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SUMMARY

Hippocampal ripples are prominent synchronization events generated by hippocampal neuronal 

assemblies. To date, ripples have been primarily associated with navigational memory in rodents 

and shortterm episodic recollections in humans. Here, we uncover different profiles of ripple 

activity in the human hippocampus during the retrieval of recent and remote autobiographical 

events and semantic facts. We found that the ripple rate increased significantly before reported 

recall compared to control conditions. Patterns of ripple activity across multiple hippocampal 

sites demonstrated remarkable specificity for memory type. Intriguingly, these ripple patterns 

revealed a semantization dimension, in which patterns associated with autobiographical contents 

become similar to those of semantic memory as a function of memory age. Finally, widely 

distributed sites across the neocortex exhibited ripple-coupled activations during recollection, with 

the strongest activation found within the default mode network. Our results thus reveal a key role 

for hippocampal ripples in orchestrating hippocampal-cortical communication across large-scale 

networks involved in conscious recollection.

In brief

Norman et al. report that synchronous hippocampal bursts (ripples) selectively emerge when 

patients recall past autobiographical events. Those ripples form spatial patterns that become 
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increasingly similar to semantic-memory patterns, the more remote the memory. The results 

demonstrate the pivotal role of ripples in coordinating recollections in the human brain.

INTRODUCTION

The neuronal mechanisms that endow the human brain with its ability to flexibly retrieve 

and reexperience personal events (hereafter, autobiographical memory, or “autobio”) are still 

far from being understood. In recent years, a growing body of research, conducted primarily 

in rodents (Buzsáki, 2015) but also in non-human primates (Leonard and Hoffman, 2017; 

Logothetis et al., 2012), has focused on particularly robust neuronal synchronization events 

called sharp wave ripples (SWRs). Extant evidence from animal studies suggests a role for 

SWRs in the reactivation of mnemonic information (Davidson et al., 2009; Karlsson and 

Frank, 2009; Peyrache et al., 2009; Shin et al., 2019; Takahashi, 2015; Wu et al., 2017) and 

offline consolidation of rodents’ spatial (Ego-Stengel and Wilson, 2010; Fernández-Ruiz et 

al., 2019; Girardeau et al., 2009; Jadhav et al., 2012; Maingret et al., 2016; van de Ven et al., 

2016), emotional (Girardeau et al., 2017; Gomperts et al., 2015), and social memories (Oliva 

et al., 2020).

Human memory research, beginning with the seminal work of Scoville and Milner (1957) 

and others (Kartsounis et al., 1995; Rosenbaum et al., 2000; Vargha-Khadem et al., 

1997), primarily emphasized the role of the hippocampus in the encoding and retrieval 

of autobiographical memory (Barry and Maguire, 2019; Elward et al., 2021; Gilboa et al., 

2004; Maguire, 2001; Moscovitch et al., 2005; Nadel and Moscovitch, 1997; Ryan et al., 

2001; Tulving, 2002), as well as in other forms of long-term declarative memory (Squire and 

Zola, 1996; Squire et al., 2004). The contribution of hippocampal ripples to the dynamics of 

human declarative memory processes is still unknown. More generally, little is known about 

the relationship between hippocampal ripples and the intrinsic mental contents that emerge 

in the conscious mind of an individual.

In the present work, we took advantage of rare multisite intracranial electroencephalographic 

(iEEG) recordings (Parvizi and Kastner, 2018) obtained directly from the hippocampus 

and cerebral cortex of neurosurgical epileptic patients. Using this approach, it is possible 

to reliably detect and study hippocampal ripples in the human brain (Axmacher et al., 

2008; Helfrich et al., 2019; Norman et al., 2019; Staresina et al., 2015; Vaz et al., 2019, 

2020; Zhang et al., 2018). In prior work, ripples were implicated in the awake retrieval of 

recently acquired visual memories (Norman et al., 2019), word-pair associations (Vaz et al., 

2019, 2020) and face-profession associations (Henin et al., 2021). However, the question 

of whether and in what manner hippocampal ripples support the retrieval of longer-term 

declarative memories in the human brain remains unknown.

Another important issue that is still unresolved concerns the role of ripples in establishing 

a cortical-hippocampal communication during conscious recollection. In particular, a large 

number of human brain studies have implicated a specific cortical network, the default 

mode network (DMN), as playing a central role in episodic memory (Buckner and Carroll, 

2007; Fox et al., 2018; Harmelech et al., 2015; Raichle, 2015; Schacter et al., 2012). 

A major advantage of intracranial recordings in patients is the ability to simultaneously 
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record hippocampal ripples and cortical responses while the patients are engaged in various 

cognitive tasks. Here, we leveraged this methodology to directly study the ripple-triggered 

hippocampal-cortical interplay during long-term autobiographical and semantic memory 

recall.

RESULTS

Experimental design and intracranial recordings

The study was based on recordings obtained in 20 patients (10 females) with refractory 

epilepsy implanted with intracranial electrodes in the hippocampus and various cortical 

sites as part of their neurosurgical evaluation at Stanford University Medical Center. 

Hippocampal ripples were identified using a modification of our previously described 

procedure (Norman et al., 2019) (see STAR Methods).

The experimental design is depicted in Figures 1A-1C. In short, patients were asked to 

make true/false judgments about a series of visually presented statements. These statements 

required the retrieval of autobiographical memories of varying degrees of remoteness (i.e., 

events that happened today, yesterday, 1 week ago, or last month) or of semantic facts (in 

11 patients). In a control condition, patients were asked to solve arithmetic problems (see 

summary of behavioral performance in Table S1).

An example of the multicontact electrodes that were implanted in the hippocampus is 

depicted in Figures 1D and 1E (see Table S3 for details). Hippocampal ripples were 

identified by their relatively transient, high-frequency profile (Figures 1F-1H; see also 

STAR Methods). An overview of ripple rates (throughout the entire experiment) for the 

112 hippocampal sites included in our analysis is depicted in Figure 1I.

Elevated ripple rate during autobiographical memory retrieval

To determine whether hippocampal ripples are associated with conscious memory retrieval 

processes, we examined the ripple rate during different conditions. This revealed a clear 

selectivity for autobiographical recall relative to arithmetic processing and awake rest. The 

ripple rate was computed individually in each recording site, from stimulus onset to reaction 

time (RT), and was averaged across all sites within a patient (see Figure 2A, sign-rank 

test, autobio versus rest: p = 0.0072; autobio versus math: p = 0.0002, math versus rest: 

p = 0.0028; n = 20 patients). Examining the dynamic evolution of ripple rates during the 

task (Figures 2C and 2D) revealed a striking discrepancy between the autobio and math 

conditions, with the latter notably showing suppressed responses compared to a 5-s cued rest 

condition (p < 0.01, cluster-based permutation test; n = 20 patients). Ripple rates returned 

to baseline levels immediately after the patient’s button-press response (Figure 2D). Similar 

results were found when examining a single representative contact in each patient (i.e., the 

closest contact to CA1; see Figures S2A-S2C).

Figure 2B depicts the distribution of the autobio versus math effect size across individual 

sites. Mixed-effect regression model fitted to the data (STAR Methods) revealed a significant 

link between autobio preference and electrode distance from CA1 (F(1,82.90) = 19.38, p < 

3.17 × 10−5), brain hemisphere (F(1,93.01) = 10.17, p = 0.0019), and interaction between 
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hemisphere and hippocampal longitudinal position (F(1,83.68) = 5.30, p = 0.023) (see 

Figures 2E and 2F). Thus, preference to autobio trials was maximal in the left anterior 

hippocampus, increased with proximity to CA1, and was weakest in the right posterior 

hippocampus.

The autobiographical items recalled during the task were of varying degrees of remoteness 

(i.e., memories from today, yesterday, this week, or last month). This enabled us to examine 

whether memory age affected the overall ripple rate elicited during the autobiographical 

trials. To that end, we ran a mixed effects ANOVA (using a fixed factor for memory 

age and a random factor for electrode nested within patient; see STAR Methods). For 

consistency across conditions, ripple rates were computed in a fixed, generic time window 

of 2 s centered on the peak of the grand-average autobio response shown in Figure 2D 

(where ripple rate modulation was strongest). The results revealed a significant effect of 

memory age on the average ripple rate (F(3,288) = 18.27, p < 10−10; n = 16 patients [4 

patients were excluded from this analysis for not having the “last-month” condition]). Post 

hoc comparisons indicated that the ripple rate was higher during the retrieval of remote 

experiences compared to more recent memories (false discovery rate [FDR]-adjusted p 

values are reported in the figure). Complementary analyses of the ripple activation profile 

across the different levels of remoteness are depicted in Figures S2F and S2G.

Ripple activation profiles vary with retrieval difficulty

To examine whether ripple activation profiles varied depending on the difficulty of the 

retrieval process, we pooled together autobio trials across all patients (n = 1,475 trials) and 

sorted them by RT, taken here as a proxy for retrieval difficulty. For the analysis, we split 

the trials into 5 groups based on their RT quintile. We discarded the fastest and slowest 

trials in the 2 extremes (first and last RT quintiles, respectively) and remained with 3 groups: 

fast (n = 267), medium (n = 292), and slow (n = 286) trials (2nd, 3rd, and 4th quintiles, 

respectively). We then computed ripples peri-event time histogram (PETH) aligned to the 

patients’ response separately for each trial group. Figures S2D and S2E depict the results 

of this analysis. We found that ripple activation during recall lasted longer and generated 

more ripples during slow compared to fast trials (see Figure S2E for details), suggesting 

that hippocampal ripple activation during retrieval is not an isolated response locked to the 

moment of actual recollection, but reflects pre-recall retrieval attempts as well.

Given this relationship with RT, it could be argued that the link between ripple rate and 

memory age reported above (Figure 2G) may in fact be a consequence of RT differences 

between recent and remote memories (since the latter may require a more extensive memory 

search). Examining the patients’ behavior revealed that RTs increased significantly with 

remoteness level (Figure S2H; p = 0.005, Friedman test, n = 16 patients; last month versus 

today: p = 0.003, signed-rank test). However, to examine whether such RT differences could 

account for the enhancement in ripple rate during retrieval (Figure 2G), we ran a control 

analysis in which we equated the RTs among the different levels of remoteness (see Figure 

S2 for details) and found that memory age still had a significant effect on ripple rate above 

and beyond the influence of RT.
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Individual hippocampal ripples are spatially confined

To further characterize the nature of ripple rate modulation and to explore how local was 

the emergence of individual ripples across the hippocampus, we carried out the following 

analyses. First, we computed the trial-to-trial ripple rate correlations between neighboring 

electrode pairs (within a patient). This analysis revealed a significant correlation that quickly 

diminished as a function of inter-electrode distance (Figures S3A and S3B). Thus, pairs 

of electrodes farther than 10 mm apart, or electrodes on opposite hemispheres, showed a 

weak or no correlation with each other. Intriguingly, this pairwise correlation became more 

widespread during the cued rest condition (Figure S3B).

Second, we quantified the extent to which neighboring electrodes exhibited coincident 

activation of individual ripples. To that end, we computed the cross-correlogram of ripple 

events generated during autobio trials, separately for each pair of electrodes, and grouped 

the results by the level of inter-electrode distance (Figure S3C). Furthermore, we calculated 

for each electrode pair the proportion of coincident ripple activation (i.e., zero-lag events) 

out of the total number of ripples detected. Our results showed a significant but minor 

prevalence of ripple coincidences between adjacent electrodes of <4% ± 0.3% of the 

total number of ripples detected (p < 0.01, compared to chance level; see Figure S3D). 

Similar to the ripple rate correlations reported above, the proportion of ripples appearing 

simultaneously at different sites decreased sharply as a function of inter-electrode distance. 

These results highlight the local nature of ripple activation within the hippocampus, which is 

also consistent with observations in rodents (Patel et al., 2013).

Spatial patterns of ripples differentiate between memory types

To explore whether hippocampal ripple activity was biased toward specific types of 

declarative memory, we compared the average ripple rate across hippocampal sites in 

a subgroup of 11 patients who performed both the semantic and the autobiographical 

conditions. Interestingly, ripple activity during the semantic condition was of a magnitude 

similar to that of the autobiographical condition (t(14.51) = 0.17, p > 0.87, partially 

overlapping samples t tests (Derrick et al., 2017; see Figure 3A for details). For a 

comparison between the ripple activation profiles in each condition, see Figures S4A and 

S4B.

To examine whether there was functional specialization in individual recording sites for a 

specific memory type, we plotted the distribution of memory-type preference (effect size of 

autobio versus semantic trials) across all of the hippocampal sites. The obtained map pointed 

to a mosaic organization of memory-type biases (Figure 3B). Thus, ripple engagement 

during the two memory conditions appeared to be close to normally distributed, in a mixed 

and balanced manner across the two hippocampi. It should be noted, however, that a more 

fine-grained analysis using a mixed-effects model (similar to the one reported in Figure 2E) 

indicated that preference to semantic memory was slightly stronger in electrodes closer to 

the CA2/3 subfields, with no additional effects (F(1,54.46) = 8.24, p = 0.0058; see STAR 

Methods for further details).
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Could memory type be coded in the patterns of ripple activations across multiple 

hippocampal sites, rather than the mean overall rate? To examine this possibility, we 

trained a linear discriminant analysis (LDA) classifier on the multivariate ripple-rate patterns 

emerging across conditions (STAR Methods). The LDA classifier was able to decode trial 

type (i.e., autobiographical, semantic, and math conditions) with significant accuracy (p < 

0.001, Monte Carlo permutation test, shuffling condition labels 1,000 times; see Figure 3C). 

A confusion matrix analysis (Figure 3D) confirmed this observation and revealed higher 

confusion within memory types compared to the math condition. Notably, training and 

testing the classifier on memory trials alone, leaving math trials out of the analysis, revealed 

a similar result (Figure S4E).

Ripple pattern similarity reflects memory semantization

Next, having established that multisite ripple rate patterns are informative about memory 

content (autobio versus semantic), we addressed the intriguing question of whether the 

degree of similarity between ripple rate patterns associated with individual memory items 

could reflect natural processes of memory semantization, namely, the gradual transformation 

of autobiographical (episodic memory) representations into a format that is more akin to 

semantic memory. To examine this question, we grouped the recalled memory items by their 

age (i.e., degree of remoteness), starting from very recent autobiographical memories from 

today or yesterday, to more remote experiences from last week or last month, and calculated 

the similarity between the average ripple rate pattern in each group and the average pattern 

that emerged during semantic retrieval.

Strikingly, we found that ripple rate patterns associated with autobiographical memories 

gradually became similar to semantic memory as a function of memory age (Figure 

4A). Thus, the more remote the autobiographical content was (e.g., “last month” versus 

“yesterday”) the more similar its associated ripple rate pattern was to the pattern of semantic 

memory (Figure 4A; see STAR Methods). This increase in pattern similarity cannot be 

explained solely on the basis of (univariate) differences in average ripple rate between 

conditions (Figure S4C). However, we do not rule out the possibility that such overall 

differences may have contributed to the result as well.

To statistically test the relationship between memory age and the distance from the semantic 

memory ripple rate pattern, we moved to the single-item level and computed the pattern 

dissimilarity distances (1-R) of each individual item from the average semantic memory 

pattern. We then placed these distances on an ordinal scale representing memory age: 

from “today” (the most recent memories), through “yesterday,” “this week,” and “last 

month” up to semantic memory (the most remote memories) and computed the Spearman’s 

correlation between these individual item distances and their respective memory age. The 

result indicated a highly significant negative correlation (ρ = −0.47, p < 10−7, n = 115 items; 

Figure 4B).

Finally, agglomerative hierarchical clustering (using group-average linkage) applied to the 

average ripple rate patterns associated with each class of items revealed a similar result, with 

ripple rate patterns forming a hierarchy that reflects the episodic-semantic continuum.
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Enhanced ripple rate linked to autobiographical statements judged as “TRUE”

To further characterize the relationship between ripple rate and the behavioral retrieval 

process, we compared ripple activity between autobio trials that ended up with the patient 

confirming the autobiographical statement (i.e., responded “TRUE”), and trials that ended 

up with the patient disaffirming the statement (i.e., responded “FALSE”). To that end, we 

computed the ripple rate during TRUE and FALSE autobio trials using a generic time 

window of 2 s centered on the peak of the grand-average autobio response. We found that a 

TRUE response elicited a significantly higher ripple rate compared to a FALSE response (p 

= 0.002, n = 20 patients, signed-rank test; Figure S4F). To make sure this effect was not due 

to a general bias to affirmatory answers, we conducted a similar analysis on semantic trials. 

The results indicated no difference between TRUE and FALSE responses during semantic 

trials (p = 0.28, n = 11 patients, signed-rank test; Figure S4G; incorrect trials (13.9%) were 

excluded from this analysis). This finding suggests that a TRUE autobio response engages a 

stronger retrieval process, perhaps due to richer and more specific memory associations.

Ripple-triggered cortical-hippocampal dialogue

As mentioned above, the iEEG method enabled us to simultaneously record from multiple 

cortical and hippocampal sites. Thus, we sought to examine the dynamics of cortical 

activations coupled to hippocampal ripple events. To disentangle the ripple-coupled cortical 

activations from those driven by the appearance of memory statements on the computer 

screen or subject’s button presses, we used a linear deconvolution analysis (Ehinger and 

Dimigen, 2019; Golan et al., 2016) (see STAR Methods). In this approach, the continuous 

high-frequency broadband (HFB; 60–160 Hz, also known as high gamma) time series 

in each cortical recording site is understood as a linear convolution of isolated neuronal 

responses with different experimental events (in our case, stimulus onset, hippocampal 

ripples, and button presses). By implementing a general linear model (GLM) in which the 

latencies of experimental events (and a number of time points around them) are added 

as predictors, we were able to isolate and recover the profiles of cortical HFB responses 

associated with each type of event, while accounting for the contributions of all of the other 

events simultaneously.

Figure 5A shows a schematic depiction of the GLM design matrix implemented in 

our analysis. Figure 5B presents an example of deconvolved HFB responses from two 

representative cortical sites in a single patient, which responded robustly to the autobio 

statements. In addition to the clear activation following stimulus presentation (center 

panels), the two electrodes exhibited a smaller but robust HFB activation coupled to the 

hippocampal ripple event (bottom panels).

How ubiquitous was the peri-ripple response across the cortex during the autobiographical 

retrieval condition? By integrating electrodes from all of the patients (830 bipolar cortical 

recordings in total), we were able to examine the spatial distribution of peri-ripple responses 

widely across the cortex. Figure 5C maps all of the cortical sites that exhibited a robust 

peri-ripple HFB response during the autobiographical retrieval condition. HFB amplitude 

was averaged over a time window of −250 to 250 ms relative to the hippocampal ripple 

event. The resulting map revealed a strikingly widespread yet anatomically consistent 
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distribution of peri-ripple activations (with very few examples of deactivation). Importantly, 

based on a cortical atlas of seven canonical resting-state networks (Yeo et al., 2011), we 

found a clear predilection of cortical structures within the DMN (pink-colored regions), 

which we show quantitatively in Figure 5D (top left panel). Notably, peri-ripple activation in 

DMN electrodes was significantly stronger compared to the other networks (p < 0.05, FDR-

corrected rank-sum tests). See Figure S6A for a comparison between DMN and non-DMN 

sites within subjects. Importantly, alongside the DMN, sites within the limbic network also 

showed considerable peri-ripple activation, which is intriguing given their link to depression, 

rumination, and maladaptive retrieval of autobiographical contents (Hamilton et al., 2015).

Peri-ripple cortical activation profile

Next, we investigated the temporal relationship of the peri-ripple cortical responses to the 

timing of the hippocampal ripple events. Analysis of the peri-ripple dynamics across the 

main resting-state cortical networks showed that the peri-ripple activations were generally 

centered on the hippocampal ripple peak (Figure 5D).

Similar activation profiles were obtained when sampling cortical areas based on purely 

anatomical definitions (i.e., using a gyral-based atlas; Figure S5A). Examining potential 

asymmetries in the peri-ripple responses relative to the peak of the ripple revealed dynamics 

that varied over a continuum, with some anatomical areas showing a slight bias toward 

leading the hippocampal ripple and others showing a slight bias toward trailing the ripple 

(Figures S5B and S5C). Notably, this result is in line with a recent report in rodents (Karimi 

Abadchi et al., 2020).

Were the peri-ripple responses stronger in cortical sites that demonstrated memory 

selectivity—that is, sites that showed stronger stimulus response to autobio statements 

compared to math (see STAR Methods)? Comparing across all task-responsive cortical 

electrodes supported this bias (Figure 6A). We found a significant correlation between 

memory selectivity (computed on the first run) and peri-ripple response magnitude 

(computed on the second run) both for the entire cortex (right; Spearman’s ρ = 0.3, p < 

10−11) and the DMN in isolation (left; Spearman’s ρ = 0.44, p < 10−4).

Focusing specifically on cortical sites that showed significant memory selectivity (p < 

0.05 FDR adjusted, autobio versus math; see Figure 6B for anatomical location and left 

panel in Figure 6C for deconvolved stimulus response), we found significantly stronger peri-

ripple responses during memory retrieval compared to both the cued 5-s rest and the math 

condition (p < 0.001, cluster-based permutation test; Figure 6C, right panel). Intriguingly, 

comparing the peri-ripple responses across semantic and autobio conditions revealed similar 

levels of activation (Figure S6G). For further comparison, analyzing a similar ensemble of 

“math-selective” cortical sites revealed a substantially weaker peri-ripple response during 

both autobio and math trials (Figures S6C-S6E).

The peri-ripple activation profile in individual memory-selective sites was comparable 

across DMN and non-DMN sites (Figure S6B), suggesting that the peri-ripple activation 

during recall is not specific to the DMN, but rather extends to other sites involved in 

memory processing. Estimating the latency of the peri-ripple activation peak using a 
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bootstrap sampling procedure suggested that the latency of peak activation during autobio 

and rest conditions was not significantly different from zero (peak latencies: autobio, 56 ± 

72 ms; 5 s rest, 64 ± 73 ms; p = not significant [NS]). During math, however, peri-ripple 

activity was slightly delayed and peaked 96 ± 28 ms after the hippocampal ripple event (p < 

0.05; see Figure S6F).

Lastly, to further validate the linear deconvolution approach, we carried out an independent 

analysis of memory-selective sites, in which the HFB time series were simply averaged 

relative to the latencies of hippocampal ripples (i.e., ripple-triggered averaging without 

deconvolution). Importantly, we compared the averages using the actual ripple latencies 

with the averages derived following shuffling of ripple latencies across trials (Figure S6H). 

Note that this shuffling procedure preserves the overall distribution of hippocampal ripple 

latencies with respect to the stimulus onset but eliminates the direct temporal link between 

the ripple and cortical activity within a trial. Subtracting the two averages allowed us 

to isolate the contribution of the actual temporal coupling between cortical HFB and 

hippocampal ripples. Reassuringly, the derived peri-ripple activation was strikingly similar 

to the one obtained from the deconvolution approach (Figure S6I).

DISCUSSION

Hippocampal ripples and long-term memory retrieval

Here, we reveal a direct link between the traditionally defined role of the human 

hippocampus as critical for long-term autobiographical memory (Moscovitch et al., 2016; 

Nadel and Moscovitch, 1997) and hippocampal ripples whose memory functions have 

typically been studied in the context of spatial navigation in rodents. Our study demonstrates 

the robust engagement of hippocampal ripples during human autobiographical retrieval. We 

also demonstrate a significant ripple activation during the retrieval of semantic facts, thus 

revealing an important mechanistic link between these two types of declarative memory 

(Renoult et al., 2019; Tulving and Markowitsch, 1998).

More specifically, we find a significant increase in ripple rates during the retrieval of 

long-term autobiographical memories of varying degrees of remoteness, as well as more 

abstract semantic knowledge. This effect could not be attributed to general cognitive effort 

or to decision making since solving math problems actually caused a reduction (below 

fixation baseline) in ripple rates (Figure 2D). Although hippocampal ripples are produced at 

a notoriously slow rate (~0.4 events/s), they showed a surprisingly tight temporal coupling to 

task performance, particularly to the termination of the memory recall process as indicated 

by the button presses (Figure 2D).

Interestingly, our results reveal a link between ripple activation profiles and RT (taken 

here as a proxy for retrieval difficulty). Across autobio trials, ripple rate enhancement was 

significantly extended during slow trials (i.e., memory statements that took patients longer 

to judge; Figures S2D and S2E), which suggests a role for hippocampal ripples, not only in 

the final moment of successful recall but also during more initial retrieval attempts. It should 

be noted that in the present task design, it was not possible to verify the correctness of the 

retrieved autobiographical memories.
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The observation that remote memories elicit higher ripple rates compared to more recent 

memories (Figure 2G) may be taken as more evidence for a possible relationship between 

ripple rate and retrieval difficulty. However, interestingly, equating RTs among the different 

levels of remoteness indicated that memory age has an independent effect on ripple rate 

above and beyond RT differences.

Our study, which consisted of tens of hippocampal recording sites across a cohort of 20 

neurosurgical patients, uncovered clear anatomical specializations with a stronger preference 

for autobiographical recall the closer the electrodes were to CA1, and in electrodes located 

in the left anterior hippocampus (Figures 2E and 2F). In addition to corroborating recent 

studies in rodents demonstrating a critical role for CA1 ripples in awake memory processes 

(Fernández-Ruiz et al., 2019; Jadhav et al., 2012; Joo and Frank, 2018; Shin et al., 2019), 

our findings are compatible with a human lesion study indicating a role for CA1 in 

autobiographical recall (Bartsch et al., 2011), as well as with fMRI (Gilboa et al., 2004; 

Maguire, 2001; Maguire and Frith, 2003; Viard et al., 2007) and neuropsychological (Barr 

et al., 1990) studies, showing that autobiographical memory retrieval is primarily lateralized 

to the left hippocampus. Interestingly, our results revealed preferential ripple activation in 

the anterior hippocampus. This may be compatible with the gist-like recollection strategy 

proposed to be represented in the anterior hippocampus (Sekeres et al., 2018).

Multisite patterns of ripple activation uncover a semantization process

While the overall ripple rate computed across all of the electrodes failed to reveal 

a clear differentiation between autobiographical and semantic memories (Figures 3A, 

S4A, and S4B), at the individual contact level, we did find discernible biases toward 

specific memory types (Figure 3B). This suggests that significant content information 

may reside in the multicontact ripple activation patterns rather than the overall ripple rate 

average. Multivariate pattern analysis succeeded in a significant decoding of memory type 

(autobio versus semantic). Remarkably, dissecting the memory content further by temporal 

remoteness of the recalled items (experiences from today to last month as well as longer-

term semantic knowledge) revealed an intriguing dimension of semantization: a gradually 

increasing similarity between the ripple rate patterns associated with autobiographical 

memory and the average pattern associated with semantic memory, as autobiographical 

contents become more remote (Figures 4A-4C). This finding highlights collective multisite 

coding by ripples as an important aspect of hippocampal function. It raises the exciting 

possibility of ripple-based representational space in the hippocampus expressing processes 

of maturation, abstraction, and semantization of memories (Dudai et al., 2015; Nadel and 

Moscovitch, 1997; Renoult et al., 2019; Winocur and Moscovitch, 2011), encoded by 

the similarity distances of multisite ripple activation patterns. However, it is important to 

emphasize that at this stage, it is unclear what precise factor (e.g., memory remoteness) may 

have contributed to the observed semantization phenomenon.

It is important to note that hippocampal ripples represent a striking case of neuronal 

population coding rather than single neuron tuning. It is thus of interest to consider what 

could be the relationship of such population-level representation to single neuron properties 

shown to be linked to abstract concepts and various mnemonic processes (Gelbard-Sagiv 
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et al., 2008; Quiroga, 2012, 2019; Quiroga et al., 2005; Rutishauser et al., 2021; Staresina 

et al., 2019). Some hints can be derived from detailed rodent SWR studies showing a 

compressed replay of place sequences (Davidson et al., 2009; Diba and Buzsáki, 2007; 

Foster and Wilson, 2006). It is tempting to speculate based on this analogy that human 

hippocampal ripples represent rapid sequencing of concepts associated with the recalled 

memory content.

Implications for existing models of memory consolidation and transformation

Our results, showing enhanced ripple activity during remote compared to recent memory 

retrieval (see Figure 2) may have some relevance to a central debate concerning models of 

systems memory consolidation. In particular, they appear to support theories that emphasize 

richer hippocampal representations of remote memories (e.g., the multiple trace theory) 

(Nadel and Moscovitch, 1997) rather than a growing disengagement of the hippocampus 

with memory age (McClelland et al., 1995; Squire et al., 2015), at least as reflected in ripple 

rates. However, it should be noted that the involvement of ripples in remote retrieval does 

not rule out the possibility that remote memories, properly consolidated and incorporated in 

neocortical networks, may still be retrieved independently of the hippocampus, albeit in a 

less detailed format and with fewer contextual features (O’Reilly et al., 2014; Sekeres et al., 

2018; Winocur and Moscovitch, 2011).

Role of ripples in the cortical-hippocampal interplay

A major hypothetical role attributed to ripples is coordinating hippocampal-cortical 

communication (Karimi Abadchi et al., 2020; Logothetis et al., 2012; Rothschild et al., 

2017; Todorova and Zugaro, 2020). Our group and others have recently demonstrated that 

cortical activity is linked to hippocampal ripple events in the human brain (Helfrich et al., 

2019; Ngo et al., 2020; Norman et al., 2019; Vaz et al., 2019, 2020; Zhang et al., 2018).

In the present study, we had the unique opportunity to examine the link between 

hippocampal ripples and cortical activations during long-term autobiographical recall. We 

used deconvolution analysis to disentangle the cortical peri-ripple responses (see Figure 

5A and STAR Methods) and verified this procedure using a shuffling approach (Figures 

S6H and S6I). Data-driven examination of the distribution of cortical sites that showed a 

ripple-mediated hippocampal-cortical link during the autobiographical condition revealed a 

widespread distribution involving major cortical networks and sites (Figures 5C and 5D). 

Significantly, the DMN most prominently displayed an interaction with hippocampal ripples. 

This observation is compatible with recent reports in rodents (Karimi Abadchi et al., 2020), 

non-human primates (Kaplan et al., 2016), and human magnetoencephalography (Higgins et 

al., 2021). Moreover, our results are in line with recent iEEG studies in the human DMN 

(Fox et al., 2018) and a large body of fMRI studies (Buckner and Carroll, 2007; Harmelech 

et al., 2015; Kim, 2010; Schacter et al., 2012; Vatansever et al., 2021) demonstrating the 

role of DMN in autobiographical memory. The finding of peri-ripple responses in networks 

other than the DMN (albeit less pronounced) is compatible with the proposal that ripples 

play a coordinating role, not only in the reenactment of diverse multisensory representations 

(Fernández-Ruiz et al., 2019; Norman et al., 2019; Rothschild et al., 2017; Vaz et al., 

2020; Zhang et al., 2018) but also in reactivating contextual information (Peyrache et al., 
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2009; Takahashi, 2015), previous decisions (Shin et al., 2019), emotions (Girardeau et al., 

2017; Gomperts et al., 2015; Wu et al., 2017), and other types of high-order representations 

(Todorova and Zugaro, 2020). Future studies are needed to highlight the precise interplay 

among DMN, limbic, and frontoparietal networks during, for example, rumination and 

reappraisal of memories.

Theoretical models (Robin and Moscovitch, 2017; Sekeres et al., 2018) and recent 

neuroimaging studies in humans (McCormick et al., 2018, 2020) suggest that the 

ventromedial prefrontal cortex, mainly via interactions with the anterior hippocampus, 

represents common aspects across events (i.e., abstract schema-like representations). Our 

results provide further details related to these cortical hippocampal interactions.

Thus, examining the dynamics of the cortical activation with respect to the hippocampal 

ripple event, we found that peri-ripple cortical responses varied over a continuum of 

anticipatory and trailing-biased activations (Figure S5). This finding is compatible with 

our previous observations in the case of visual recall (Norman et al., 2019) as well as 

findings in rodents (Karimi Abadchi et al., 2020; Rothschild et al., 2017; Todorova and 

Zugaro, 2020). These dynamics are consistent with a recurrent interplay between the cortex 

and hippocampus, in which the cortex participates in seeding hippocampal representational 

content before the ripples and, in turn, is amplified by these ripple events (Rajasethupathy 

et al., 2015; Rothschild et al., 2017). This process likely enables the coordination and 

integration of mnemonic information across large-scale brain networks involved in memory 

recall (Karimi Abadchi et al., 2020; Rothschild et al., 2017).

Conclusions

Our results both confirm and extend previous demonstrations of hippocampal ripples in 

human conscious recollection (Henin et al., 2021; Norman et al., 2019; Vaz et al., 2019, 

2020). First, they demonstrate that the hippocampal ripples are tightly involved in the 

retrieval of personal autobiographical memories, while being downregulated during non-

memory-based cognitive processes. Second, they link ripples to both recent and remote 

recollections and to semantic memory. Third, they highlight a new coding scheme of ripples 

based on multisite ripple activation patterns. Finally, they reveal a complex and extensive 

hippocampal-cortical dialogue that emerges during recollection and includes distributed 

ripple-coupled activations in the DMN as well as in a variety of other cortical sites.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to Y.N. 

(itzik.norman@gmail.com).

Materials availability—This study did not generate any new reagents.

Data and code availability—Raw data and analysis code that support the conclusions 

of this study are available for public download on Zenodo: https://doi.org/10.5281/

zenodo.4759103.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants—20 patients (10 females; demographics and electrode coverage information 

are included in Tables S2 and S4) with medicine-resistant epilepsy were implanted with 

intracranial depth electrodes (Ad-Tech Medical Instruments) as part of their pre-surgical 

evaluation at Stanford University Medical Central. The location of the implanted electrodes 

was determined by clinical evaluation for respective surgery. The current cohort was chosen 

on the basis of electrode coverage in the hippocampus (right or left) and participation in at 

minimum two blocks of the task. Each patient was monitored in the hospital for ~6-10 days 

and provided written informed consent to participate in the study, which was approved by 

the Stanford Institutional Review Board.

METHOD DETAILS

Intracranial EEG recordings—All electrophysiological data were recorded using a 

Nihon Kohen clinical monitoring system with a sampling rate of ≥ 1000 Hz and a band 

pass filter of 1.6-300Hz. The diameter of depth electrodes was commonly 0.86 mm, height 

was 2.29 mm, and distance between the centers of two adjacent electrodes was 5 mm (see 

Table S3 for precise electrode dimensions in each patient).

Electrode anatomical localization—Imaging data were acquired using a GE Healthcare 

3 tesla SIGNA scanner at Stanford University equipped with a head coil. A T1-weighted 

SPGR pulse sequence was aligned along the anterior commissure-posterior commissure and 

was resampled at 1mm isotropic voxels, then segmented to distinguish gray and white matter 

using Freesurfer v6.0.0 (Fischl, 2012). For each subject, the postimplant CT scan was co-

registered to the preimplant MRI anatomical scan using the iELVis toolbox (Groppe et al., 

2017). We then manually labeled the electrode locations in BioImage Suite (Papademetris 

et al., 2006) and displayed them on the subject’s own reconstructed 3D cortical surface. 

In the group-level analyses, we use iELVis to display all electrodes on a single cortical 

template (either “fsaverage” or “MNI305”). We used SUMA to resample and standardize 

the cortical template (Argall et al., 2006; Saad and Reynolds, 2012), which enabled us 

to display electrodes on a flattened cortical template while establishing node-to-node 

correspondence between meshes. Finally, each individual electrode was registered on two 

anatomical atlases: a gyral-based cortical atlas (“Desikan-Killiany”) (Desikan et al., 2006) 

and a functional-connectivity-based atlas (Yeo et al., 2011). The latter allowed us to group 

cortical electrodes according to their anatomical affiliation to seven canonical “resting-state” 

networks. The assignment of atlas labels to electrodes was done in the native space of 

each brain. Electrodes farther than 3 mm from the cortical ribbon were excluded. Unless 

otherwise stated, when cortical recording sites (i.e., bipolar pairs) were grouped together 

based on their atlas label, it was sufficient that at least one of the electrodes that make up the 

bipole be located in the attributed region (which allowed for certain sites to be attributed to 

two different regions, when falling on the border between regions).

Experimental paradigm—The experiment was administered at patient clinical suite 

using Psychophysics Toolbox (Brainard, 1997) (http://psychtoolbox.org/) in MATLAB (The 

MathWorks) running on the Apple Macintosh OSX operating system. The laptop was 

positioned ~70cm from subjects’ eyes at chest level. In the experiment, subjects were 
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instructed to make true or false judgements for a series of visually presented statements, 

requiring either autobiographical memory retrieval (e.g., “I went to the beach last month”), 

arithmetic processing (e.g., “42 + 11 =51”) or semantic knowledge (only in eleven subjects; 

e.g., “Babe Ruth was a football player”).

The memory statements that we used were generic and were not tailored according to 

the patient’s personal experiences or knowledge. Importantly, autobiographical memory 

statements concluded with words denoting the approximate time elapsed since the event in 

question, to allow an examination of four different levels of memory remoteness (18-20 

items per each level): (1) “today/this morning” (e.g., I took my medicine today); (2) 

“yesterday/last night” (e.g., I had chicken for dinner yesterday); (3) “this week” (e.g., I 

used my credit card this week); and (4) “last month” (e.g., I went to a wedding last month).

All statements were occasionally interspersed with fixation periods (5 s or 10 s) during 

which subjects were asked to fixate at a center crosshair (“cued 5s-rest” condition; for 

consistency we only used the first 5 s). A 500-ms period of blank screen separated trials 

(ITI).

All subjects completed two experimental runs, with a total of 73 autobiographical trials, 79 

math trials and 37 semantic trials (in 11 subjects) on average (see Table S1 for more details). 

To reduce the likelihood that subjects relied on memorized addition tables, math equations 

always consisted of a two-digit number and a one-digit number.

Subjects respond to each statement by pressing one of two keypad buttons. The trials were 

terminated upon the subject’s button press or automatically after 15 s. Trial onset times were 

tagged using a photodiode for patients or an RTBox device (Li et al., 2010). In both cases, 

the tag was sent to an empty (DC) channel on the EEG montage and triggered within our 

task codes.

Preprocessing and data analysis—Data analysis was performed in MATLAB 2018b 

(MathWorks Inc., Natick, MA) using EEGLAB v14.1.2 (Delorme and Makeig, 2004), 

DRtoolbox (https://lvdmaaten.github.io/drtoolbox/), MES toolbox (Hentschke and Stüttgen, 

2011), Unfold 1.1 EEG Deconvolution Toolbox (Ehinger and Dimigen, 2019), and custom-

developed analysis code. The raw iEEG signal was inspected statistically to detect noisy/

corrupted channels to exclude from further analyses. Specifically, channels whose voltage 

values, voltage derivative or RMS in the 99th percentile were 5 SD greater than the 

rest of the electrodes were marked for exclusion after visual inspection in time and 

frequency domains. The preprocessing began by converting all healthy iEEG signals into 

bipolar derivations by pairing adjacent recording sites located on the same electrode probe. 

Recording sites in the hippocampus were paired with a nearby electrode contact located 

in white-matter, as identified anatomically using FreeSurfer’s segmentation (Fischl, 2012). 

We then notch-filtered the signal to remove 60 Hz power line interference (as well as its 

harmonics at 120Hz and 180 Hz) using a zero-lag linear-phase Hamming-windowed FIR 

band-stop filter (3 Hz wide).
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High-frequency broadband signal—High-frequency broadband (HFB) signal (also 

known as high-gamma) was defined in the current study as the mean normalized power 

of frequencies between 60–160 Hz. Activity in this frequency range has been shown to 

be an excellent electrophysiological marker of local neuronal spiking activity (Mukamel 

et al., 2005; Parvizi and Kastner, 2018; Watson et al., 2018). HFB power was computed 

by filtering the signal in 20 Hz bands between 60-160 Hz (using zero-lag linear-phase 

Hamming-windowed FIR filters of order 138) and calculating the normalized, 1/f corrected, 

analytic amplitude using a Hilbert transform (Norman et al., 2017). To detect transient 

electrical artifacts that may interfere with the HFB signal, we also computed the HFB 

time-series of the common average signal (mean LFP across all non-corrupted monopolar 

iEEG channels) and detected peaks that exceeded 5σ. Time windows of 250 ms around these 

peaks were logged for exclusion in subsequent analyses.

Identification of memory/math selective sites—In the analysis of peri-ripple cortical 

activations we functionally defined two groups of electrodes based on their HFB evoked 

by the stimuli. First, based on previously observed late-onset activations for the current 

task in several cortical regions (Daitch and Parvizi, 2018; Foster et al., 2015; Raccah 

et al., 2018), we averaged the HFB amplitude over a generic time window of 300-2000 

ms post-stimulus. Next, we pooled together all electrodes that exhibited some response 

to the main experimental conditions – i.e., autobiographical memory or math trials (p < 

0.05 uncorrected, signed-rank test comparing the post-stimulus response to a pre-stimulus 

baseline). Finally, out of this general group of task-responsive electrodes we defined 

two subgroups of electrodes based on their selectivity to the autobiographical and math 

conditions. This was done by comparing the HFB response during the autobio condition 

to math (in the same generic time-window). Cortical electrodes that showed a significant 

preference to the autobiographical memory condition were regarded as ‘memory-selective’, 

whereas electrodes showing the opposite preference were regarded as ‘math-selective’ (p < 

0.05, FDR adjusted, Wilcoxon rank-sum test comparing memory versus math; see Figures 6 

and S6).

Hippocampal ripples detection—Ripple detection was performed on electrodes located 

within less than 2 mm from the hippocampal subfields CA1, CA2/CA3 and subiculum, 

i.e., the main hippocampal output stations, where sharp wave ripple events appear most 

prominently (Chrobak and Buzsáki, 1996; Oliva et al., 2016) (the exact anatomical locations 

of each recording site are depicted in Figure S1). Individual hippocampal subfields were 

delineated and reconstructed based on the patients’ pre-surgical MRI, using the parcellation 

algorithm included in FreeSurfer (Iglesias et al., 2015). Prior to ripple detection, a 

reference signal from a nearby white-matter contact was subtracted to eliminate common 

noise. The iEEG time series were then filtered between 70-180Hz (zero-lag linear-phase 

Hamming windowed FIR filter with a transition bandwidth of 5 Hz) and their instantaneous 

analytic amplitude was computed using a Hilbert transform. Based on our previously 

published procedure (Norman et al., 2019), extreme values were robustly estimated using 

Least-Median-Squares (LMS) (Seheult and Green, 1989) and clipped to 4 SD above the 

mean to minimize ripple-rate induced biasing. The clipped signal was then squared and 

smoothed (Kaiser-window FIR low-pass filter with 40 Hz cutoff), and the mean and SD 
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were computed across the entire experimental duration to define the threshold for event 

detection. Events from the original (squared but unclipped) signal that exceeded 4 SD above 

baseline were selected as candidate hippocampal ripple events. Event duration was expanded 

until ripple power fell below 2 SD. Events shorter than 20ms or longer than 200ms were 

excluded. Adjacent events with less than 30ms separation (peak-to-peak) were merged. 

Finally, ripple peak was aligned to the trough (of the non-rectified signal) closest to the peak 

ripple-band power.

A control detection was performed on the common average signal computed across all 

iEEG channels. Hippocampal ripple events that coincided with common average ripple-band 

peaks were removed, thus avoiding erroneous detection of transient electrical and muscular 

artifacts that tend to appear simultaneously on multiple channels (Fiederer et al., 2016).

To avoid inclusion of possible pathological events, we discarded any ripple that occurred 

within 100 ms from inter-ictal epileptic discharges (Gelinas et al., 2016) (IED). The latter 

were detected by filtering the raw hippocampal LFP between 25-60Hz (zero-lag linear-phase 

Hamming windowed FIR filter), and similar to the above procedure, rectifying, squaring, 

smoothing, normalizing and detecting events that exceeded 4 SD.

Importantly, hippocampal ripples were differentiated from pathological high-frequency 

oscillations (HFOs) that may appear in epileptic sites (Bragin et al., 2010). A supplementary 

analysis verified that the latter had no influence on the main results described 

above. Specifically, we evaluated how sensitive our results were to misidentification of 

physiological ripples with pathological High Frequency Oscillations (HFOs). We used our 

previously published technique (Liu and Parvizi, 2019; Liu et al., 2016) to identify HFOs 

in the hippocampus that demonstrated typical pathological attributes. We then discarded all 

ripples that occurred within 100 ms from the identified HFOs (on average: 5.5 ± 0.7% of the 

ripples detected in each electrode; 4 patients did not exhibit pathological HFOs at all) and 

re-run the main analyses. None of the main results showed a qualitative change following 

this procedure.

QUANTIFICATION AND STATISTICAL ANALYSIS

Peri-ripple spectrogram—Spectral decomposition of ripple events in hippocampal 

recording sites was done using a Morlet-wavelet time-frequency method, implemented in 

EEGLAB (Delorme and Makeig, 2004). We used a window of 1 cycle at the lowest 

frequency (4 Hz) and up to 20 cycles at the highest plotted frequency (250 Hz), with a 

step size of 4 ms. The spectrograms were then normalized by dividing the calculated power 

by the geometric mean power in each frequency (averaged over the entire peri-ripple epoch 

length [−750 to 750 ms] and across all epochs belonging to the same experimental run).

Multivariate pattern analysis of hippocampal ripple rates—Ripple rate patterns 

were constructed by pooling the hippocampal recording sites from the eleven patients 

that had both autobiographical and semantic conditions (patients that were presented with 

the exact same set of statements). To construct multivariate ripple-rate patterns associated 

with each item (statement), we first computed ripple rate per trial (number of ripples 

divided by trial duration from stimulus onset to reaction time in seconds), individually for 
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each recording site. We then applied z-score transformation across the different items and 

replaced any missing values by the mean of the corresponding trial group (in that recording 

site). Recording sites with more than 10% of items missing were excluded from the analysis. 

Similarly, items for which more than 10% of recording sites had a missing ripple rate value 

were excluded. This resulted in a matrix of 192 items × 65 hippocampal electrodes (Figure 

S4D, left panel).

We then centered the different patterns (matrix columns) around zero using z-score 

transformation, and applied a Principal Components Analysis (PCA) to reduce the 

dimensionality of the patterns using drtoolbox (https://lvdmaaten.github.io/drtoolbox/)(Van 

Der Maaten et al., 2009). Based on analysis of PCA eigenvalues, we required that each 

retained component would explain at least 2.5% of the variance. Using this criterion, we 

selected the top 11 principal components that collectively explained 42% of the variance 

(Figure S4D, right panel). Notably, including more principal components in the analysis did 

not change the main results.

To quantify the dissimilarity between condition-specific ripple activation patterns (math, 

semantic and autobiographical memories from today, yesterday, this week and last 

month;Figure 4) we conducted a bootstrap sampling procedure with 10,000 iterations to 

compute the mean and SE of the pairwise distances between the average pattern of each 

class of items. The distance between patterns was defined as 1-R (where R is the Pearson’s 

correlation between the two patterns).

Pattern classification analysis—We trained a linear discriminant analysis (LDA) 

classifier using the MATLAB function fitcdiscr.m to decode trial type (autobiographical 

statements/semantic statements/math) from ripple rate patterns (constructed as detailed 

above). Classification performance was quantified using the F1-score (i.e., harmonic mean 

of precision and sensitivity) computed using a leave-one-out cross-validation technique. 

Statistical significance was determined by shuffling item labels 1,000 times and re-

measuring classification performance in each iteration. P values were computed as the 

proportion of shuffled data F1-scores greater than or equal to the actual performance.

Deconvolution of peri-ripple cortical HFB activation—We used a time-domain 

deconvolution analysis to disentangle ripple-coupled cortical activity from other task-driven 

cortical responses. The analysis was implemented using the Unfold toolbox (Ehinger and 

Dimigen, 2019). See reference for a detailed mathematical description of the deconvolution 

procedure. In brief, the continuous HFB signal was down sampled to 250 Hz and 

entered into a multiple linear regression model. This model describes the observed time-

series in each cortical site as the linear sum of overlapping (but separable) event-related 

HFB responses associated with the following experimental events: (i) stimulus onset; (ii) 

hippocampal ripples and (iii) button-press (i.e., reaction time). For consistency, ripple time-

stamps in each patient were determined using a single hippocampal contact – the one that 

was closest to CA1 (those reported in Figures S2A-S2C). In this linear model, the design 

matrix coding the latencies of the events is expanded in time, so that each type of event is 

modeled by a set of predictors – in our case, 55 cubic splines basis-functions – spanning 

a time window of −1.5 to 4 s relative to event onset. Importantly, since these experimental 
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events occurred at different latencies throughout the experiment, it was possible to find a 

unique solution for the predictors’ beta values that will best explain the measured HFB 

timeseries. This solution in fact isolates the unique contribution of each type of event in 

the overall HFB activity observed – taking into account the contribution of all event types 

simultaneously. These beta values are expressed in the same units of the original HFB 

time-series entered into the model; in our case, normalized HFB amplitude expressed in dB 

(10 × log10) relative to the mean amplitude during the 5 s rest (fixation) intervals. Notably, 

we computed the model twice, including either a single run of the task (Figure 6A) or both 

runs together (in all other analyses). In the group-level analysis shown in Figures 5 and 6 

we excluded all recording sites that were located on the same depth electrode of the CA1 

contact that contributed the time-stamps of the ripples. This was done to ensure that none of 

the peri-ripple cortical activations observed were due to a direct “leakage” of high-frequency 

electrical activity appearing on the hippocampal site.

Statistical tests—Statistical analyses were typically performed in MATLAB. Mixed 

effects analysis was performed in R (see dedicated section below). Pairwise comparisons 

were carried out using two-sided Wilcoxon signed-rank and rank-sum tests, unless stated 

otherwise. No statistical methods were used to predetermine sample sizes; however, sample 

sizes were similar to those generally employed in the field (Helfrich et al., 2019; Norman 

et al., 2019; Vaz et al., 2019). The unit of analysis was typically individual patients. In 

some cases, the unit of analysis was individual electrodes or patterns across ensembles of 

electrodes (see main text). Resampling tests were performed either using a custom-made 

MATLAB code or using previously published routines (Groppe et al., 2011) implemented in 

the Mass Univariate ERP Toolbox (OpenWetWare, 2015). Multiple comparisons correction 

was done using false discovery rate adjustment (FDR) (Benjamini and Yekutieli, 2001). 

When cluster-based permutation tests were implemented, family-wise error rate was 

inherently controlled in our method (Groppe et al., 2011; Maris and Oostenveld, 2007). 

Data collection was performed blind to the conditions of the experiment. Data analysis was 

not blind to the conditions of the experiments.

Mixed-effects analysis—Mixed-effects analyses were carried out using the LME4 

package (Bates et al., 2015) implemented in R (R Core Development Team, 2017). Data 

were fitted with a random intercept model with the relevant fixed factors and a random 

factor of ‘Patient’ (or ‘Electrode’ nested within ‘Patient’). The latter accounts for the 

fact that different participants contributed different numbers of electrodes to the analysis. 

In the analyses of autobio-versus-math preference (Figures 2E and 2F) and autobio-versus-

semantic preference the models were formulated as follows:

Hedges′g ∼ CA1dist + CA2, 3dist + Subiculumdist + LongPosition + Hemisphere + LongPosition × Hemisphere
+ (1 ∣ Patient)

Where the terms representing distance from hippocampal subfields are continuous variables, 

and terms representing the hemisphere (left/right) or the longitudinal position (anterior/

posterior) of the electrode are categorical variables with two levels each. In the analysis of 

Norman et al. Page 18

Neuron. Author manuscript; available in PMC 2021 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the trial-to-trial correlation between electrodes the model was formulated as follows (see 

Figure S3B for more details):

Correlation ∼ ElectrodeDistance × Condition + (1 ∣ Patient ∕ ElectrodePair)

Finally, in analyses that examined the effect of memory age on ripple rates (Figures 2G and 

S4C), we included a single fixed factor representing the memory age category and a nested 

random factor of (Patient/Electrode), which accounted for the fact that different participant 

contributed a different number of electrodes to the analysis. The model was formulated as 

follows:

Rate ∼ MemoryAgeCategory + (1 ∣ Patient ∕ Electrode)

Main effects were tested using Type III ANOVA implemented in the afex R package 

(Singmann et al., 2020). Degrees of freedom were computed using the Kenward-Roger (KR) 

method. Post hoc comparisons were carried out using lsmeans R package (Lenth 2016) and 

were corrected for multiple comparisons using FDR (Benjamini and Yekutieli, 2001).
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Highlights

• Simultaneous iEEG recordings of cortex and hippocampal ripples linked to 

cognition

• Ripples selectively activate during autobiographic and semantic memory 

recall

• Multisite ripple activity patterns reflect memory semantization processes

• Ripples coordinate a DMN-centered cortical-hippocampal interplay during 

recall
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Figure 1. Experimental design, intracranial recordings, and ripple detection
(A) Intracranial electrodes were implanted in the hippocampus and cortex as part of a 

neurosurgical treatment for medically intractable epilepsy.

(B and C) Participants were instructed to make true/false judgments about a series 

of visually presented statements, requiring either autobiographical memory (autobio), 

arithmetic processing, or semantic knowledge (in a subgroup of 11 subjects).

(D) Hippocampal electrodes in 1 example patient. Red circles indicate recording sites where 

ripples were detected. To see the map of hippocampal coverage across all subjects, see (I).

(E) Schematic diagram of a typical depth iEEG electrode used in our study (see also Table 

S3).

(F) Example of hippocampal ripples as they appear in a CA1 recording site (see black 

arrow in D). Orange triangles mark ripple events that met the detection criteria (see STAR 

Methods).

(G and H) Mean peri-ripple field potential and wavelet spectrogram for the same CA1 

site described in (F), showing the typical spectrotemporal signature of human hippocampal 

ripples (n = 521 ripples, peak frequency: 94 ± 1.71 Hz).
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(I) Overview of ripple rate computed over the entire experiment, for each hippocampal site 

included in our analysis (112 sites from 20 patients). Inset: distribution of ripple rates across 

electrodes.
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Figure 2. Ripple rate modulation during autobiographical retrieval compared to arithmetic 
processing
(A) Group results showing mean ripple rate across the main experimental conditions: 

autobiographical memory, arithmetic processing, and 5-s rest intervals (fixation). Filled dots 

represent individual patients. Error bars represent SEM across patients (n = 20).

(B) Schematic depiction of hippocampal recording sites on a hippocampus template in 

Montreal Neurological Institute (MNI) space. Electrodes were color-coded according to 

their memory selectivity (autobiographical versus math, bias-corrected Hedges’s g effect 

size). Positive values (red) indicate a higher ripple rate during autobiographical retrieval 
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compared to math. The anterior hippocampus was defined as the region having an MNI y 

coordinate of<–22 (ensuring complete coverage of the uncus).

(C) Hippocampal ripples density plot showing increase/decrease in ripple probability 

following autobiographical and math statements, respectively. Trials were pooled together 

across all electrodes and sorted according to reaction time (black curve). Ripples’ density 

was computed in bins of 100 ms × 100 trials, smoothed using a 3-bins-wide Gaussian filter 

for visualization purposes. Note that the transient increases in ripple probability closely 

tracked reaction times.

(D) Group-level analysis showing the average peri-event time histogram (PETH) of ripples, 

time-locked to the reaction time (using 50-ms-wide bins). There was a significant decrease 

in ripple rate during math (blue) and a significant increase during autobiographical retrieval 

(red), peaking 600 ms before the patient’s response. Shaded area represents SEM across 

patients (n = 20).

(E and F) Mixed effects analysis of the autobio-versus-math contrast across recording 

sites revealed significant effects of “CA1 distance” (F(1,82.90) = 19.38, p < 3.17 × 10−5) 

and “hemisphere” (F(1,93.01) = 10.17, p = 0.0019), as well as an interaction between 

“hemisphere” and “longitudinal position” (F(1,83.68) = 5.30, p = 0.023). Thus, memory 

selectivity was significantly stronger in electrodes closer to CA1 and in electrodes located 

in the left hippocampus. Post hoc 2-sample t tests further indicated that the right posterior 

hippocampus showed the weakest memory selectivity (*p < 0.05, **p < 0.01, ***p < 0.001; 

FDR corrected). Error bars represent SEM.

(G) A mixed-effects analysis of ripple rates elicited during the autobiographical trials 

revealed a significant effect of memory age (F(3,288) = 18.27, p < 10−10; n = 16 patients). 

Post hoc comparisons indicated that retrieval of remote memories elicited higher ripple rates 

compared to more recent memories (*p < 0.05, **p < 0.01, ***p < 0.001; FDR corrected). 

Error bars represent SEM.

See also Figure S2.
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Figure 3. Multisite patterns of ripples discriminate between autobiographical and semantic 
memory
(A) Averaging over electrodes within a subject and comparing overall ripple rates across 

conditions using partially overlapping samples t tests (Derrick et al., 2017) showed no 

significant difference between autobio and semantic memory (t(14.51) = 0.17, p > 0.87). 

Similar to the autobio condition, the semantic condition elicited higher ripple rates compared 

to both math (t(14.17) = 5.27, p < 0.001) and 5-s rest (t(15.06) = 2.98, p < 0.01). Error bars 

represent SEM.

(B) Schematic depiction of the recording sites’ functional specialization in MNI space, 

showing a mixed and balanced spatial distribution of memory-type biases. Inset: effect size 

histogram of the autobiographical versus semantic bias at individual sites, pointing to the 

absence of clear functional segregation between memory types. Electrodes marked in red or 

yellow showed a slight bias for autobio or semantic memory, respectively.

(C) Linear discriminant analysis (LDA) classifier trained to decode trial type from 

multivariate ripple rate patterns (computed across all electrodes pooled together) 

significantly discriminated between semantic and autobiographical trials. Decoding 

performance was quantified using F1 score: autobio, 0.70 ± 0.11; semantic, 0.58 ± 0.17; 
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math, 0.88 ± 0.04 (SEM was computed using a jackknife procedure, excluding 1 patient at a 

time). Filled circles denote the actual results; gray dots show results for same data when trial 

labels were randomly shuffled; gray crosses indicate the chance level in each class (different 

due to the different number of items in each class).

(D) Confusion matrix showing that classification errors were primarily due to confusion 

between autobiographical and semantic trials.

See also Figure S4.
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Figure 4. Ripple activity pattern similarity reflects memory semantization
(A) Distance (dissimilarity) between the average pattern during semantic trials and the 

average patterns emerging during the 4 memory age categories of autobiographical trials 

(i.e., statements referring to “today,” “yesterday,” “this week,” and “last month”). Note the 

growing resemblance between autobiographical and semantic patterns as memories become 

more remote. Error bars represent bootstrap SE.

(B) The distances (dissimilarity) between ripple rate patterns associated with individual 

memory items and the average semantic pattern showed a significant negative correlation 

with memory age (Spearman’s ρ = −0.47, p < 10−7, n = 115 memory items; dashed line is 

the least-squares line). Thus, the more remote the autobiographical memory was, the more 

similar its associated ripple rate pattern was to semantic memory.

(C) Agglomerative hierarchical clustering (using group-average linkage) applied to the 

average ripple rate patterns of the different conditions reveals that multisite ripple activity 

forms a hierarchy of pattern similarity that reflects the episodic-semantic continuum.

See also Figure S4.
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Figure 5. Peri-ripple cortical activations during autobiographical recall
(A) A schematic illustration of the general linear model (GLM) design matrix used in 

the deconvolution of peri-ripple cortical responses. The observed HFB time series in 

each cortical site was modeled as a linear sum of overlapping responses triggered by 

stimulus-presentation, hippocampal ripple events, and the patient’s reaction. Each of these 

experimental events was entered into the model as a sequence of semi-overlapping cubic 

splines basis functions, which allowed the isolation of the peri-ripple activation while 

accounting for the activity induced by the other experimental events.
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(B) Representative signal from two cortical sites in a single patient showing deconvolved 

stimulus-related (center row) and ripple-related HFB responses (bottom row). Hippocampal 

ripple time stamps taken from a single CA1 site in the same subject.

(C) Cortical electrodes (bipolar pairs) colored according to their deconvolved peri-ripple 

HFB response during the autobiographical trials. HFB amplitude was averaged over a time-

window of −250 to 250 ms relative to the hippocampal ripple peak. Peri-ripple activations 

were broadly distributed, implicating prefrontal regions and large portions of the medial 

cortical surface overlapping the DMN (pink-colored regions). The threshold for electrode 

visualization was determined based on comparison to a null distribution of peri-ripple HFB 

responses, computed using a time-window of −1,500 to −500 ms relative to the ripple event. 

Recording sites in which the actual peri-ripple response failed to cross a threshold of p < 

0.05 (uncorrected) were regarded as ripple-unmodulated sites and colored in gray.

(D) Peri-ripple activations across seven canonical resting-state networks, based on the Yeo 

et al. (2011) atlas. The bar plot shows that peri-ripple HFB amplitude in DMN electrodes, 

averaged over a time window of −250 to 250 ms relative to ripple peak, was significantly 

stronger compared to the other networks (*p < 0.05, **p < 0.01, rank-sum test, FDR 

adjusted; “limbic” sites were non-significantly different from DMN). In this analysis, we 

required that both electrodes in the bipolar pair be located within the affiliated resting-state 

network, thus achieving better anatomical specificity. Error bars represent SEM across 

recording sites.

See also Figures S5 and S6.
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Figure 6. Peri-ripple response across memory-selective sites in the cortex
(A) Correlation between memory selectivity (defined as the standardized difference in HFB 

stimulus response between autobio and math conditions) and the magnitude of peri-ripple 

activation, in task-responsive sites located within the DMN (left; Spearman’s ρ = 0.44, p < 

10−4, n = 85 sites) and across the entire cortex (right; Spearman’s ρ = 0.3, p < 10−11, n = 516 

sites)..

(B) Anatomical distribution of memory-selective cortical sites (red circles; see STAR 

Methods).

(C) Deconvolved stimulus-related and peri-ripple HFB activity averaged across all memory-

selective cortical sites (n = 197 bipoles). Peri-ripple response was significantly stronger 

during autobiographical trials compared to math or rest (p < 0.001, cluster-based 

permutation test). Shaded areas represent SEM.

See also Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

EEGLAB v14.1.2. Delorme and Makeig, 2004 https://sccn.ucsd.edu/eeglab/index.php

DRtoolbox Van Der Maaten et al., 2009 https://lvdmaaten.github.io/drtoolbox/

MES toolbox Hentschke and Stfittgen, 2011 https://github.com/hhentschke/measures-of-effect-size-toolbox

Unfold 1.1 EEG Deconvolution 
Toolbox

Ehinger and Dimigen, 2019 https://www.unfoldtoolbox.org/

iELVis toolbox Groppe et al., 2017 http://ielvis.pbworks.com/w/page/116347253/FrontPage

Mass Univariate ERP Toolbox Groppe et al., 2011 https://openwetware.org/wiki/Mass_Univariate_ERP_Toolbox

SUMA Saad and Reynolds, 2012 https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/SUMA/
main_toc.html

Custom-developed analysis code N/A https://doi.org/10.5281/zenodo.4759103

Deposited Data N/A https://doi.org/10.5281/zenodo.4759103
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