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ScaffComb: A Phenotype-Based Framework for Drug
Combination Virtual Screening in Large-Scale Chemical
Datasets

Zhaofeng Ye, Fengling Chen, Jiangyang Zeng, Juntao Gao,* and Michael Q. Zhang*

Combinational therapy is used for a long time in cancer treatment to
overcome drug resistance related to monotherapy. Increased pharmacological
data and the rapid development of deep learning methods have enabled the
construction of models to predict and screen drug pairs. However, the size of
drug libraries is restricted to hundreds to thousands of compounds. The
ScaffComb framework, which aims to bridge the gaps in the virtual screening
of drug combinations in large-scale databases, is proposed here. Inspired by
phenotype-based drug design, ScaffComb integrates phenotypic information
into molecular scaffolds, which can be used to screen the drug library and
identify potent drug combinations. First, ScaffComb is validated using the US
food and drug administration dataset and known drug combinations are
successfully reidentified. Then, ScaffComb is applied to screen the ZINC and
ChEMBL databases, which yield novel drug combinations and reveal an ability
to discover new synergistic mechanisms. To our knowledge, ScaffComb is the
first method to use phenotype-based virtual screening of drug combinations
in large-scale chemical datasets.

1. Introduction

Advances in our understanding of the molecular mechanisms of
cancer biology have prompted the discovery of various drugs for
cancer treatment. In recent decades, chemotherapy has become
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a practical option for modern cancer
treatment.[1] Despite the wide usage of
anticancer drugs in clinical practice,
monotherapeutic drug treatments face
challenges such as drug resistance,[2,3]

cancer relapse,[4] low response rates,[5,6]

and adverse side effects.[7,8] Therefore,
combination therapy has been proposed
as a promising solution.[9] However, the
efficient identification of potent drug com-
binations via computational prediction
and experimental validation is still diffi-
cult, even with high-throughput screening
techniques.[10,11] Some of the difficulties
lie in the exponential explosion of the
large combinational number, the small
number of effective drug combinations
in all combinations[12] and the complex
synergistic mechanisms beneath the
combinations.[13] Fortunately, the increas-
ing amount of pharmacological data has
enabled the construction of large drug

combination databases such as drug combination database
(DCDB)[14] and DrugComb,[15,16] which can discover new combi-
nations and test new methodologies. Moreover, the emergence
of powerful toolkits and algorithms in deep learning has led
to several models with different neural network structures and
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input features. DeepSynergy[17] was the first model to employ
a fully connected network structure. Moreover, Xia et al.[18] in-
tegrated multiomics data as input cell line features and com-
bined different chemical descriptors as drug features. Further-
more, MatchMaker[19] considers the order of drug pairs to design
a branched network. However, all of these methods have been
developed for relatively small chemical datasets of only several
thousand compounds.

When applied to large-scale databases such as ZINC and
ChEMBL, drug combination screening can still be inefficient if
we do not set restrictions when considering the underlying com-
plex mechanisms. Conversely, phenotype-based drug design[20]

uses phenotypic constraints for drug screening and is compati-
ble with drug combination screening.[20,21] Moreover, phenotype-
based drug design does not depend on known protein targets
but on effects such as cell viability and gene expression signa-
tures. Nevertheless, methods enabling the use of phenotypes for
virtual screening have yet to be explored. Méndez-Lucio et al.[22]

introduced gene expression signatures as the condition in de
novo drug design using generative adversarial networks (GAN),
which incorporate phenotypic information into molecular struc-
tures. In addition, as scaffolds typically represent the core struc-
tures of compounds in analog series and chemical reactions, re-
cently developed scaffold-based methods[23] allow us to screen
drug libraries in terms of molecular scaffolds, which reduces the
searching space.[23,24] Therefore, this study proposes a deep learn-
ing model that integrates phenotypic information into molecular
scaffolds for drug screening.

In this work, we present ScaffComb, which is a phenotype-
based deep learning framework for the virtual screening of drug
combinations in large-scale chemical databases. We first describe
the flowchart of ScaffComb and the details of two core modules
in the framework: a generative module for integrating pheno-
typic information into drug screening (gene-scaffold generator,
GSG module) and a regression module for drug synergy pre-
diction (simplified molecular-input line-entry system, SMILES-
based drug synergy predictor, SDSP module). We then validate
ScaffComb by screening the US food and drug administration
(FDA) dataset and reidentifying known drug combinations. In
addition, we summarize drug synergy mechanisms with the
screened FDA drug combinations, in which the combination of
two molecularly targeted drugs is the most popular mechanism.
Finally, we apply ScaffComb to large databases (ChEMBL and
ZINC) to identify synergistic partners to known drugs or de novo
drug combinations and synergistic mechanisms. Screening re-
veals correlations between phenotype specificity and the speci-
ficity of screened drug combinations. Furthermore, the results
suggest that new synergistic mechanisms could be identified us-
ing general phenotypes. In summary, we demonstrate that Scaf-
fComb is an effective tool for the virtual screening of drug com-
binations and inferring synergistic mechanisms.

2. Results

2.1. ScaffComb Deep Learning Framework for Drug Combination
Prediction

First, we provide a brief overview of the ScaffComb frame-
work and its applications. ScaffComb includes three major

deep learning models for screening drug combinations and
inferring mechanisms (Figure 1A and Figure S1, Supporting
Information). 1) The GSG is a seq2seq model with an attention
mechanism.[25] 2) The drug synergy predictor (DSP), a regres-
sion model, processes the drug and cell line features for drug
combination synergy score prediction. 3) The drug-target inter-
action (DTI) predictor (TransformerCPI[26]) takes a transformer
framework and uses the drug SMILES and protein amino acid
sequences to predict DTIs.

The general flowchart of ScaffComb is as follows. 1) The GSG
uses phenotypes as inputs to generate scaffolds. The phenotypes
employed in this work are differentially expressed genes (DEGs)
between two cell states (e.g., drug-treated vs untreated), which
are encoded as a vector composed of values in {−1,0,1} space
representing downregulated DEGs, non-DEGs, and upregulated
DEGs, respectively (details are provided in the Experimental Sec-
tion). 2) Scaffolds are filtered and used to screen a given chem-
ical database, such as ZINC and ChEMBL. 3) The filtered com-
pounds in (2) are either combined with a given drug (Figure 1B)
or compounds with other scaffolds (Figure 1C) to obtain drug
pairs. Drug pairs are then submitted to the SDSP to identify the
most synergistic drug combinations. 4) A list of DEG products
(proteins) in (1) is considered a reference target for inferring syn-
ergistic mechanisms. Specifically, the downregulated DEGs in
perturbed cancer cell lines (Figure 1B upper panel) and upregu-
lated DEGs in cancer cells to normal cells (Figure 1C upper panel)
were considered in this study. Drugs in candidate drug combina-
tions and reference targets were submitted to the DTI classifier to
identify target proteins. In this study, we used TransformerCPI[26]

to predict the DTIs. The BindingDB database was preprocessed
and used to train the TransformerCPI. Finally, the targets of the
two drugs in combination were compared and annotated to infer
the potential drug synergy mechanisms.

Two general applications of ScaffComb are demonstrated in
this study. The first involves predicting the synergistic partner of
a known drug with a given phenotype (Figure 1B). The commonly
used phenotypes can be DEGs between basal and single-gene
perturbed (knockdown, knockout, and overexpression) or drug-
treated cell lines. Second, de novo drug combinations based on
the phenotype input can be carried out (Figure 1C). We used two
types of phenotypes as examples of this application. DEGs in can-
cer cell lines to normal cells represent general phenotypes, which
are hypothesized to have broad synergy strategies. In contrast,
DEGs of gene double knockouts (DKOs) in cancer cell lines rep-
resent target-specific phenotypes, which are restricted to a nar-
rower range of synergistic mechanisms. These phenotypes pro-
vide biological insights that drive the screening process. Before
describing the specific applications and cases, it was necessary
to better understand the operation and performance of the core
modules, that is, GSG and SDSP.

2.2. GSG Module for Embedding Phenotypic Information into
Chemical Structures for Drug Screening

The first step in successful drug screening is to set reason-
able constraints, of which phenotypes are one of the most com-
monly used. Researchers have been interested in bridging the
gap between phenotypes and chemistry, with several studies

Adv. Sci. 2021, 8, 2102092 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2102092 (2 of 15)



www.advancedsciencenews.com www.advancedscience.com

Figure 1. Overview of ScaffComb. A) Flowchart of ScaffComb. Four major steps are presented. Blue wedges indicate model blocks. Boxes indicate
inputs (black), outputs (red), and intermediate items. FC: fully connected layers; RNN: recurrent neural network; DTI: drug-target interaction. B,C) Two
applications of ScaffComb. B) Identification of partner drugs to a known given phenotype. Drug B is screened and used to predict target B, combined
with known targets of drug A for the combination mechanism. C) Screening of drug combinations from phenotypes, in which both drugs are screened
and used to predict targets. Upper panels show typical input phenotypes for the applications. Lower panels show sketches of screening pipelines (black:
inputs, red: outputs, white: intermediate items). SKO: single knockout; SKD: single knockdown; SOE: single overexpression; DKO: double knockout;
DKD: double knockdown.

integrating phenotypic (genomic) and chemical spaces in DTI
predictions.[27–29] For example, by mapping both spaces to the
pharmacological space, distances can be directly measured to in-
fer DTIs.[23] In a recent study by Méndez-Lucio et al.,[22] drug
generation processes were coupled with phenotypes as the con-
ditions in a conditional GAN [30] model using L1000[31] drug per-
turbation data. However, this model suffers from a low genera-
tive validity ratio of molecules[22,32] and cannot be applied directly
to drug screening. Therefore, by introducing molecular scaffolds
and SMILES[33]-based recurrent neural networks (RNNs),[34] a
GSG model was proposed to embed phenotypic information into
scaffold structures for drug screening.

The GSG model is composed of an encoder and an attention
decoder. The encoder processes DEG vectors to the context vec-
tors, and the decoder generates the SMILES of the scaffolds (Fig-
ure S1A, Supporting Information). The stack-augmented long
short-term memory (SA-LSTM)[35] neural network is used in the
decoder to better learn the SMILES rules and enhance the valid-
ity ratio of the structure generation.[36] In this study, GSG used
discrete DEG sequences of L1000 landmark genes as the inputs,
which represent a vector of size 978 (see the Experimental Sec-
tion for more details). The gene vectors were composed of values
in {−1,0,1} space, in which −1, 0, and 1 represent downregulated

DEGs, non-DEGs, or upregulated DEGs in L1000 landmark gene
sets, respectively. Furthermore, the processing of drugs to scaf-
folds followed retrosynthetic combinatorial analysis procedure
(RECAP) rules,[37] which are commonly used in small molecule
fragmentation in terms of the 11 types of chemical bond breakage
(see the Experimental Section). A dataset of gene vector-scaffold
pairs was constructed from L1000 drug perturbation data as the
training and validation sets (see the Experimental Section). We
used a two-step training schedule for scaffold generation. The
stack-augmented LSTM of the decoder was first trained with
ChEMBL scaffolds to learn the basic rules for generating valid
scaffolds. Then, the whole model was trained with L1000 sam-
ples that contained the scaffolds and gene vectors. The teacher-
forcing method[38] was used during training. We then validated
the performance of the model using the test set and the L1000
gene knockdown data.

First, we sampled 2000 DEG vectors in the test set and gen-
erated 10, 20, or 50 scaffolds for each sample. We randomly
selected the same number of ChEMBL scaffolds as the control.
The distribution of Tanimoto similarity[39] between the label
scaffolds and the generated scaffolds in contrast to the control
scaffolds when 50 scaffolds were used for comparison is pre-
sented in Figure 2A. The mean similarity (Figure 2B) and high
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Figure 2. Performance validation of the gene-scaffold generator. A) Tanimoto similarity between label scaffolds and generated scaffolds (red) or randomly
sampled scaffolds (gray) in the test set. B) Mean similarity and C) ratio of scaffolds with a high similarity change with the number of scaffolds generated.
D) An example attention weight heatmap of scaffold SMILES tokens and context vector features. Boxes indicate several patterns. Black: aromatic atoms;
blue: nitrogen atoms; red: oxygen atoms; gray: feature 14. Upper bar shows types of tokens. Red: oxygen atoms; blue: nitrogen atoms; black: carbon
atoms; gray: charge or bond tokens; purple: breakpoint token; white: other structural tokens. E) Feature patterns of oxygen atoms, negative charges,
nitrogen atoms, and aromatic carbon atoms. Context vector features of these tokens from ten samples were displayed. F) Overall similarity between
inhibitor scaffolds and generated scaffolds (red) or randomly sampled scaffolds (gray). G) Distribution of binding affinities (smina score) of screened
drugs (red) and randomly chosen drugs (gray) to the JAK3 protein kinase domain.

similarity scaffold ratio (Figure 2C, similarity ≥0.8) increased
much faster than the control with an increasing number of
generated scaffolds in the test set. In addition, we checked the
attention weights, which showed the importance of features
in context vectors to the SMILES tokens in the scaffolds (see
Figure 2D for an example). The aromatic atoms exhibited similar
patterns, which were quite different from patterns of oxygen
and nitrogen atoms (Figure 2E). Feature 14 was activated ex-
plicitly in negative charges (Figure 2D,E). Furthermore, we used
the integrated gradient[40] to check the input contributions to
scaffold generation (Figure S2A, Supporting Information). As
expected, the upregulated and downregulated genes contributed
to scaffold generation. These results show that GSG can learn to
map DEG information into context vectors, which is responsible
for the generation of distinct scaffold structures.

We further validated the performance of GSG on gene knock-
down samples from the L1000 database. The primary assumption
is that, if GSG can incorporate gene knockdown information, the
generated scaffolds should be similar to the known inhibitors of
these genes. Therefore, we used 4287 gene knockdown samples
from L1000, found the corresponding inhibitors (IC50 ≤ 1 × 10−6

m) in ChEMBL databases, and generated 20 scaffolds for each
inhibitor. The primary relationship between the intratarget in-
hibitor similarity and the number of inhibitors is shown in Figure
S2B in the Supporting Information. For most genes, the intratar-
get similarity was relatively low, reflecting some diversity in the
inhibitor scaffolds. Overall, the generated scaffolds showed sig-
nificantly higher similarity to the inhibitor scaffolds than the ran-
domly sampled scaffolds (Figure 2F). The same results were true
when viewing from the cell line perspective (Figure S2C, Sup-
porting Information).

Moreover, we used the generated scaffolds from the JAK3-KO
gene signature to screen the ChEMBL database. The general
screening flowchart is shown in Figure S3A in the Supporting
Information. In the screening, we successfully identified several
known inhibitors (Figure S3B, Supporting Information) and sim-
ilar compounds (Figure S3C, Supporting Information) to known
JAK3 inhibitors. In general, the screened compounds were much
more similar to the known inhibitors than the randomly chosen
ChEMBL compounds (Figure S3D, Supporting Information).
We further used smina[41] to dock the screened compounds
to the JAK3 protein kinase domain (Figure S3E, Supporting
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Figure 3. Data augmentation and performance estimation for SMILES-based drug synergy predictor. A) Data distribution of Bliss synergy scores in
original DrugComb samples and B) augmented samples. C–E) Effects of data augmentation and structure modification on the synergy score prediction.
Pearson correlation coefficient between true values and predictions. Colors show the difference. Warmer colors indicate minor differences, whereas
colder colors indicate significant differences. C) Original DrugComb samples with DeepSynergy (fully connected network). D) Augmented DrugComb
samples with DeepSynergy. E) Augmented DrugComb samples with DSP. F) Synergy score predictor performance in the test set. Pearson correlation,
Spearman correlation, and AB-BA Pearson correlation between predictions and labels were compared across different methods. DrugComb-DrugComb:
both drugs were sampled from the DrugComb dataset. DrugComb-ChEMBL: one drug was sampled from the DrugComb dataset and the other was
sampled from the ChEMBL database. ChEMBL-ChEMBL: both drugs were sampled from the ChEMBL database. G,H) receiver operating characteristic
(ROC) and precision-recall curve (PRC) curves for synergy classification across different methods in the test set. The area under the receiver operating
characteristic (AUROC) and the area under the precision-recall curve (AUPRC) are listed in the boxes. EN: elastic net; RF: random forest; XGB: XGBoost;
DS: DeepSynergy; MM: MatchMaker; DSP: drug synergy predictor; SDSP: SMILES-based drug synergy predictor.

Information, protein data bank (PDB) ID: 5TOZ). The distri-
bution of docking scores showed stronger binding affinities
of the screened drugs to JAK3 than randomly chosen control
drugs (Figure 2G). This result provides a good demonstration of
phenotype-based virtual screening using GSG and indicates that
GSG can effectively integrate gene expression signatures into
scaffold structures and facilitate downstream drug screening.

2.3. SDSP Module with SMILES-Based Features to Improve Drug
Synergy Predictions

Regarding the screening modules, the next thing to consider is
how to score and identify potent drug combinations. Therefore,
synergy score prediction is also vital for identifying synergistic
drug combinations in cell lines. In ScaffComb, we used SMILES-
based drug feature extraction along with data augmentation to
build and train the SDSP. The inputs of SDSP consist of a
basal expression signature of L1000 landmark genes as cell
line features and randomized SMILES strings as drug features.
Randomized SMILES strings represent a drug by randomly
selecting SMILES strings from all viable SMILES strings rep-
resenting this chemical structure. Previous research has shown
that randomized SMILES strings can improve feature extraction
and the generalizability of RNNs compared to canonical SMILES

strings.[42,43] We used the DrugComb dataset[15] to train and test
SDSP. As shown in Figure 3A, the distribution of synergy scores
in the dataset was close to a normal distribution. However, there
were fewer samples with relatively high synergistic effects and
with antagonistic effects than ones without apparent effects
(Figure 3A). The former two types of sample were of interest
in this study. Therefore, we used a binwise oversampling of
samples in the original histogram (Figure 3B, see the Exper-
imental Section) to balance the three types of samples in the
training set. Using the augmented dataset (Figure 3C,D), a
better prediction performance was achieved in the test set than
in the original dataset (Pearson’s r: 0.73 vs 0.57). The structure
of SDSP is shown in Figure S1B in the Supporting Information,
which contains individual encoders for drug and cell line feature
processing and two fully connected networks for interaction
predictions, considering that the order of the drugs in a sample
should not affect predictions. In addition, a loss that measured
the differences between the two predictions was added to the to-
tal loss as regularization and the mean of the two synergy scores
was used as the final prediction (see the Experimental Section).
This structure further improved the prediction performance
(Figure 3D,E, Pearson’s r: 0.80).

We compared SDSP with three baseline methods and two deep
learning models (DeepSynergy[17] and MatchMaker[19]) that use
chemical fingerprints as the drug features. We also built a DSP
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for better comparison, which shared a similar structure with
SDSP but used chemical fingerprints as drug features instead of
SMILES. The results showed that SDSP generally outperformed
other methods and achieved state-of-the-art performance in both
regression and classification situations (Table S1, Supporting In-
formation, and Figure 3F–H).

In addition, we checked the Pearson r between the predicted
synergy scores in a sample (drug A-drug B-cell line features) and
its corresponding drug-order-reversed sample (drug B-drug A-
cell line features), which we call the AB-BA correlation in this
study. The AB-BA correlation is used to illustrate the biases of
how models process drug features. For comparison, 1000 AB-
BA correlations of drug combinations constructed from three
different sources were calculated using diverse methods: (1)
combinations of two DrugComb drugs sampled from the test
set (DrugComb-DrugComb) represented samples that were clos-
est to the training samples; (2) combinations of a DrugComb
drug and a ChEMBL drug represented mixed samples with par-
tially unseen chemical structures; and (3) combinations of two
ChEMBL drugs represented unseen samples (Figure 3F and Ta-
ble S1 and Figure S4, Supporting Information). Clearly, SDSP,
DSP, and MatchMaker were more stable when dealing with un-
seen compounds. However, although the elastic net was not in-
fluenced by the drug feature order, it predicted small values for
all samples (Figure S4, Supporting Information).

Finally, we validated the influence of randomized SMILES
strings. We first trained another SDSP model using the Drug-
Comb dataset with canonical SMILES strings (SDSP-can). We
then sampled 1000 drug combinations. For drugs in each com-
bination, ten randomized SMILES strings were generated us-
ing RDKit,[44] which yielded 100 samples. Synergy scores were
calculated across samples, and the full width at half maximum
(FWHM) of the synergy score distribution was measured. Con-
sequently, SDSP had a narrower FWHM distribution than SDSP-
can and randomly chosen controls for drug combinations sam-
pled either from DrugComb (Figure S5A, Supporting Informa-
tion) or ChEMBL (Figure S5B, Supporting Information). This
suggested that SDSP had learned to recognize different SMILES
forms of the same drug. Figure S5C in the Supporting Informa-
tion shows an example of the randomized SMILES synergy score
distribution across cell lines. These results indicate that SDSP
can better process chemical features and make reasonable pre-
dictions of drug combination synergy scores.

2.4. Reidentifying Known FDA Drug Combinations with
ScaffComb during Validation Screening

To illustrate the practical applications of ScaffComb, we vali-
dated ScaffComb using the FDA-approved drug dataset, which
is the gold standard dataset. Our goal was to determine whether
ScaffComb can reidentify known drug combinations in the FDA
dataset. The screening flowchart is shown in Figure 4A. We re-
tained FDA drug combinations in which at least one of the drugs
had perturbed gene expression signatures in the L1000 dataset.
A total of 110 FDA drug combinations were filtered to validate
ScaffComb (see the Supporting Information for more informa-
tion). For 74 of the drug combinations, the perturbed gene ex-
pression signatures were available for both drugs, whereas the

other 36 combinations had gene expression signatures for one
of the drugs (Figure 4A). The general procedure is summarized
in Figure 4A. First, DEG vectors for drug B were used to gen-
erate 100 scaffolds. Next, these scaffolds were filtered and used
to screen FDA datasets. Then, the filtered drugs were combined
with drug A to calculate the synergy scores using SDSP. Finally,
the targets of drugs in potent combinations (synergy score ≥5 or
synergy score ≤−5) were obtained from ChEMBL, which were fil-
tered with L1000 best-inferred targets (see the Experimental Sec-
tion for more information). As shown in Figure 4A, screening
successfully identified 65 out of 110 known combinations. In the
combination of vorinostat and imatinib, the two drugs targeted
different proteins and pathways, whereas imatinib had broader
targets across kinases. By employing the DEG of imatinib for
screening, we consistently identified drugs with broader mech-
anisms (Figure 4B) and vice versa (Figure 4C). The mechanism
selection reflected phenotype constraints during screening. Fur-
thermore, an alternative mechanism was identified in the irinote-
can capecitabine combination screening, which corresponds to
another known combinable drug, gefitinib (Figure 4D). This im-
plied that the same phenotype could result from different mech-
anisms, suggesting that ScaffComb could identify potential drug
combinations in diverse mechanisms. More cases can be found
in Figure S6 in the Supporting Information, and more detailed
information on these figures can be found in the Supporting In-
formation.

Furthermore, most FDA-approved drugs have known targets,
which enable us to systematically analyze combination mecha-
nisms. Therefore, we checked the mechanisms of all screened
FDA drug combinations from the perspective of target similar-
ity (Figure 5A), drug specificity (Figure 5B), and target pathways
(Figure 5C). In terms of target similarity, we observed that most
of the drug combinations worked by targeting different targets
(Figure 5A type a). This type of combination generally enhances
synergy with complementary mechanisms so often has a more
substantial effect. Few cases shared common targets (type b) or
targeted the same pathway (type c), resulting in an accumulated
effect. Based on drug specificity, most of the drug combinations
were combinations of different targeting drugs with high individ-
ual specificity (Figure 5B type d). Several cases (type e) used com-
binations of a highly specific targeting drug and a wide-spectrum
one (e.g., the wide-spectrum tyrosine kinase inhibitor sunitinib).
Combinations of two wide-spectrum drugs are rare (type f) be-
cause of the potential adverse side effects or antagonistic results
that might be introduced by broadly targeting diverse proteins.
Furthermore, we used metascape[45] to enrich the gene function
and pathway annotations of the targets in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway, hallmark gene sets, bio-
logical processes, and molecular functions. Eight primary cancer-
related pathways were enriched (Figure 5C), most of which were
related to cell growth and proliferation. As shown by the heatmap,
most of the combinations targeted different pathways for syn-
ergy, which was consistent with previous analyses. Furthermore,
most drugs targeted narrow pathways. In contrast, only wide-
spectrum molecularly targeted drugs, such as sunitinib and dasa-
tinib, exhibited global effects across different pathways by widely
inhibiting tyrosine kinases. These analyses provide further in-
sights into selecting drug combinations with specific synergistic
mechanisms based on drug targets and pathways.

Adv. Sci. 2021, 8, 2102092 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2102092 (6 of 15)



www.advancedsciencenews.com www.advancedscience.com

Figure 4. Combined drug screening in the FDA-approved drug dataset. A) Flowchart of ScaffComb screening in the FDA dataset. Lower left panel shows
sample types and lower right panel shows the ratio of reidentified drug combinations using ScaffComb. DB: perturbed drugs whose DEG vectors were
used as phenotypes in screening. B,C) Target overlapping of vorinostat, imatinib, and screened drugs with: B) the imatinib perturbed DEG vector used
as the phenotype and C) the vorinostat perturbed DEG vector used as the phenotype. D) Another known combined drug of irinotecan (black), gefitinib
(blue), was screened using capecitabine DEG vector as the phenotype. Upper boxes show drug combination components. Lower color bars show different
enriched pathways. Lower black bars represent hallmark genes in cancer.

2.5. ScaffComb Enrichment of Synergistic Partner Drugs in Large
Databases

Despite the success of the FDA dataset, the number of drugs
in this dataset is small. Therefore, to further verify the screen-
ing performance on large chemical databases, we applied Scaf-
fComb to the cases discussed in Section 2.1. Therefore, we first
used ScaffComb to screen the partner drugs of the FDA-approved
drugs mentioned in Section 2.4 on the ChEMBL database. Sim-
ilar procedures (Figure 4A) were performed for screening. The
major differences were as follows. First, the ChEMBL database
was used for screening drugs, which is a far more extensive
database (≈870 000) than the FDA dataset. Second, the targets of
the screened drugs were identified using the DTI modules shown
in Figure 1A. The reference targets for DTI predictions were re-
stricted to the upregulated L1000 landmark genes and their coex-
pressed L1000 best-inferred genes in the cell lines.

Based on the different mechanisms, we selected four FDA
drug combinations in three different situations as examples
(Figure S6, Supporting Information). Fulvestrant-tipifarnib is
a combination of two molecularly targeted drugs (Figure 6A
and Figure S6A, Supporting Information). The combination of
sorafenib-capecitabine and capecitabine-imatinib represents the
pairing of a chemotherapeutic drug with a molecularly targeted
drug (Figure 6B,C and Figure S6B,C, Supporting Information).
Prednisone-thalidomide is a combination of two chemothera-

peutic drugs (Figure 6D and Figure S6D, Supporting Informa-
tion). The basic screening information is summarized in Ta-
ble S2 in the Supporting Information. For each screening, we
compared the synergy score distribution of the screened drugs
with randomly chosen drugs (Figure 6A–D). In general, we ob-
tained synergy score enrichment in the screened drugs (Fig-
ure 6A–C). This suggests that the use of molecularly targeted
drugs in screening could better restrict the space of screened
drugs because the phenotypes of molecularly targeted drugs
are more specific. In the first screening, we observed that
the screened drugs were predicted to target proteins in differ-
ent mechanism clusters (Figure 6E). In addition to the over-
all preferences for targeting prostate cancer-related proteins, the
screened drugs also targeted the epidermal growth factor re-
ceptor (EGFR) signaling pathway, protein degradation, DNA re-
pair, and cell cycle-related proteins. In addition, several screened
compounds also showed the potential to bind to the protein far-
nesyltransferase/geranylgeranyltransferase type-1 subunit alpha
(FNTA)/protein farnesyltransferase subunit beta (FNTB) com-
plex (Figure 6E), which was the target of tipifarnib. In con-
trast, there was no significant synergy score enrichment of the
screened drugs during the last screening (Figure 6D). This was
mainly due to the fact that the phenotypes of the chemotherapeu-
tic drugs were less specific. The target analyses also indicated that
the screened drugs significantly targeted more upregulated pro-
teins than the former (Figure S7A,B, Supporting Information).
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Figure 5. Combination mechanism of FDA drugs. A–C) Drug combination mechanism in terms of A) target similarity, B) drug specificity, and C) target
pathways. A,B) Lower panels (a–g) show inferred illustrations of the mechanisms corresponding to the upper panels. The number of samples in each
type is shown below. T represents the target, D represents the drug, and P represents the protein. Color bar shows synergy scores in the scatterplots.
C) Drug combination pathway heatmap. Columns represent drug targets. Rows represent FDA drug combinations. Red indicates the targets of drug A,
blue indicates the targets of drug B, and black indicates common targets. Top color bar presents enriched gene ontology annotations.

This suggests that such screening can convey the specificity of the
phenotypes; hence, when screening a partner drug, more care-
ful phenotype selection can yield more specific screening results,
which reveal the underlying causal links of the biological system.

2.6. ScaffComb for Identifying De Novo Drug Combinations and
Synergistic Mechanisms in Large Databases

Finally, we used ScaffComb to screen the ZINC database to iden-
tify de novo drug combinations in cancer cell lines. The general
procedure is shown in Figure S7C in the Supporting Informa-
tion. Scaffolds were generated using differential gene vectors.
We considered two types of phenotypes as the inputs. One was
the DEGs between a cancer cell line and the corresponding gene
DKO (E3 ubiquitin-protein ligase (CBL)-PTPN12 DKO case). The

other was the DEGs in a cancer cell line to the corresponding nor-
mal tissues (MDA-MB-231 case). The downregulated DEGs in
DKO and upregulated DEGs in cancer cell lines were considered
potential targets for these two cases. Then, we used the scaffolds
to screen the ZINC database and obtained drug pairs with the
screened compounds. Next, we calculated the synergy scores of
the drug pairs and obtained synergistic pairs as candidate drug
combinations. Finally, the targets for drugs in the screened drug
combinations were analyzed and compared.

In the first case, we adopted gene expression of the CBL-
PTPN12 gene double knockout in K562 cell lines from the work
of Norman et al.[46] The DEGs on L1000 landmark gene sets be-
tween DKO and K562 cells were used as the inputs. The screen-
ing yielded 20.5 million drug pairs of 6916 compounds in 11 scaf-
folds, 3062 of which were identified as strong synergistic drug
combinations. Twenty-two inhibitors of CBL and 46 inhibitors of
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Figure 6. Partner drug screening in the ChEMBL drug database. A–D) Synergy score distributions of screened drugs (red) and randomly selected drugs
as a control (gray). Black boxes indicate drug A, red boxes indicate drug B, and white boxes indicate cell lines. A) Fulvestrant-tipifarnib, a combination
of two molecularly targeted drugs. B,C) Capecitabine-sorafenib and capecitabine-imatinib, combinations of chemotherapeutic drug and molecularly
targeted drugs. D) Prednisone-thalidomide, a combination of two chemotherapeutic drugs. E) Heatmap of target clustering and pathway annotation in
screened drugs from (D) with high synergy scores. Color bar above the heatmap is the pathway annotation. Three compounds are shown on the right,
along with binding poses to the FNTA/FNTB complex (PDB ID: 1SA4). Top panels show cocrystal structures of tipifarnib and FNTA/FNTB. Lower two
panels show docking poses of two screened compounds predicted to bind to FNTA.

PTPN12 were obtained from ChEMBL. We compared the chem-
ical similarity of the screened drug combinations and the ran-
domly chosen drug combinations to the combinations of the
known inhibitors (Figure 7A) but found no significant differ-
ences, which might reflect the relatively low chemical diversity
of the known inhibitors. However, when we docked the screened
drugs to CBL and PTPN12, we observed that the screened drugs
had significantly higher binding affinities to the proteins than
the random drugs (Figure 7B,C). This suggests that the screened
drugs combined with the mechanism of targeting CBL-PTPN12.
An example of a combination of the known inhibitors of the two
targets and a screened drug combination exhibited similar scaf-
folds and similar docking poses (Figure 7D). Furthermore, Fig-
ure S7D,E in the Supporting Information shows an example of
combinations that were quite different from known inhibitors
but with good binding poses and affinities to the two proteins.

In the second case, we used the breast epithelial cell-derived
cancer cell line MDA-MB-231 as an example, which was derived
from breast epithelial cells. The DEG vector was derived from
differences between the cell lines and normal breast cells. The
screening yielded 48.8 million drug pairs of 11 253 drugs in
15 scaffolds, 2010 of which were identified as strong synergis-
tic drug combinations. We first compared the chemical similar-
ity of the screened drug combinations and random drug com-
binations to known effective drug combinations in MDA-MB-
231 cells. The screened drug combinations were significantly
more similar to known drug combinations (Figure 7E). Fig-
ure 7H shows an example of screened drug combinations shar-
ing similar scaffolds to known drug combinations. Furthermore,
we calculated the ratio of screened drugs that were predicted to
target upregulated genes in MDA-MB-231, which was signifi-
cantly higher than that of randomly chosen drugs (Figure 7F).
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Figure 7. Drug combination screening in ZINC database. A–D) CBL-PTPN12 double knockout as a phenotype for screening. A) Similarity between
inhibitor combinations to screened (red) or randomly chosen (black) drug combinations. n.s.: not significant. B) Binding affinities (smina scores) of
screened (red) and control (black) drugs to CBL (PDB ID: 3PLF). C) Binding affinities (smina scores) of screened (red) and control (black) drugs to
PTPN12 (PDB ID: 5HDE). *** represents a p-value <0.0001. D) Example of an inhibitor combination that is similar to a screened drug combination.
Similar scaffolds are highlighted. Docking poses of compounds are shown on the right. Magenta indicates screened drugs. Black indicates known drugs.
E–J) MDA-MB-231 cell line and normal breast cell DEGs as the phenotype. E) Similarity between known combinations to screened (red) or randomly
chosen (black) drug combinations. F) Ratio of screened (red) and control (black) drugs that target upregulated proteins in MDA-MB-231. G) Drug
synergistic mechanisms in terms of drug specificity in screened drug combinations with high synergy scores. H) Example of a similar known drug
combination and screened drug combination. Similar parts are highlighted. I) Heatmap of screened drug combinations that target known mechanisms.
J) Heatmap of screened drug combinations with new mechanisms. Color bar above the heatmap is the pathway annotation.

Regarding the drug combination mechanism, the drug combi-
nations in different types of mechanisms were identified (Fig-
ure 7G and Figure S7F, Supporting Information), which is con-
sistent with the results shown in Figure 5. This suggested that the
phenotype was less specific, because many mechanisms were in-
dicated by the phenotype. However, this type of screening might

shed light on the identification of new combination mechanisms.
On the one hand, we can identify known combination mecha-
nisms in the screening, such as the combination of CCNE2 and
histone deacetylases (HDAC) proteins, mitogen-activated protein
kinase (MAPK), and cyclin-dependent kinases (CDK) proteins
(Figure 7I). On the other hand, novel synergistic combination
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mechanisms can also be identified (Figure 7J); for example, the
combination of SET And MYND Domain Containing 2 (SMYD2)
and PRKCA (Protein Kinase C Alpha), in which SMYD2 is re-
lated to transcriptional regulation by TP53 and promotes breast
cancer,[47] whereas PRKCA participates in the regulation of or-
ganelle organization and involves several cancers.[48,49]

These cases suggest that phenotypic specificity can affect the
specificity of the screened drugs. However, with fewer specific
phenotypes, novel combination mechanisms may be identified.
Overall, ScaffComb can identify drug combinations with reason-
able mechanisms using different phenotypic constraints.

3. Conclusion

In this study, we proposed a phenotype-based framework for vir-
tual drug combination screening in large chemical databases.
First, we described the functional modules of the framework.
Specifically, GSG is built to enable the integration of pheno-
typic information into chemical structures, which is the key as-
pect restricting screening in large libraries. Additionally, SDSP
uses SMILES-based drug features and a modified network struc-
ture to improve drug synergy predictions, enabling ScaffComb
to identify potent synergistic drug combinations. We then vali-
dated ScaffComb using the FDA-approved drug dataset and ana-
lyzed the preferred synergistic mechanisms in terms of drug tar-
gets and pathways. ScaffComb successfully reidentified 65 out of
110 known drug combinations. We also revealed that the most
common synergy mechanism in FDA drug combinations is a
combination of two molecularly targeted drugs that target differ-
ent proteins and pathways. Finally, we successfully applied Scaf-
fComb to large database screening. Interestingly, we found that
the specificity of phenotypes affects the specificity of the screened
drug combinations. High-specificity phenotypes are suitable for
the identification of novel high-specificity drug combinations. In
contrast, general phenotypes may enable the discovery of new
synergistic mechanisms.

Thus, ScaffComb is a flexible framework that can incorporate
different modules. In this study, we used the generated scaffolds
to screen known chemical libraries, i.e., the ZINC and ChEMBL
databases. However, we can also generate de novo drug libraries
with generated scaffolds using models such as the scaffold deco-
rators described in the work of Arús-Pous et al.,[43] which can be
further combined with reinforcement learning[36,50,51] for a more
property-focused library design.

A major unsolved problem in our framework is the selection
of scaffolds. In this work, we used a modified version of the “rule-
of-three”[52] for filtering scaffolds (see the Experimental Section).
However, when a biased generation of molecules is required (e.g.,
generation of a library where compounds are likely to bind to a
specific protein target with high affinity), it was difficult to select
scaffolds from simple properties. Therefore, future work should
evaluate the criteria for scaffold selection under biased condi-
tions. Alternatively, some end-to-end models that can automat-
ically learn scaffold selection rules may also be a viable option. In
addition, we used synergy scores to quantify drug effects of drug
combinations in this work, which mainly consider the synergis-
tic part of the effects. However, sensitivity is also an important
part of drug combinations. Therefore, metrics like the drug com-
bination sensitivity score (CSS),[53] which takes both synergy and

sensitivity into consideration and can be a better choice for SDSP
training in the future.

To the best of our knowledge, ScaffComb is the first frame-
work that performs virtual screening of drug combinations in
large chemical libraries and that provides a viable strategy and
tool for phenotype-based drug virtual screening.

4. Experimental Section
In this study, data from several public datasets were used. Tokens were

restricted to 25 commonly used characters in SMILES, including C, H, O,
N, F, S, Cl, Br, c, n, o, s, +, −, 1, 2, 3, 4, 5, 6, = , #, [,], (,). * was used
to replace functional groups (R groups) in the scaffolds. < and > were
used to mark the initiation and termination tokens in RNN models. In
the following preprocessing step, all compounds were filtered using these
tokens. The cell lines used in this study included MCF7, MDA-MB-231, HS
578T, SK-MEL-28, A375, PC-3, VCaP, A549, SW-620, HT29, HCT116, LoVo,
RKO, and K562 cells.

Scaffold Generation, Compound Processing, and Docking: RDKit[44] was
used to process and visualize compound structures. The scaffold of the
compound was extracted using the RECAP algorithm.[37] The filtering of
scaffolds was set to follow the following rules: 1) it must satisfy the “rule-
of-three,” 2) rings must be present in scaffolds, 3) fragments with a single
ring and a single breakpoint must contain more than ten heavy atoms or
two heteroatoms to be considered as scaffolds, and 4) several scaffolds
can be generated from a molecule as long as they satisfy (1)–(3). Mor-
gan fingerprints were used to compare the Tanimoto similarity.[39] The
3D conformations of a compound were generated using the open babel
package.[54] Protein 3D structures were downloaded from the research col-
laboratory for structural bioinformatics (RCSB) PDB database[55] (https:
//www.rcsb.org/). Docking of compounds to proteins was performed with
smina[41] with an exhaustiveness parameter of 20. All 3D structures were
visualized and plotted using the PyMOL 2.4.1.[56]

ChEMBL and ZINC Databases: The ChEMBL 25[57] (https://www.ebi.ac.
uk/chembl/) dataset was downloaded, and salt and stereochemistry were
removed using the RDKit. Duplicate compounds were also removed. Or-
ganic compounds shorter than 100 tokens were filtered using the selected
tokens and retained. A total of 827 000 unique compounds were retained
in the final clean data. Similar processes were also applied to the ZINC
database[58] (https://zinc.docking.org/), yielding 56 million unique com-
pounds. Target interacting drugs were also extracted from the ChEMBL ac-
tivity databases with the ChEMBL webresource client[59] (https://github.
com/chembl/chembl_webresource_client).

DrugComb Dataset: The DrugComb[15,16] dataset was adopted from
https://drugcomb.fimm.fi/. The dataset was filtered using tokens and cell
lines. SMILES of Bliss scores were used, and medians were calculated in
duplicate samples. Considering the imbalanced distribution of positive
and negative samples (Figure 3A), upsampling was applied to augment
the positive samples. The original sample distribution was fitted to a nor-
mal distribution, P ≈ N(−0.55, 5.452). A wider distribution Q ∼N (−0.55,
8.252) was used as the target distribution. 300 000 points were sampled
from Q and the zone [−50.5, 50.5] was divided into 101 bins. The number
of points was then counted in each bin for P and Q as nP and nQ. The |nQ
− nP| samples were randomly sampled from bins of P. As a result, the syn-
ergistic and antagonistic samples in P were more sampled than samples
without obvious effects, which made the three types of samples more bal-
anced. For the up-sampled samples, the original canonical SMILES strings
were transformed to randomized SMILES strings to improve feature ex-
traction and generalization ability when used in RNN;[42,43] very minimal
normal noise was added to the Bliss scores. As a result, synergistic sam-
ples (score ≥5), antagonistic samples (scores ≤ −5), and no-effect sam-
ples (−5< scores< 5) were relatively balanced (Figure S4B, Supporting In-
formation). Finally, the reversed samples were added to the dataset, mean-
ing that both drugA-drugB and drugB-drugA were included in the dataset.

L1000 Database: L1000 CMap database level 3 normalized data were
downloaded from GSE92742.[31] For each sample, 978 landmark genes
were identified. Drug-perturbated and corresponding control samples that
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were tested with 10 × 10−6 m concentration for 6 h in the selected cell lines
were retained. Means were calculated for duplicate samples Token filter,
salt and stereochemistry removal, length thresholding (≤100), and ran-
domized SMILES strings were applied to the compounds in the samples.
Gene expression profiles were min–max normalized to [0,1] as the synergy
score prediction inputs. The differentially expressed genes between each
drug-treated sample and the control were set to 1 if the log2 fold change
was larger than 1, −1 if the log2 fold change was smaller than −1, or 0 oth-
erwise. After the data were cleaned, 55 000 samples with gene vector-drug
pairs were retained. The gene vector contains 978 L1000 landmark genes
in the form of 1, 0, and −1, whereas drugs were represented as SMILES
strings. Based on these samples, drugs were further split into scaffolds,
yielding 502 000 samples with DEG vector-scaffold pairs.

For the L1000 gene knockdown data, samples were retained whose cor-
responding genes had known inhibitors in the ChEMBL databases, yield-
ing 4287 samples. Similar procedures were then performed to process the
data.

An extended gene set inferred from the 978 landmark genes was used
as a reference target for DTI prediction in each cell line. In the original
L1000 work, the authors provided a matrix to infer gene expressions of
21 290 genes from the 978 measured genes, in which 10 874 genes were
best inferred. The upregulated DEGs were then chosen in 10 874 genes in
cancer cell lines to normal cells as reference targets for DTI predictions.

BindingDB Database: The BindingDB[60] dataset was downloaded from
https://www.bindingdb.org/. According to previous studies,[61] samples
were first filtered using several criteria. Proteins were restricted to hu-
man proteins using UniProt ID. Only drugs with PubChem ID and canon-
ical SMILES lengths shorter than 100 were retained. Experimental val-
ues (IC50) smaller than 100 × 10−9 m were considered positive samples,
whereas values larger than 10 × 10−6 m were taken as negative sam-
ples. The processing yielded 115 000 positive samples and 133 000 neg-
ative samples. In the TransformerCPI dataset construction, the “label re-
versal experiment” protocol[26] was used. Therefore, drugs with at least
two interactions were retained, yielding 20 000 training and 5000 testing
samples.

FDA-Approved Drug Dataset: The dataset was obtained from the work of
Sun et al.[62] This dataset includes 61 chemotherapeutic drugs and 89 tar-
geted drugs used in the treatment of 23 cancer types. The SMILES strings
of these drugs were obtained from PubChem and cleaned the SMILES
strings as previously described. The drug targets were determined from
ChEMBL activity data. Synergy scores were obtained using the DrugComb
dataset. Finally, 110 FDA-approved drug combinations were obtained. The
details of these drug combinations can be found in the Supporting Infor-
mation.

For mechanism classification in Figure 5A, if the common target ratio
was less than 10% for both drugs, the combination was grouped as type
a. If the common target ratio was more than 80% for both drugs, the com-
bination was grouped as type c. Otherwise, the combination was grouped
as type b. For mechanism classification in Figure 5B, if a drug had no more
than ten targets, it was considered to be a molecularly targeted drug. If a
drug had more than 50 targets, it was considered to be a wide-spectrum
drug. The combination of the two molecularly targeted drugs was type d.
The combination of the two wide-spectrum drugs was type e. The com-
bination of a molecularly targeted drug and a wide-spectrum drug was
type f.

Basal Gene Expression in Normal Tissues and Cancer Cell Lines: RNA-
seq data for the selected cell lines and corresponding normal tissues
(breast, skin, lung, prostate, colon, and bone marrow) were downloaded
from the cleaned data in Expression Atlas[63,64] (https://www.ebi.ac.uk/
gxa/). Specifically, 14 cell line data were from cancer cell line encyclope-
dia (CCLE);[65] six normal tissue and GM12878 data were from encyclo-
pedia of DNA elements (ENCODE).[66,67] Bone marrow and GM12878
were used as negative controls for K562 cells. A total of 978 L1000 land-
mark genes and 9886 best-inferred genes were retained in the gene ex-
pression profiles. MinMax scaling was used to normalize gene expres-
sion profiles. Differentially expressed genes were calculated between cell
lines and their corresponding normal tissues. The upregulated genes of
cell lines in the L1000 best-inferred gene set were marked as potential tar-

gets. Target protein sequences were obtained from the Uniprot database
(https://www.uniprot.org/).

Gene Double Knockout in the K562 Cell Line: The DKO gene expression
data were obtained from the work of Thomas et al.[46] in GSE133344,
who combined single-cell RNA-seq and clustered regularly interspaced
short palindromic repeats (CRISPR) screening to study genetic interac-
tions, which provided abundant DKO data in K562 cells. Differential gene
vectors were processed in a similar way to that described in the previous
section. The downregulated genes of DKO in the L1000 best-inferred gene
set were marked as potential targets. Target protein sequences were ob-
tained from Uniprot (https://www.uniprot.org/).

GSG: The gene-scaffold generator followed a seq-to-seq with an at-
tention framework, which contained an encoder and an attention decoder
(Figure S1A, Supporting Information). The encoder takes the DEG vector
g = (g1,g2,g3,…, g978) as the input, where gi ∈ { − 1, 0, 1}. A two-layer
LSTM followed by a fully connected layer to embed g was used and it was
processed to a context vector c ∈ ℝnc×nH , where nC and nC represent the
context dimension and hidden dimension, respectively. In addition to c,
during the training time, the inputs of the decoder also contain the drug
SMILES s =(s0,s2,…, sL,sT), where s0 = ‘<’ and sT = ‘>’ represent initia-
tion and termination tokens. A teacher-forcing method was used for the
training. Therefore, the actual drug input was sin = (s0,s1,s2,..., sL) and the
corresponding label was sout = (s1,s2,..., sL,sT). sin was first embedded to
eD. Then, eD and the previous hidden state h of the decoder LSTM were
used as inputs of a single-layer neural network Attn( · ) to calculate the
importance score a ∈ ℝnc . The attention weight wa ∈ ℝnc was normalized
using a softmax (Figure S8A, Supporting Information).

a = Attn ((concat) eD, h) (1)

w(i)
a =

exp (ai)
∑nc

j=1 exp
(

aj

) (2)

Next, wa was used to weight and average across c and obtain the feature
Fa ∈ ℝnH .

F(i)
a =

nC∑
j=1

w(j)
a c(j)

i (3)

Then, the SA-LSTM is used described in the work of Joulin and
Mikolov[68] as the scaffold generator in the decoder. eD, Fa, and the pre-
vious stack s ∈ ℝns×nH were used as inputs of the SA-LSTM (Figure S8B,
Supporting Information), where ns is the depth of the stack. For the stack
part, two single-layered neural networks, Dstack and Dctrl were used to cal-
culate the stack input vectors sstack ∈ ℝnH and stack control vector sctrl ∈

{0, 1, −1}3 using h.

sstack = Tanh (Dstack (h)) (4)

sctrl = softmax (Dctrl (h)) (5)

Here, sstack, sctrl, and s were used to update the new stack s′ using the
following equations

s′ [0] = sctrl [−1] s [1] + sctrl [1] sstack + sctrl [0] s [0] (6)

s′ [i] = sctrl [−1] s [i − 1] + sctrl [1] s [i + 1] + sctrl [0] s [i] (i ∈ [1, ns]) (7)

where at[i],i ∈ {0, 1, −1}the one-hot vector sctrl carries the stack operations
mentioned in the original paper.[68] The RMSprop was used as the opti-
mizer. The learning rate was set to 0.0001 and the batch size was set to
128. The binary crossentropy loss was used during training. To stabilize
the training, the SA-LSTM of the decoder was pretrained first for uncondi-
tional scaffold generation on ChEMBL scaffolds (Figure S9A, Supporting
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Information). Then, the whole model was trained using L1000 gene vector-
scaffold data (Figure S9B, Supporting Information). During training, a de-
crease in the validity ratio was observed from pretraining; however, the ra-
tio was maintained at a reasonable level. Upon generation time, the gene
vector and initiation token were used as inputs. SMILES generation ended
when the terminated token was sampled or the length of the generated
SMILES was larger than 100.

SDSP: The SDSP (Figure S1B, Supporting Information) takes the gene
vector XG = XG = (xG1,…, xG978) and two drug SMILESS = s1s2…sL(L ∈ [10,
100]) as inputs, where si ∈ T and T is a given list of tokens. SA and SB were
first padded and embedded to process through a two-layered bidirectional
LSTM network followed by one fully connected layer to obtain drug embed-
dings zA ∈ ℝnH and zB ∈ ℝnH , where nH represents the hidden dimension.
XG was embedded in a two-layered fully connected network to obtain gene
embedding zG ∈ ℝnH . Then, the embeddings were concatenated to obtain
zAB and zBA.

zAB = concat (zG, zA, zB) (8)

zBA = concat (zG, zB, zA) (9)

Two three-layered fully connected networks were used to predict the
synergy scores ssAB and,ssBA respectively, using concatenated embed-
dings. The final prediction ŝs was the mean of the two scores.

ŝs =
ssAB + ssBA

2
(10)

The total loss contains the mean squared error loss between the pre-
dicted and true values and the mean absolute error (MAE) loss that pen-
etrates the differences between the AB and BA predictions. 𝛼 was set
to 1.

L = MSE
(
ss, ŝs

)
+ 𝛼MAE (ssAB, ssBA) (11)

Adam was used as an optimizer. The learning rate was set to 0.0001,
the batch size was set to 256, and the gradient was updated every ten
batches. Upsampling of positive samples was applied to the training set.
Randomized SMILES was used for both the training and test sets. The DSP
is similar to the SDSP in structure, but uses chemical fingerprints as drug
features instead of SMILES strings. Therefore, the LSTMs were replaced
with two-layered fully connected networks in the SDSP. The changes in
the losses of the training and test sets are shown in Figure S9C in the
Supporting Information.

TransformerCPI: Drug-protein interactions were predicted using the re-
ported TransformerCPI[26] (Figure S1C, Supporting Information). Trans-
formerCPI is a classifier that takes the drug SMILES and target protein
sequences as inputs. SMILES are processed with a graph convolution neu-
ral network[69] to obtain drug embeddings zD ∈ ℝnH . Protein sequences
were first condensed with a pretrained word2vec model to a fixed-length
vector, which was then processed with a gated convolutional network to
obtain protein embedding zP ∈ ℝnH . Then, taking the embeddings, the
transformer decoder uses a multiheaded self-attention layer to extract in-
teraction information and obtain an interaction feature vector z ∈ ℝnH ,
which is fed to a fully connected network for the output yi ∈ {0, 1}. Binary
crossentropy loss was used for the classification task.

L = −
N∑

i=1

yi logŷi + (1 − yi) log (1 − ŷi) (12)

Hyperparameters were set as recommended in the original study. The
model was trained on the BindingDB dataset using a “label reversal exper-
iment” protocol for training test set preparation.

The augmented DSP was compared with several baseline and state-of-
the-art methods. The DrugComb dataset was used to train and evaluate
the methods. Fivefold crossvalidation was used. The training and testing
sets were split into unique drug pairs. ECFP6 fingerprints or SMILES were

used as the chemical descriptors for drugs, whereas basal gene expres-
sion of L1000 landmark genes was used as the cell line feature. Elastic
net,[70] random forest,[71] and XGBoost[72] models were built and trained
using the scikit-learn package.[73] DeepSynergy,[17] MatchMaker,[19] and
DSP and SDSP models were built and trained using PyTorch.[74] All mod-
els except SDSP used two drug ECFP6 fingerprints and L1000 cell line basal
gene expression as inputs. SDSP used two drugs, SMILES, and L1000 cell
line basal gene expression as inputs. Elastic nets are linear models with a
feature selection. Random forest and XGBoost were tree-based nonlinear
models. DeepSynergy used a fully connected deep neural network struc-
ture. MatchMaker combined individual drug features with cell line features
and concatenated the two processed features to predict drug synergy in
an end-to-end neural network structure. Details of DSP and SDSP are de-
scribed in SDSP section. Models were tested on regression, classification,
and AB-BA correlation tasks. In the classification task, samples with Bliss
scores >5 (synergistic) or < −5 (antagonistic) were considered positive;
all others were considered negative samples.
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Supporting Information is available from the Wiley Online Library or from
the author.
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