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Abstract

This Article describes the development of a decarbonylative Pd-catalyzed aryl–fluoroalkyl bond-

forming reaction that couples fluoroalkylcarboxylic acid-derived electrophiles [RFC(O)X] with 

aryl organometallics (Ar-M’). This reaction was optimized by interrogating the individual steps 

of the catalytic cycle (oxidative addition, carbonyl de-insertion, transmetalation, and reductive 

elimination) to identify a compatible pair of coupling partners and an appropriate Pd catalyst. 

These stoichiometric organometallic studies revealed several critical elements for reaction design. 

First, uncatalyzed background reactions between RFC(O)X and Ar–M’ can be avoided by using 

M’ = boronate ester. Second, carbonyl de-insertion and Ar–RF reductive elimination are the two 

slowest steps of the catalytic cycle when RF = CF3. Both steps are dramatically accelerated upon 

changing to RF = CHF2. Computational studies reveal that a favorable F2C–H----X interaction 

contributes to accelerating carbonyl de-insertion in this system. Finally, transmetalation is slow 

with X = difluoroacetate but fast with X = F. Ultimately, these studies enabled the development 

of an (SPhos)Pd-catalyzed decarbonylative difluoromethylation of aryl neopentylglycol boronate 

esters with difluoromethyl acetyl fluoride.
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INTRODUCTION

Due to the prevalence of fluoroalkyl (RF) substituents in bio-active molecules, there is a 

high demand for reagents and synthetic methods for the formation of (heteroaryl)aryl–RF 

bonds.1,2 The prevailing approach involves transition metal-catalyzed cross-coupling of aryl 

halide electrophiles (ArX) with fluoroalkyl nucleophiles (RF–M).3,4 Despite extensive work 

in this area, the scope and broad utility of these transformations remain limited, largely due 

to challenges associated with the fluoroalkyl nucleophiles.4 The most common fluoroalkyl 

nucleophiles, R3SiRF, have limited availability for diverse RF substituents, undergo sluggish 

transmetalation in the absence of bases, and exhibit poor stability in the presence of the basic 

additives required for transmetalation.4,5 While some designer Ag and Zn-based fluoroalkyl 

nucleophiles have been developed to address these challenges, these reagents still have 

limitations with respect to synthetic accessibility and/or broad availability, particularly for 

diverse RF groups.4,6,7

A complementary cross-coupling approach to form (hetero)aryl–RF bonds would involve the 

reaction of fluoroalkyl carboxylic acid-derived electrophiles (RFC(O)X) with (hetero)aryl 

nucleophiles (Ar–M’, Scheme 1).8–13 This strategy eliminates the challenges associated with 

transmetalation from a weakly nucleophilic RF reagent.4,5 Furthermore, it leverages the 

abundance, low cost, and stability of fluoroalkyl carboxylic acid derivatives.13

A putative catalytic cycle for this transformation is shown in Scheme 2 and involves (i) 
oxidative addition of RFC(O)X to form [M]–acyl complex I, (ii) carbonyl de-insertion 

to generate [M]–RF intermediate II, (iii) transmetalation of the aryl nucleophile (Ar–M’) 

to form complex III, and (iv) aryl–RF bond-forming reductive elimination to release the 

product. An early study from our group established the feasibility of each of these individual 

steps using trifluoroacetic anhydride and diphenyl zinc as the coupling partners, and Pd[P(o-

Tol)3]2/RuPhos as [M].13a However, catalytic turnover was not viable in this system due to a 

rapid uncatalyzed background reaction between the reagents to form trifluoromethyl ketones 

(Scheme 2, uncatalyzed acylation, v).

In addition to the competing background reaction, our early work identified several other 

limitations associated with individual steps of the catalytic cycle.13a For instance, direct 

oxidative addition of trifluoroacetic anhydride at (RuPhos)Pd0 (step i) proved challenging. 
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As such, a two-step sequence involving initial oxidative addition at Pd(P(o-Tol)3)2 followed 

by a separate ligand exchange between P(o-Tol)3 and RuPhos is required. Furthermore, both 

carbonyl de-insertion (step ii) and aryl–CF3 bond-forming reductive elimination (step iv) 

were slow and/or low yielding. Finally, transmetalation (step iii) was limited to strongly 

nucleophilic organometallic reagents like diphenyl zinc.13a

We hypothesized that these challenges could be addressed via a mechanistic-based redesign 

of the catalyst and coupling partners for this reaction. In this report, we initially identify 

fluoroalkyl anhydrides and aryl boronate esters as compatible RFC(O)X and Ar–M’ 

coupling partners. We then use this pair to interrogate each step of the cycle in Scheme 

2 with (SPhos)Pd0 as the catalyst. These stoichiometric organometallic studies provide 

key insights into the impact of RF, X, and M’ on each step, ultimately informing the 

development of a Pd-catalyzed method for the difluoromethylation of aryl boronate esters.

RESULTS AND DISCUSSION

Identifying Compatible Coupling Partners.

Our original attempts at Pd-catalyzed decarbonylative aryl fluoroalkylation were hampered 

by the uncatalyzed background addition of the diphenyl zinc nucleophile to the 

trifluoroacetic anhydride electrophile (TFAAn) to form phenyl trifluoromethyl ketone 

(A).13a This background reaction proceeds in 77% yield within 1 h at 25 °C (Table 1, 

entry 1), as determined by 19F NMR spectroscopic analysis. Our initial studies focused on 

identifying more compatible coupling partners for the proposed catalytic transformation. We 

hypothesized that aryl boron reagents, which are significantly less nucleophilic than their 

zinc counterparts,13a,14,22e would minimize ketone formation. Indeed, none of the ketone 

A was formed upon stirring a CDCl3 solution of trifluoroacetic anhydride (TFAAn) with 

phenyl boronic acid over 1 h at 25 °C. However, under these conditions a different undesired 

reaction, hydrolysis of the anhydride, proceeded to form trifluoroacetic acid (TFA, B) in 

quantitative yield (Table 1, entry 2). We next examined phenylboronic acid neopentylglycol 

ester (PhBneo) as the nucleophile, reasoning that it should minimize this hydrolysis process. 

Indeed, no detectable side product formation was observed upon stirring stirring a CDCl3 

solution of TFAAn with PhBneo over 1 or 3 h at 25 °C (Table 1, entries 3 and 4). 

Compatibility was also observed when using phenylboronic acid pinacol ester (PhBpin) 

under otherwise identical conditions (entry 5). Furthermore, compatibility with PhBneo was 

maintained when moving to other fluoroalkyl anhydrides (e.g., difluoroacetic anhydride) 

was well as other fluoroalkyl carboxylic acid derivatives (e.g., difluoroacetyl fluoride; see 

Supporting Information for complete details).

Catalytic Cycle: Oxidative Addition and Carbonyl De-insertion.

With a pair of compatible reagents in hand, we next focused on challenges associated 

with the individual steps of the catalytic cycle. As described above, previous studies with 

RuPhos as the ligand accessed the TFAAn oxidative addition product in two discrete steps. 

First, Pd(P(o-Tol)3)2, was treated with TFAAn, and this was followed by a separate ligand 

exchange with RuPhos.13a We hypothesized that replacing the large isopropoxy-substituents 

of RuPhos with smaller methoxy groups (of SPhos) could accelerate oxidative addition and 
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ligand substitution and facilitate the single-pot formation of SPhos-ligated trifluoroacetyl 

intermediate I-COCF3 (Figure 1). Indeed, the reaction of a THF solution of Pd[P(o-Tol)3]2/

SPhos with TFAAn yielded I-COCF3 in 98% yield within 15 min at 25 °C (Figure 

1B). Complex I-COCF3 was characterized in situ by 19F and 31P NMR spectroscopy, 

and the data are in excellent agreement with those for the reported RuPhos analogue.13a 

In particular, this complex can be clearly identified as a trifluoroacyl Pd intermediate 

(rather than a Pd–CF3 complex) based on the diagnostic chemical shift of the CF3 group 

(approximately −75 ppm Pd–C(O)CF3 versus −12 ppm for Pd–CF3).3a,13a,14

While Pd(P(o-Tol)3)2/SPhos proved highly reactive for oxidative addition of TFAAn at 

room temperature (Scheme 2, step i), carbonyl de-insertion (Scheme 2, step ii) at I-COCF3 

remained slow in this system. After 4 h at 25 °C, no change in the 19F NMR spectrum was 

observed, and the decarbonylated intermediate, II-CF3, was not detected. CO de-insertion 

was only observed upon heating the reaction. After 30 min at 90 °C, I-COCF3 was nearly 

fully consumed with concomitant formation of II-CF3 in 91% yield (Figure 1C). Complex 

II-CF3 was characterized in situ (by analogy to the RuPhos analogue) based on its distinct 

broad Pd–CF3 19F NMR resonance at −11.6 ppm.3a,13a,15,16

We hypothesized that the rate of carbonyl de-insertion would be impacted by the nature 

of the migrating fluoroalkyl substituent.17a Thus we next explored the difluoromethyl 

analogue, in which a single fluorine atom is replaced by a hydrogen. This dramatically 

alters the size, nucleophilicity, dipole moment, and H-bond donor ability of the fluoroalkyl 

group,2a–d and all of these factors could potentially impact the carbonyl de-insertion step.17 

Furthermore, it is well-documented that Ar–CHF2 bond-forming reductive elimination at 

PdII centers occurs under much milder conditions than analogous Ar–CF3 couplings.3,4,9a 

As such, this modification should accelerate this other challenging elementary step (iv) of 

the catalytic cycle in Scheme 2.

The reaction of a THF solution of Pd[P(o-Tol)3]2/SPhos with 1 equiv of difluoroacetic 

anhydride (DFAAn, Figure 2A) under otherwise identical conditions afforded >99% 

conversion of DFAAn within 15 min at room temperature. As shown in Figure 2B, the 

oxidative addition product I-COCHF2 was formed in 85% yield and characterized in situ 
via 19F NMR spectroscopy. This result demonstrates that oxidative addition remains fast in 

this system, despite the lower electrophilicity of DFAAn relative to that of TFAAn.

Interestingly, in marked contrast to the trifluoromethyl analogue, carbonyl de-insertion at 

I-COCHF2 also proceeded at room temperature. II-CHF2 was formed in 13% yield after 

0.25 h, and the reaction was nearly complete within 10 h at 25 °C, affording II-CHF2 

in 91% yield as determined by 19F NMR spectroscopy (Figure 2C). Complex II-CHF2 

was isolated in 61% yield and was structurally characterized by X-ray crystal-lography. An 

ORTEP diagram of II-CHF2, along with representative bond distances and bond angles, 

are shown in Figure 3. A noteworthy feature of this structure is a short (2.38 Å) distance 

between H29 (from the CHF2 group) and O3 (of the difluoroacetate ligand). A significantly 

longer distance (3.60 Å) is observed between H29 and O4. The short (2.38 Å) distance as 

well as the C29-H29-O3 angle of 96.9° are consistent with the existence of an attractive 

interaction between H29 and O3.18
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Density functional theory (DFT) calculations19 (M06/LANL2DZ/6–311G**) were 

performed to interrogate the origin of the large rate enhancement for carbonyl de-insertion 

at I-COCHF2 relative to I-COCF3. This difference is counter to commonly accepted trends, 

where the rate is typically inversely proportional to the nucleophilicity of the migrating R 

group.17a Figure 4 shows an energy profile for 1,1-CO de-insertion at I-CORF proceeding 

through TS1-RF to initially form CO-bound complex (CO)Pd–RF. CO dissociation then 

generates the experimentally observed product II-RF. Consistent with the experimental 

observations, the calculations show a large (~16 kcal/mol) difference between the barrier for 

1,1-de-insertion at I-COCHF2 versus I-COCF3. In addition, the overall thermodynamics 

associated with conversion of I-COCHF2 to II-CHF2 + CO (DG = −18.4 kcal/mol) is 

significantly more favorable than for the CF3 analogue (DG = −3.2 kcal/mol).

The computed structures show the presence of an attractive interaction with electrostatic 

character between H29 (of the CHF2 group) and O3 (of the carboxylate ligand). This 

interaction appears to contribute significantly to both the kinetic and thermodynamic 

preference for carbonyl de-insertion at the CHF2 versus CF3 analogue20. In the ground 

state starting material, I-COCHF2, a weak H(d+)---O(d–) electrostatic contact (3.59 Å) 

contributes to a distortion of the coordination geometry at Pd away from square planar. For 

instance, the angle between the acyl and carboxylate ligands (β in Figure 4) is 97.5° in 

I-COCF3 (which cannot engage in this weak contact) versus 154.9° in I-COCHF2. Given 

that carbonyl de-insertion transition states involve a three-coordinate metal center,17b this 

distortion makes the geometry of I-COCHF2 much closer to that of the transition state, 

TS1-CHF2 than in the CF3 analogue. The H---O bond distance becomes significantly 

shorter moving from I-COCHF2 (3.59 Å) to TS1-CHF2 (2.69 Å) to II-CHF2 (2.37 

Å). Notably, the latter closely matches that observed experimentally in the X-ray crystal 

structure of II-CHF2 (2.38 Å).

Further analysis of the electrostatic potential surfaces (EPSs) of I-COCHF2, TS1-CHF2, 

and II-CHF2 and of non-covalent interaction (NCI) maps of the II-RF adducts reveal the 

key role of various attractive interactions (Figure 5).20n–p Specifically, orbital donor-acceptor 

interactions, electrostatic interactions, and a series of weakly attractive non-covalent 

bonds (dipole-induced dipole) were all observed in the -CHF2 containing structures, most 

prominently in TS1-CHF2 (see Supporting Information for complete details). In contrast, 

the electrostatic potential surfaces of the CF3-analogues show more diffuse dispersive 

repulsive interactions between the highly electronegative trifluoromethyl groups. These 

repulsive interactions are most pronounced in TS1-CF3, providing further insights into the 

relatively high barrier to carbonyl de-insertion at I-COCF3.

Catalytic Cycle: Transmetalation and Reductive Elimination.

We next used complex II-CHF2 to interrogate the final two steps of the catalytic cycle: 

transmetalation and aryl–RF bond-forming reductive elimination (Figure 6). With boronic 

acid 1a as the nucleophile, 55% conversion of II-CHF2 was observed over 0.25 h at room 

temperature, with concomitant formation of the difluoromethylated organic product 1 in 

40% yield. None of the PdII σ-aryl intermediate III-CHF2 was detected, indicating that 

Ar–CHF2 bond-forming reductive elimination is facile at room temperature.
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In contrast, the boronate ester nucleophiles 1b and 1c showed low reactivity towards 

transmetalation with II-CHF2. In both cases, >99% of II-CHF2 remained after 0.25 h at 25 

°C, and only traces of 1 were detected. These results indicate that transmetalation between 

the PdII–difluoroacetate intermediate II-CHF2 and aryl boronate esters is likely to be a key 

bottleneck in catalysis.

We hypothesized that this issue could be addressed by changing the X-type ligand on PdII 

from trifluoroacetate to a more reactive fluoride.21,22 Previous work23,24 has demonstrated 

that transition metal fluoride complexes exhibit high transmetalation activity towards various 

aryl boron nucleophiles. To generate a PdII–F intermediate, we treated a THF solution of 

II-CHF2 with anhydrous tetramethylammonium fluoride (Me4NF) for 0.5 h at 25 °C (Figure 

7). This resulted in complete consumption of II-CHF2 and the appearance of a broad 19F 

NMR resonance at −349.5 ppm, which is diagnostic for a metal-fluo-ride.21 While this 

intermediate could not be isolated cleanly, the addition of boronate ester 1b resulted in 

consumption of the Pd–F signal within 15 min at 25 °C and formation of the reductive 

elimination product 1 in 27% yield (Figure 7). Again, the putative intermediate III-CHF2 

was not detected. Overall, this sequence demonstrates that a fluoride ligand enables the 

targeted transmetalation/reductive elimination sequence with 1b, thus closing the formal 

catalytic cycle in this system.

Development of Catalytic Reaction.

The organometallic studies described above demonstrate that each individual step of the 

catalytic cycle in Scheme 2 can proceed at room temperature. As such, our initial catalysis 

attempts focused on the room temperature SPhos/Pd[P(o-Tol)3]2-catalyzed decarbonylative 

coupling of DFAAn with boronate ester 1b in the presence of metal fluoride (MF) sources. 

As summarized in Figure 8, none of these reactions (with Me4NF, Bu4NF, or CsF) yielded 

the target difluoromethylated product 1. However, in the crude 19F NMR spectra of reactions 

that used CsF as the fluoride source, difluoroacetyl fluoride (DFAF) observed as a major 

byproduct.

We noted that acid fluorides are significantly less electrophilic than their anhydride 

counterparts8j, which could result in slower oxidative addition. To address this potential 

issue, we next explored elevated temperatures. Gratifyingly, at 130 °C using excess CsF 

relative to DFAAn, the coupling product 1 was observed, albeit in modest (22%) yield 

(Figure 8). The stoichiometric studies suggest that at 130 °C carbonyl de-insertion should 

also be feasible for the −CF3 and −CF2CF3 analogues. As such, we explored the analogous 

catalytic reactions using TFAAn and pentafluoropropionic anhydride (PFPAn) at 130 °C. 

As shown in Figure 8, 4-trifluoromethylbenzonitrile and 4-pentafluoroethylbenzonitrile 

were formed in these transformations, in modest yields of 5% and 4%, respectively. 

In all three decarbonylative fluoroalkylation reactions a significant amount of the 

corresponding fluoroalkyl acid was observed in the crude mixture, consistent with 

competing decomposition of the anhydrides with traces of water in the fluoride salts.

Moving forward, we focused on optimizing catalytic decarbonylative difluoromethylation, 

since this was the highest yielding reaction among those in Figure 8. To eliminate the need 
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for the hygroscopic fluoride additives, we independently synthesized anhydrous DFAF as 

a concentrated solution in THF (see SI for full details) and deployed it directly as the 

electrophile for cross-coupling.23,24 As shown in Table 2, entry 1, none of product 1 was 

detected at room temperature with DFAF as the electrophile, consistent with slow oxidative 

addition. However, upon heating this reaction to 130 °C, 1 was formed in 51% yield (entry 

3). The reaction was further optimized with respect to reagent stoichiometry, temperature, 

solvent, and reaction time.25 Under the optimized conditions (10 mol % Pd[P(o-Tol)3]2, 20 

mol % of SPhos, 5 equiv of DFAF, and 1 equiv of 1b in a mixture of THF:toluene at 150 °C 

for 5 h), 1 was formed in 92–93% yield as determined by 19F NMR spectroscopic analysis 

and was isolated in 77% yield (see SI for details).

We next evaluated the scope of arene nucleophiles for this transformation. As summarized 

in Table 3, a variety of neopentylglycol boronate esters bearing electron withdrawing 

substituents (1–13) reacted to afford modest to excellent yields of difluoromethylarene 

products.26 Nitriles (1, 2), ketones (3–5), esters (6–8), sulfoxides (11), sulfonamides (12, 
13) were well-tolerated under the reaction conditions. In addition, azole derivatives (9, 
10) reacted in low to modest yields. Boronate esters bearing fluorinated substituents 

also underwent difluoromethylation in good to excellent yields but proved too volatile 

for isolation (see SI). Interestingly, boronate ester derivatives bearing electron donating 

substituents, such as methyl, phenyl, or benzyl ethers, showed low reactivity27 under these 

conditions (typically <5% yield). 19F NMR spectroscopic analysis of these low yielding 

reactions showed significant quantities of unreacted DFAF and no identifiable organic 

by-products. Ongoing efforts are focused on interrogating the mechanistic origin of this 

limitation and developing second generation catalysts to overcome it.

CONCLUSIONS

In summary, this Article presents a detailed investigation of decarbonylative cross-couplings 

between fluoroalkyl carboxylic acid-derived electrophiles and aryl boron nucleophiles. The 

combination of stoichiometric organometallic and computational studies unveiled several 

key findings that ultimately enabled the development of a catalytic difluoromethylation 

reaction. First, unusually low barriers are observed for the key carbonyl de-insertion step 

at (SPhos)PdII(C(O)CHF2)(X) complexes relative to their trifluoromethyl analogues. Several 

attractive non-covalent interactions involving the acidic CHF2 hydrogen appear to play a 

crucial role in lowering this barrier, a finding that could prove more broadly useful in the 

future development of decarbonylative couplings with these electrophiles.

The generation of a Pd–fluoride intermediate proved critical for promoting the challenging 

transmetalation step of the sequence. This finding led to the use of difluoroacetyl fluoride 

as the electrophile in catalysis to directly access a ‘transmetalation-active’ Pd-fluoride 

intermediate in situ and enable base-free transmetalation. While similar effects have been 

observed at nickel centers, this report is rare example of base-free cross-coupling of an acid 

fluoride derivative at Pd.24i Overall, we expect this study to engender interest in the unique 

properties of fluoroalkyl groups and the reactivity of metal–fluoroalkyl complexes in the 

context of catalytic reaction development.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

THF Tetrahydrofuran

DCM dichloromethane

Et2O diethyl ether

DFAF difluoroacetyl fluoride

DFAAn difluoroacetic anhydride

TFAAn trifluoroacetic anhydride

DFA difluoroacetic acid

TFA trifluoroacetic acid

PFPAn pentafluoropropionic anhydride

PFPA pentafluoropropionic acid

TMAF tetramethyl ammonium fluoride

TBAF tetrabutylammonium fluoride

RT room temperature

SPhos 2-dicylcohexylphosphino-2’,6’-dimethoxybiphenyl
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Figure 1. 
Oxidative addition and carbonyl de-insertion of TFAAn at SPhos/Pd0 in THF. 19F NMR 

spectra of (A) TFAAn; (B) Reaction of TFAAn with SPhos/Pd0 in THF after 0.25 h at room 

temperature; (C) Reaction of TFAAn with SPhos/Pd0 in THF after 4 h at room temperature; 

(D) Reaction heated to 90°C for 0.5 h. Spectra are referenced to 4-fluorotoluene (−119.85 

ppm).

Lalloo et al. Page 14

J Am Chem Soc. Author manuscript; available in PMC 2022 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Oxidative addition and carbonyl de-insertion of DFAAn at SPhos/Pd0 in THF. 19F NMR 

spectrum of (A) DFAAn; (B) Reaction of DFAAn with SPhos/Pd0 in THF after 15 min 

at room temperature; (C) Reaction of DFAAn with SPhos/Pd0 in THF after 10 h at room 

temperature. Black star represents 4-fluorotoluene (−119.85 ppm, internal standard).
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Figure 3. 
ORTEP diagram of II-CHF2. Select hydrogen atoms are omitted for clarity. Selected bond 

lengths (Å) and angle (deg): O3–Pd1 2.11, O4–Pd1 3.09, C29–Pd1 1.99, C1–Pd1 2.46; 

H29---O3 2.38, H29---O4 3.60; C29–Pd1–O3 81.7, C29–H29---O3 96.9.
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Figure 4. 
Energetics (the preferred binding mode highlighted as conformer A, see SI for details) for 

the carbonyl de-insertion process at (A) I-COCF3 and (B) I-COCHF2 with selected key 

angles α, β, γ, and δ for I-CORF and TS1-RF.
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Figure 5. 
Electrostatic potential surfaces (for the optimal conformer A, see SI for details) generated 

for (A) I-COCF3, TS1-CF3, and II-CF3; (B) I-COCHF2, TS1-CHF2, and II-CHF2. 

Energies are in represented in kcal/mol.
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Figure 6. 
Transmetalation/reductive elimination sequence between II-CHF2 and aryl boron 

nucleophiles 1a-c.
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Figure 7. 
Generation of a Pd–F intermediate facilitates transmetalation with organoboron reagent 1b 
and subsequent reductive elimination (steps iii and iv in Scheme 2).
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Figure 8. 
Initial attempts at catalysis using DFAAn and fluoride salts.
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Scheme 1. 
(A) Traditional fluoroalkylative cross-coupling using fluoroalkyl nucleophiles; (B) 

This work: decarbonylative fluoroalkylation with fluoroalkyl carboxylic acid-derived 

electrophiles.
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Scheme 2. 
(A) General reaction scheme for decarbonylative fluoroalkylation and (B) proposed catalytic 

cycle with undesired acylation shown.
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Table 1.

Compatibility of TFAAn with different aryl nucleophiles.

entry PhM’ yield A yield B

1 Ph2Zn 77% 0%

2 PhB(OH)2 <1% >95%

3 PhBneo <1% <1%

4
a PhBneo <1% <1%

5 PhBpin <1% <1%

a
25 °C for 3 h.

J Am Chem Soc. Author manuscript; available in PMC 2022 November 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lalloo et al. Page 25

Table 2.

Optimization of difluoromethylation of 1a with DFAF.

entry X T (°C) solvent yield (%)
a

1 1 25 THF <1

2 1 100 THF 29

3 1 130 THF:toluene (1:1) 51

4 3 130 THF:toluene (1:1) 58

5 5 130 THF:toluene (1:1) 67

6 5 150 THF:toluene (1:1) 86

7 5 150 THF:dioxane (1:1) 72

8
b 5 150 THF:toluene (1:1) 93

9
b 5 150 THF:toluene (1:2) 92

a
Yields determined by 19F NMR with 4-fluorotoluene internal standard.

b
Reaction was run for 5 h.
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Table 3.

Scope of aryl boronate esters for the catalytic electrophilic decarbonylative difluoromethylation using 

difluoroacetyl fluoride.

a
15 mol% Pd[P(o-tol)3]2/30 mol% SPhos used for catalysis. See Supporting Information for details.
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