. The boundary-centered baseline totally failed at recognizing the cross sections, 

whereas our embeddings and metric graph captured them successfully (Fig. 4a, 4b). It is 

remarkable that learning about object rather than boundary enables the net to virtually 

“imagine through” the input image that lacks much evidence for object continuity.
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C. Effectiveness of Mean Embedding Agglomeration

As we mentioned earlier, our initial segmentation produced with the Mutex Watershed 

contained systematic split errors caused by objects with complex self-contact. They were 

found mostly in large spiny dendrites (Fig. 5a) and astrocytes, a kind of glia (Fig. 5b). Since 

our proposed method is based on dense voxel embeddings for local image patches, their 

limited context may make a self-contact seem like a boundary between two distinct objects 

(e.g., red boxes in Fig. 5a, 5b). Consequently, the Mutex Watershed may put long-range 

repulsive constraints across the self-contact, making a false split error.

We found that mean embedding agglomeration (Sec. III-C) is highly effective at 

agglomerating the self-contact split errors, without introducing new merge errors. Examples 

from the test set are shown in Fig. 5a, 5b.

Fig. 6a shows an analysis on how we selected the decision boundary θd for mean 

embedding agglomeration on the training and validation sets. Pink circles represent 

individual agglomeration candidates selected by the heuristic described in Sec. III-C. 

Horizontal axis represents the L1 distance d = ∥μ1 − μ2∥ between the mean embeddings 

of two agglomeration candidates, and vertical axis represents VIdiff, which is the change in 

VI when the two candidates are forced to be agglomerated. Here we computed VIdiff within 

each local patch for agglomeration.

We grid searched the agglomeration decision boundary θd on the training and validation 

sets. Fig. 6a shows that the resulting θd = 1.5 nicely separates the true positive self-contact 

splits (left to the decision boundary in Fig. 6a) from the false positives (right to the decision 

boundary in Fig. 6b). Although determined empirically, the optimal θd = 1.5 turned out to be 

equivalent to the δd = 1.5 of (2) in Sec. III-A, being theoretically reasonable.

Next, we performed a similar postmortem analysis on how effective mean embedding 

agglomeration was on the test set (Fig. 6b). Among 19 candidates selected by the heuristic, 

18 were agglomerated correctly (true positives, left to the decision boundary in Fig. 6b) 

and one was rejected incorrectly (true negative, right to the decision boundary in Fig. 6b). 

The true negative rejection was caused by a self-contact within the field of view of the 

embedding net. We found it hard to fix this particular failure mode, which is illustrated with 

a representative example in Supp. Fig. S16.

To further demonstrate the effectiveness of mean embedding agglomeration, we additionally 

applied it to the baseline segmentation that was postprocessed with mean affinity 

agglomeration, which was also reported to suffer from systematic self-contact split errors 

[5]. Remarkably, mean embedding agglomeration significantly reduced VIsplit without any 

increase in VImerge (“Hybrid” in Table I), outperforming all baselines in VI. Nevertheless, 

this hybrid approach was still slightly inferior to our proposed method (Table I).

D. Further Evaluation on Extra Test Sets

We questioned whether the difference between our proposed method and the baselines could 

still hold outside the dataset used for our experiments. This is a critical question because 

we divided the single volume of AC3 into training, validation, and test sets. The outstanding 
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test set performance of our proposed method could have been attributable, at least partly, 

to statistical similarity between the training, validation, and test sets due to their spatial 

proximity.

To address this question, three extra image volumes (namely E1, E2, and E3) of the same 

size as the test set were obtained from randomly chosen locations in the full dataset of [45] 

(Supp. Fig. S2). We applied both our proposed method and the best baseline (“Baseline*” in 

Table I) on these volumes, and four expert brain image analysts exhaustively examined every 

single segment to find out remaining errors.

Fig. 7 visualizes the spatial distribution of individual merge/split errors from the baseline 

and proposed method in E1–E3. There were 17.3 ± 1.33 and 75.0 ± 7.23 remaining errors 

(mean ± S.E., N = 3) from the proposed and baseline method, respectively (Table II). These 

results suggest that our proposed method produces a significantly lower number of errors 

compared to the strong baseline (p = 0.0014, paired sample t-test), although one should be 

cautious about the small number of sample volumes (N = 3).

Qualitatively, we observed a similar tendency that our proposed method performs 

substantially better at very thin objects while mean embedding agglomeration successfully 

healed most of the self-contact split errors. However, we also found that there remained 

some uncaught self-contact split errors, mostly due to the heuristic’s failure in detecting 

them (Supp. Fig. S14).

VI. Discussion

Learning dense voxel embeddings can be viewed as learning a “panoptic” representation of 

all objects in a scene. While being similar in learning an object-centered representation, our 

approach is contrasted with FFNs [8], [9], which focus on a single object in a scene. This 

difference may make the two approaches complementary to each other. For instance, [9] 

employs FFNs for agglomeration as well as for generating an initial oversegmentation. Their 

FFN-based agglomeration could possibly be complemented with the panoptic representation 

of dense voxel embeddings.

In principle, our proposed method is not linearly scalable due to the supra-linear time 

complexity of the Mutex Watershed [17] algorithm, not to mention the obvious limitation in 

memory. In practice, such limitations can be overcome by partitioning an entire dataset into 

tractable subvolumes, which can be independently segmented in parallel and then stitched 

together to produce a global segmentation.

Although such a “block-stitching” approach has been shown to work in practice [9], 

[51], introducing stitching errors may be inevitable especially when using simplistic 

stitching algorithms, e.g., that are based solely on segmentation overlap between blocks 

(i.e, subvolumes). To reduce stitching errors while limiting computation overhead, dense 

voxel embeddings could be selectively employed to resolve only those ambiguous cases in 

stitching.
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We have seen that the self-contact motifs can cause problems in segmentation because 

they present opposing local and global connectivity depending on the size of context. We 

found that they also raise a tricky technical issue when preparing local training patches. 

As we briefly mentioned in Sec. III-A, recomputing connected components of the ground 

truth objects in a local training patch of limited context is an important preprocessing 

step. With this preprocessing, the self-contacting parts of a neuron should be cleaved 

into distinct pieces if they are connected outside the local training patch. However, we 

observed that locally recomputing connected components occasionally fails to cleave such 

self-contact, depending on whether background voxels properly form a separating “gap” at 

the self-contact (Supp. Fig. S15).

Consequently, numerous self-contacts in glia (e.g., see Fig. 5b) became a significant source 

of inconsistency that confuses the embedding net during training, resulting in occasional 

generalization failures specific to glia. Therefore, it would be necessary to carefully remove 

such inconsistency in the future. Alternatively, targeted detection and special handling of 

glia could be a remedy to this problem. For instance, the Semantic Mutex Watershed [21] 

combined with glia detection could be effective at preventing merge errors between neurons 

and glia.

VII. Conclusion

We have presented a novel application of dense voxel embeddings for 3D neuron 

reconstruction. We have demonstrated that our proposed method outperforms the state-

of-the-art method based on boundary detection [5], and that learning an object-centered 

representation enables substantial improvements on very thin objects. Future work will 

include scale-up of the proposed method with block-stitching [9], [51] and large-scale 

evaluation on real world datasets. Our dense voxel embeddings could be more generally 

useful for other computational tasks in the connectomics pipeline. For instance, the error 

detection and correction system of [25] could be further enhanced with the rich information 

in dense voxel embeddings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the proposed method. Dense voxel embeddings generated by a convolutional 

net (Sec. III-A) are employed at two subtasks for 3D neuron reconstruction: (a) neuron 

segmentation via metric graph [16] (Sec. III-B) and (b) agglomeration based on mean 

embeddings (Sec. III-C). All graphics shown here (images and 3D renderings) are drawn 

from real data. Although depicted in 2D for clarity, each 2D image represents a 3D volume. 

To visualize embeddings, we used PCA to project the 24-dimensional embedding space onto 

the three-dimensional RGB color space. For brevity, we only visualize nearest neighbor 

affinities on the metric graph by mapping x, y, and z-affinity to RGB, respectively.
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Fig. 2. 
Mean embedding agglomeration (Sec. III-C). Shown here is a real example of self-

contacting axon from the validation set. Left: a false split error (yellow box) in the 

Mutex Watershed [17] segmentation caused by a self-contact (white box). Middle top: 
PCA visualization reveals homogeneous embeddings across the false split. Middle bottom: 
each side of the self-contact receives distinct embedding vectors (white box). Note that the 

both sides appear to be distinct objects in the limited local context. Right: mean embedding 

agglomeration correctly heals the false split.
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Fig. 3. 
Our proposed method (bottom row) correctly segments a very difficult thin spine neck that is 

parallel to the imaging plane.
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Fig. 4. 
Comparison on the thinnest parts of neurites. Yellow arrowheads indicate split errors.
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Fig. 5. 
Mean embedding agglomeration successfully corrects most of the self-contact split errors. 

Left: one of the self-contact split errors (top: green spine, bottom: pink glia fragment) is 

displayed along with the main object (top: dendritic shaft, bottom: glia body). Middle: 
visualization of embeddings at the self-contact (red box) and false split (yellow box). Right: 
final reconstruction after applying mean embedding agglomeration.
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Fig. 6. 
Analysis on individual decisions made by mean embedding agglomeration on (a) training + 

validation sets and (b) test set. Pinky circles represent individual agglomeration candidates 

selected by the heuristic described in Sec. III-C. Vertical axes represent the change in VI 

after agglomeration, and horizontal axes represent the distance between mean embeddings. 

See main text for details.
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Fig. 7. 
Spatial distribution of remaining errors in three extra test volumes E1–E3. Gray circles: 

remaining errors in the best baseline segmentation. Red circles: remaining errors in the 

proposed segmentation.
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TABLE II

Number of Errors in Extra Test Sets

E1 E2 E3 Mean ± S.E.

Baseline 87 62 76 75.0 ± 7.23

Proposed 16 20 16 17.3 ± 1.33
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