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Abstract

Introduction: Dogs with naturally occurring diabetes mellitus represent a potential model 

for human type 1 diabetes, yet significant knowledge voids exist in terms of the pathogenic 

mechanisms underlying the canine disorder. Untargeted metabolomic studies from a limited 

number of diabetic dogs identified similarities to humans with the disease.

Objective: To expand and validate earlier metabolomic studies, identify metabolites that differ 

consistently between diabetic and healthy dogs, and address whether certain metabolites might 

serve as disease biomarkers.
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Methods: Untargeted metabolomic analysis via liquid chromatography-mass spectrometry was 

performed on serum from diabetic (n=15) and control (n=15) dogs. Results were combined 

with those of our previously published studies using identical methods (12 diabetic and 

12 control dogs) to identify metabolites consistently different between the groups in all 54 

dogs. Thirty-two candidate biomarkers were quantified using targeted metabolomics. Biomarker 

concentrations were compared between the groups using multiple linear regression (corrected 

P<0.0051 considered significant).

Results: Untargeted metabolomics identified multiple persistent differences in serum metabolites 

in diabetic dogs compared with previous studies. Targeted metabolomics showed increases 

in gamma amino butyric acid (GABA), valine, leucine, isoleucine, citramalate, and 2-

hydroxyisobutyric acid in diabetic versus control dogs while indoxyl sulfate, N-acetyl-L-aspartic 

acid, kynurenine, anthranilic acid, tyrosine, glutamine, and tauroursodeoxycholic acid were 

decreased.

Conclusion: Several of these findings parallel metabolomic studies in both human diabetes and 

other animal models of this disease. Given recent studies on the role of GABA and branched chain 

amino acids in human diabetes, the increase in serum concentrations in canine diabetes warrants 

further study of these metabolites as potential biomarkers, and to identify similarity in mechanisms 

underlying this disease in humans and dogs.
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1. Introduction

Metabolomics is an emerging tool for novel biomarker discovery and investigation of 

disease pathology (Zhang et al., 2015). Novel biomarkers with the potential to improve 

early disease detection have been discovered in a variety of human diseases. Similarly, 

in veterinary medicine, metabolomics is a newly expanding field, and investigations into 

differences among dog breeds, response to nutritional changes, and evaluation for novel 

biomarkers in a variety of canine diseases have recently been reported (Carlos et al., 2020).

Metabolomic perturbations found in human type 1 diabetes (T1D) patients with poor 

glycemic control have included increases in branched chain amino acids (BCAAs), other 

amino acids (e.g., lysine, proline, serine, methionine), and anti-inflammatory short chain 

fatty acids (SCFAs), while metabolites involved in glycolysis were decreased (Dutta et al., 

2016). Additionally, changes in multiple metabolites have been identified in young children 

that later progress to T1D, such as decreases in amino acids (including tryptophan, glutamic 

acid, and aspartic acid) (Lamichhane et al., 2019) and lipids (including sphingomyelins, 

triacylglycerols, and phosphatidylcholines) (Lamichhane et al., 2018). In human type 2 

diabetes, a variety of metabolites have been associated with existing disease or disease 

prediction, most notably elevated BCAAs, elevated tyrosine and phenylalanine, and 

decreased glycine and glutamine (Guasch-Ferré et al., 2016).
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Canine diabetes is similar to human T1D in certain ways, including a lifelong requirement 

for insulin (in most cases) along with marked β-cell loss at the time of diagnosis (Nelson 

and Reusch, 2014). However, many components of diabetes pathogenesis and other potential 

similarities to the human disease in dogs remain unknown, which may be due in part to the 

lack of ability to detect and study dogs at an early stage in disease (O'Kell et al., 2017b). 

Hence, our overall goal was to identify novel biomarkers that differ between diabetic and 

healthy dogs that may be candidates for future longitudinal studies of disease prediction 

in dogs. Our previous untargeted metabolomics studies in both fasted and unfasted cohorts 

identified altered profiles in sera from diabetic dogs compared to healthy control dogs, with 

some similarities to those found in the human disease (O'Kell et al., 2017a, O'Kell et al., 

2019). Herein, we report an untargeted metabolomics effort to first, validate our preliminary 

findings (O'Kell et al., 2017a, O'Kell et al., 2019) in an independent cohort and, thereby, 

identify metabolites that differ between diabetic and healthy control dogs. Candidate 

metabolite biomarkers were then selected and quantitated by targeted metabolomics.

2. Methods

2.1 Study Enrollment

The study was approved by the University of Florida (UF) Institutional Animal Care and 

Use Committee (IACUC) and Veterinary Hospital Research Review Committee, and owners 

provided written informed consent prior to enrollment. Dogs were recruited from the client-

owned population of the UF Small Animal Hospital. A diagnosis of diabetes was made 

prior to enrollment and was based on clinical signs (polyuria, polydipsia) concurrent with 

hyperglycemia and glucosuria. Diabetic dogs (n=15) were included if they were >1 year 

of age, had a body weight ≥5 kg, and, if female, were spayed prior to the diagnosis of 

diabetes to exclude dogs with insulin resistance diabetes caused by progesterone and growth 

hormone exposure that have pathogenic differences to the more typical form of adult onset 

diabetes in dogs(Gilor et al., 2016). Control dogs (n=15) were included if the history and 

physical exam excluded active disease and if they were >1 year of age, had a body weight 

≥5 kg, received no medications other than routine parasite preventatives, and, if female, were 

spayed. Control dogs were breed and/or size matched to diabetic dogs whenever possible, 

and an equal number of dogs that were fasted (n=9) and non-fasted (n=6) were included in 

each group.

2.2 Sample Collection

Blood samples were collected routinely from the jugular vein using a needle and syringe 

into a red top tube containing clot activator (BD Serum Blood Collection Tubes). Serum was 

separated after 30 minutes and frozen immediately at −80°C for 3-24 months prior to the 

untargeted metabolomic analysis described in 2.3. The time of blood collection in relation to 

the most recent meal was recorded.

2.3 Metabolite Extraction and Untargeted Metabolomics Analysis

Metabolite extraction and analysis was performed as previously described (O'Kell et al., 

2017a, O'Kell et al., 2019) using a Thermo Q-Exactive Orbitrap mass spectrometer with 

Dionex UHPLC and autosampler (ThermoScientific San Jose, CA). Metabolite identification 
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was performed as previously described and represented level 1 identification (O'Kell et al., 

2017a, O'Kell et al., 2019).

2.4 Statistical Analysis for Untargeted Metabolomics

Mann-Whitney U Tests were used to compare median age and body weight between the 

diabetes and control groups, and a Fisher’s Exact Test was used to compare sex distribution. 

For biomarker identification from untargeted metabolomics data, statistical analysis was 

performed using Metaboanalyst. Values not present in 80% of the data were removed, 

and missing values were imputed using k-nearest neighbor. Data was interquartile range 

filtered, sum normalized, log2 transformed, and autoscaled. T-tests (adjusted for multiple 

comparisons using false discovery rate) were used to compare metabolites between diabetic 

and control groups. The metabolite distributions were normally distributed following 

transformation based on evaluation of all metabolite expression. P < 0.05 was considered 

significant.

2.5 Targeted Metabolomics Biomarker Selection

Results from untargeted metabolomics analysis for the present study (n=30) and the 

combined prior untargeted metabolomics studies (n=24) (O'Kell et al., 2017a, O'Kell et al., 

2019) were evaluated to identify candidate metabolite biomarkers. For both present and prior 

studies, metabolites that were significantly different (p<0.05) between diabetic and control 

groups based on a t-test (as described in section 2.4) were identified. Using Metaboanalyst 

(http://www.metaboanalyst.ca), classic univariate receiver operating characteristic (ROC) 

curves were generated (Xia et al., 2013), and metabolites with an area under the ROC 

curve (AUC) >0.8 were also identified. Additionally, biomarker meta-analysis of data from 

both studies was performed using a P-value combining method (Stouffer’s method) in 

Metaboanalyst. Metabolites that were identified as consistently associated with diabetes 

from the t-tests, ROC curve/AUC analysis, and biomarker meta-analysis were selected as 

candidate biomarkers to move forward to targeted metabolomics (Figure 1). Additional 

metabolites in the same metabolic pathway(s) as candidate metabolites were also included if 

assay methods were readily available.

2.6 Samples for Targeted Metabolomics

Fifty-four canine serum samples were used for targeted metabolomics, including those from 

the current study described above (n=30), as well as banked samples from all dogs enrolled 

in our previously reported untargeted metabolomics studies (n=24) (O'Kell et al., 2017a, 

O'Kell et al., 2019) (Figure 2). All serum samples were stored at −80°C. Samples from 

the previously published studies and current study were stored for 33-54 months and 11-51 

months, respectively, prior to analysis.

2.7 Targeted Metabolomics Metabolite Extraction and Analysis

Targeted metabolomics analysis was performed for 32 metabolites using liquid 

chromatography-high resolution mass spectrometry (LC-HRMS). Chromatographic 

separation of 27 metabolites was performed by reversed-phase (RP), and 5 by hydrophilic 

interaction liquid chromatography (HILIC). For each metabolite, 25 μL sample was 
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spiked with 50 ng internal standard prior to extraction. Sample extraction was done by 

protein precipitation using 200 μL of 8:1:1 acetonitrile/methanol/acetone. Further protein 

precipitation was allowed at 4°C for 30 minutes. The samples were centrifuged at 20,000 x 

g at 4°C for 10 minutes. Supernatants were dried down under nitrogen gas at 30°C. Samples 

for RP-LC-HRMS were reconstituted with 25 μL of 0.1% formic acid in water. Samples 

for HILIC-LC-HRMS were reconstituted with 25 μL 90:10 acetonitrile/10mM ammonium 

acetate.

For both RP and HILIC, 9-point calibration curves (ranging from 0.5 to 16000 ng/mL) were 

prepared from a serially diluted standards mixture in appropriate solvent supplemented with 

50 ng of corresponding internal standards (Online Resource Tables 1 and 6). A negative 

control and four positive controls were also included in the analysis at 0, 5, 500, 2000, 

and 8000 ng/mL spiked with 50 ng internal standard. All calibrators and controls were 

prepared at 25 μL in triplicate. Linearity was established for each compound following FDA 

Bioanalytical Method Validation. The lower limit of quantitation (LLOQ) was determined 

at the lowest concentration of analyte that was quantifiable with precision and accuracy of 

<20%.

Both RP and HILIC quantitation were performed on a Thermo Q-Exactive Orbitrap MS 

with Dionex UHPLC and autosampler. All samples, calibrators, and controls were analyzed 

in positive and negative heated electrospray ionization with a mass resolution of 35,000 

at m/z 200 as separate injections. RP separation was achieved on an ACE 18-pfp 100 x 

2.1 mm, 2 μm column with mobile phase A as 0.1% formic acid in water and mobile 

phase B as acetonitrile. The flow rate was 350 μL/min with a column temperature of 25°C. 

Injection volume was 2 μL for positive and 4 μL for negative polarity. HILIC separation 

was achieved on a Waters Acquity UPLC BEH Amide 150 x 2.1 mm, 1.7 μm column with 

mobile phase A as 20 mM ammonium formate pH 4 and mobile phase B as 0.1% acetic acid 

in acetonitrile. The flow rate was 300 μL/min with a column temperature of 25°C. Injection 

volume was 2 μL for positive and 4 μL for negative polarity. Peak area integration of analyte 

and corresponding internal standard was performed using Xcalibur Quan Browser (version 

3.0.63). Calibration curves were constructed using the peak area ratio of analyte to internal 

standard against nominal concentrations.

2.8 Statistical Analysis for Targeted Metabolomics

For targeted metabolomics analysis, metabolite concentration values below the lower limit 

of quantification (LLOQ) were set at the LLOQ for statistical analysis. Scatter plots were 

used to evaluate for outliers. Outliers were checked for analytical issues (by assessing 

laboratory records) or patient factors (e.g., concurrent disease, lipemia, sample hemolysis), 

but neither analytic nor patient confounders were consistently present in outliers. Two 

extreme outliers that were above the upper limit of quantification even after 10x dilution 

were removed from the results of a single metabolite (2-hydroxyisobutyric acid). Metabolite 

concentrations were log transformed, and multiple linear regression analysis of metabolite 

concentration was performed for each metabolite to analyze the effect of group (diabetes or 

control) on metabolite concentration; age (continuous) was accounted for by including it in 

the model. A Holm-Sidak correction was performed to adjust for multiple comparisons, and 
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a P-value of <0.0051 was considered significant for diabetes. We report the confidence 

intervals as estimated percentage increase or decrease in the diabetic group based on 

the original untransformed scale. The assumptions for linear regression were met by 

evaluating for independence between age and group using the variance inflation factor, by 

assessing scatter plots for linearity of age versus the log of the metabolites, by evaluating 

autocorrelation of residuals with the Durbin Watson test, and with the D’Agostino Pearson 

test for normality of residuals. The assumptions for linear regression were met or had minor 

deviations for which linear regression is generally robust to. Analysis was performed using 

GraphPad Prism 8.0 and 9.1 and Microsoft Office Excel 2019. Additional analysis for ROC 

curve generation was performed using Metaboanalyst to calculate the AUC.

From the targeted metabolomics log transformed data, Linear Discriminant analysis machine 

learning was used to identify a biomarker panel for discriminating between diabetic and 

healthy control groups via forward feature selection incorporating repeated cross-validation 

to measure uncertainty. Statistical analysis indicated multiple biomarkers to be associated 

with diabetes, and machine learning is used to complement these results evaluating the 

use of these biomarkers to predict disease in individuals, which implies potential utility 

in clinical applications. (Varga et al., 2020) To assess the selected panel, 2/3 of the dog 

samples (18 diabetic and 18 control) were randomly selected for inclusion in a test set 

for metabolite feature selection, while the remaining 1/3 of the dogs (9 control and 9 

diabetic) were randomly selected to serve as a validation set to test the final model. Each 

metabolite of the training set was evaluated via a Linear Discriminant classifier with 5-fold 

cross-validation where accuracy was measured as AUC. For the machine learning we used a 

highly conservative selection criteria for our initial candidate biomarker set. The metabolites 

were then filtered to include those that were significant based on a non-parametric Wilcoxon 

Rank Sum test after a Bonferroni correction on the training set and also had an AUC 

significantly larger than 0.75.

This training set consisting of 8 metabolites was then evaluated via forward feature selection 

using a Linear Discriminant classifier again with 5-fold cross-validation where accuracy was 

measured as AUC. The cross-validation procedure was repeated 100 times to assess the 

variability in the model accuracy. After all features were processed for inclusion into the 

model, each metabolite was assessed via a one-sided t-test to evaluate if its addition to the 

model significantly increased model performance from the prior model. If one or more of 

the metabolite features were identified as significantly increasing the AUC, an ANOVA with 

Tukey’s post-hoc test was used to evaluate all features and identify which feature(s) were 

optimal. In the case of a tie, the process was split and both models were evaluated in the next 

step.

3. Results

3.1 Patient Characteristics

The diabetic group (n=15) consisted of five females (all spayed) and ten males (nine 

neutered) with a median age of 8.5 years (range, 5-13 years) and a median body weight 

of 10.8 kg (range, 5.4-57.7 kg) (Table 1). The median duration of diabetes was 10 

months, with a range of 1 day to 2.5 years. All but two recently diagnosed diabetic dogs 
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were receiving treatment with exogenous insulin at the time of sample collection. There 

were four mixed breed dogs, two Rottweilers, and one each of Pomeranian, Miniature 

Pinscher, Bichon Frise, Silky Terrier, Maltese, Cavalier King Charles Spaniel, Labrador 

Retriever, Miniature Australian Shepherd, and Miniature Schnauzer. The healthy control 

group (n=15) consisted of nine females (all spayed) and six males (all neutered), with a 

median age of 5.5 years (range, 3-10 years) and a median body weight of 7.5 kg (range, 

5.1-45.9 kg). This group included six mixed breed dogs, two Rottweilers, and one each 

of Pomeranian, Miniature Pinscher, Silky Terrier, Cavalier King Charles Spaniel, Labrador 

Retriever, Miniature Australian Shepherd, and Miniature Schnauzer. The diabetic group was 

significantly older than the control group (P=0.0012), while body weight was comparable 

between the two groups (P=0.25).

3.2 Untargeted Metabolomics and Biomarker Selection

Untargeted metabolomics analysis identified 4,067 features detected from the positive 

ion mode and 5,647 from the negative. Of these features, 398 were known metabolites. 

One hundred and seven known metabolites (Online Resource Table 2) were significantly 

different (P<0.05) between the groups. Significantly different metabolites from the present 

study, as well as our previously reported preliminary studies (O'Kell et al., 2017a, O'Kell 

et al., 2019), were assessed for metabolites significantly different in both. ROC curve 

analysis of sensitivity and specificity for correctly classifying dogs as diabetic versus 

non-diabetic identified 85 and 67 metabolites with AUC ≥ 0.8 in the present and prior 

studies, respectively, indicating these metabolites to have excellent predictive capacity 

(Mandrekar, 2010) (Online Resource Table 3). Biomarker meta-analysis identified 90 

candidate metabolite biomarkers (Online Resource Table 4). The results of each type of 

analysis were assessed for metabolites that were identified repeatedly (at least twice) among 

the different studies and methods of analysis, and from these, 26 metabolites were chosen 

for targeted metabolomics. Six additional metabolites in the same metabolic pathway(s) as 

candidate metabolites were also included if assay methods were readily available (Figure 2; 

Table 2).

3.3 Targeted Metabolomics

For the targeted metabolomics, serum samples from all 54 dogs enrolled in the current study 

and our published untargeted metabolomics studies (O'Kell et al., 2017a, O'Kell et al., 2019) 

were analyzed. The diabetic group consisted of 12 female (all spayed) and 15 males (all 

but one were neutered) with a median body weight of 10.8 kg (range, 5.4-57.7) and median 

age of 9.75 years (range, 1.3-14.25). The median duration of diabetes for all 54 dogs was 

8 months, with a range of 1 day to 3 years. The control group consisted of 14 females (all 

spayed) and 13 males (all neutered) with a median body weight of 8.4 kg (range, 5.1-49.5) 

and a median age of 5.5 years (range, 2-11.75). As noted in the untargeted analysis above, 

only age was significantly different between the groups with the diabetic group being older 

(P<0.0001).

Of the 32 metabolites selected, 27 could be quantified by RP-LC-HRMS with 17 of 

those quantitated in positive polarity while 10 were quantitated in negative polarity. 

Seven metabolites including tryptophan, aspartate, glutamine, valine, 2-hydroxybutyric acid, 
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tyrosine, and indoxyl sulfate were quantified from 10x dilution of the samples as they were 

all above the upper LOQ in the initial analysis of undiluted samples. There was significant 

ion suppression observed for the internal standard for aspartate that prevented quantitation 

and, thus, we could not rely on results in the canine samples. Results for xanthenuric 

acid, D-galacturonic acid/D-glucuronic acid/D-glucuronolactone, methyl-β-D-galactoside, 

and uridine showed concentrations that were below the LLOQ or not detectable for 

many samples, therefore no statistical analysis was performed. Five metabolites including 

erythritol, 6-deoxyhexose, glucosamine, mannosamine, and fucose were analyzed by HILIC-

LC-HRMS. Erythritol, 6-deoxyhexose, and fucose could not be quantified accurately due to 

poor peak shape. In addition to poor peak shape, co-elution of 6-deoxyglucose and fucose 

also contributed to the high signal variability. Glucosamine and mannosamine could not be 

chromatographically resolved and, thus, are described together.

Of the 23 quantified metabolites for which statistical analysis was performed, 

the following were significantly different between dogs with diabetes and controls 

following multiple linear regression for group and controlled for age (P-value and 

95% confidence interval of estimated percent increase/decrease in diabetic dogs): 

GABA (P<0.0001; increased 34-68%), valine (P<0.0001; increased 26-53%), indoxyl 

sulfate (P<0.0001; decreased 184-969%), 2-hydroxyisobutyric acid (P<0.0001; increased 

49-80%), N-acetyl-L-aspartic acid (P=0.0015; decreased 13-48%), kynurenine (P=0.0018; 

decreased 45-162%), tauroursodeoxycholic acid (TUDCA) (P=0.0001; decreased 92-503%), 

anthranilic acid (P=0.0008; decreased 32-172%), isoleucine (P=0.001; increased 21-57%), 

leucine (P=0.0017; increased 15-51%), glutamine (P=0.0031; decreased 8-41%), tyrosine 

(P=0.0032; decreased 11-63%), tryptophan (P=0.0035; decreased 13-80%), and citramalate 

(P=0.005; increased 17-63%) (Figure 3). Linear regression models are available in Online 

Resource Table 5. The data is presented as a heat map in Online Resource Figure 1. 

Biomarker analysis identified AUC ≥ 0.8 for valine (0.90), 2-hydroxyisobutyric acid 

(0.90), GABA (0.88), N-acetyl-L-aspartic acid (0.88), indoxyl sulfate (0.85), L-glutamine 

(0.80), and kynurenine (0.80), anthranilic acid (0.8), and citramalate (0.8). Data for the 23 

metabolites is summarized in Table 3.

The machine learning training set included 8 metabolites: 1) valine, 2) N-acetyl-L-aspartic 

acid, 3) indoxyl sulfate, 4) L-glutamine, 5) citramalate, 6) kynurenine, 7) GABA, and 

8) 2-hydroxyisobutyric acid (Table 4). Machine learning with forward feature selection 

identified the optimal Linear Discriminant classifier model as including three features 

(valine, n-acetyl-L-aspartic acid, and indoxyl sulfate) yielding a cross-validation AUC of 

0.965 on the training data. The first iteration identified valine as the best single metabolite 

feature with an average AUC of 0.935. In the next iteration, either N-acetyl-L-aspartic acid 

or indoxyl sulfate, were the best second feature, AUC of 0.957 and 0.956, respectively. 

Figure 4A shows a scatter plot of the top two metabolites demonstrating excellent separation 

achieved by a clearly quantitative marker (valine) where the diabetic dogs have an elevated 

level of this metabolite, and a qualitative marker (N-acetyl-L-aspartic acid) where the 

diabetic dogs have a measured amount of this metabolite often below the LOQ. Following 

valine and N-acetyl-L-aspartic acid, the next best feature to add was indoxyl sulfate, which 

increased the average AUC to 0.965. At this point, the forward feature selection procedure 

indicated that adding more features to the model did not increase model performance based 
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on a two-sample t-test comparing the 100 measured AUC values from the prior iteration 

to the current iteration. This is validated in Figure 4B where, for demonstration purposes, 

we continue to add metabolites to the model until all have been included. If all 8 measured 

metabolites are included in the model, the AUC drops to 0.924, which is less than utilizing 

only a single metabolite (valine). The final three-metabolite Linear Discriminant classifier 

model was generated from the full set of the training data and applied to the validation 

set of 18 dogs. This returned an AUC 0.975 on the validation set, which was not utilized 

to select or generate the model. This indicates both high performance of the three-feature 

metabolite model, but also that the model is not over-trained. Utilizing a standard probability 

of classification threshold of 0.5, these three markers yielded the correct classification of 

77.8% with a false discovery of 0% on a validation set segregated from the training of the 

model.

4. Discussion

Using an untargeted metabolomic approach, we found metabolic perturbations in diabetic 

compared to healthy control dogs, some of which were similar to our preliminary 

studies (O'Kell et al., 2017a, O'Kell et al., 2019). After selection of 32 candidate 

metabolite biomarkers based on these results, 23 were measurable reliably by targeted 

metabolomics analysis, which identified 14 metabolites with concentrations significantly 

different between diabetic and control groups: GABA, N-acetyl-L-aspartic acid, indoxyl 

sulfate, 2-hydroxyisobutyric acid, kynurenine, anthranilic acid, TUDCA, valine, isoleucine, 

leucine, glutamine, tyrosine, tryptophan, and citramalate. A machine learning approach also 

identified valine, indoxyl sulfate, and N-acetyl-L-aspartic acid as key metabolites in a Linear 

Discriminant Classifier model.

While GABA is well-known as an important inhibitory neurotransmitter in the mammalian 

nervous system, it is also present in other tissues including the pancreas (Tillakaratne et al., 

1995). Within the pancreas, GABA predominates in the islets (Reetz et al., 1991, Menegaz 

et al., 2019). Previous studies have demonstrated that GABA acts in an autocrine manner in 

the islets to stimulate insulin secretion from β-cells (Braun et al., 2010, Bansal et al., 2011, 

Dong et al., 2006), and that this stimulation was suppressed at high glucose concentrations 

in vitro (Dong et al., 2006). Additionally, the presence of insulin decreased GABA induced 

insulin secretion, suggesting the presence of a negative feedback loop (Bansal et al., 2011). 

However, a more recent study contradicts these findings, showing that GABA is released 

in a pulsatile manner that is not dependent on glucose concentrations, and that endogenous 

GABA inhibits insulin secretion and regulates the periodicity of this secretion (Menegaz et 

al., 2019). This study also found that GABA is depleted in the β-cells of human patients 

with both type 1 and 2 diabetes compared to non-diabetic controls (Menegaz et al., 2019). 

The implications of the depletion of GABA from β-cells in diabetic patients is unclear at 

this time, but one proposed theory is that the loss of GABA increases insulin secretion at the 

expense of a loss of the periodicity of secretion at a time of high demand (Menegaz et al., 

2019). Interestingly, one small study in humans found higher plasma GABA concentrations 

in patients with T1D compared with non-diabetic controls (Bhandage et al., 2018), similar to 

our findings in canine serum. The source of this increased circulating GABA in both canine 

and human diabetes patients is unknown, but possibilities may include the liver (Minuk, 
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1993) or endothelial cells (Sen et al., 2016). GABA has also been considered a promoter 

of β-cell regeneration, but these effects are controversial among studies in different species 

(Yi et al., 2020). Future studies to further investigate the role of GABA in diabetes in both 

humans and dogs are warranted.

Elevations of the BCAAs (valine, isoleucine, and leucine) in diabetic dogs are consistent 

with findings in the human disease. Indeed, elevated BCAAs are a marker of prediabetes, 

insulin resistance, and a predictor of the development of type 2 diabetes in humans (Gar et 

al., 2018). Interestingly, in dogs, serum BCAAs are higher in obese dogs than ideal weight 

control dogs; subsequently, serum BCAAS are lower compared with control in these same 

dogs after weight loss(Vendramini et al., 2021). Body condition and fat content was not 

evaluated in the present study and is an area for future evaluation given the association 

of obesity with insulin resistance in various species. In human patients with T1D, BCAAs 

are elevated in patients classified as having either good or poor diabetic control compared 

with non-diabetic control patients, and among all patients BCAAs are correlated with blood 

glucose and hemoglobin A1c (Dutta et al., 2016). Additionally, serum BCAAs are also 

increased prior to autoantibody seroconversion in children that later progress to T1D (Oresic 

et al., 2008). Hence, metabolomics studies in canine pre-diabetes are warranted to determine 

their utility as a disease predictive biomarker.

N-acetyl-aspartic acid is found in high concentrations in the brain and can also be found 

in adipose tissue and some cancers (Bogner-Strauss, 2017); however, N-acetyl-aspartic acid 

has received limited study in diabetes. In a mouse model of type 2 diabetes, increased 

activity of aspartoacylase, the enzyme that hydrolyzes N-acetyl-aspartic acid, was detected 

in the duodenum and brain compared with control mice (Surendran et al., 2006). In 

human subjects with T1D, decreased N-acetylaspartate/creatinine ratio in the brain measured 

via proton magnetic resonance spectroscopy was associated with peripheral neuropathy, 

proliferative retinopathy, and longer diabetes duration (Hansen et al., 2019). To the authors’ 

knowledge, systemic concentrations of this metabolite have not been studied in human 

patients or animal models of T1D. These prior reports, in concert with the findings in our 

canine population, suggest that N-acetyl-aspartic acid may be relevant as a biomarker of 

diabetes or disease complications.

Indoxyl sulfate is a uremic toxin and is elevated in humans (Holle et al., 2020) and 

dogs (Cheng et al., 2015) with kidney disease, and has been identified as a biomarker 

for atherosclerosis in human type 2 diabetes (Omori et al., 2020) and a predictor of 

cardiovascular events in patients with heart failure (Imazu et al., 2020). Interestingly, 

indoxyl sulfate was lower in diabetic dogs, which was also found in mice with type 

2 diabetes (db/db mouse model) (Connor et al., 2010). Indoxyl sulfate is produced by 

metabolism of dietary tryptophan into indole by the gut microbiota, which is absorbed 

and converted to indoxyl sulfate by the liver (Leong and Sirich, 2016). Dietary or gut 

microbiome analysis were not performed in the present study, and it is therefore unknown if 

there were differences in dietary protein intake between the groups or if differences in gut 

microbiota affected indoxyl sulfate production.
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Other significantly different metabolites have received some study in diabetes in other 

species. 2-hydroxyisobutyric acid is also increased in human patients with type 2 diabetes 

compared to control (Li et al., 2009, Chong et al., 2018), as well as patients with pre-

diabetes (Chong et al., 2018). Kynurenine was found to be decreased in the pre-diabetic state 

of two different rat type 2 diabetes models (Yokoi et al., 2015). Additionally, kynurenine 

was shown to increase glucose induced insulin secretion in healthy rat islets (Liu et al., 

2015). While it is unknown if dogs in a pre-diabetic state will have similar findings to the 

overtly diabetic dogs in our study, this decrease in kynurenine deserves further study as 

an early disease biomarker. On the contrary, in human type 1 diabetes, plasma anthranilic 

acid is higher than in control patients or those with type 2 diabetes, tryptophan is higher 

than in control patients, and there is no difference in kynurenine between type 1 diabetes 

patients and controls (Oxenkrug et al., 2015). These findings differ from the dogs in our 

study in which anthranilic acid was decreased the diabetic group. Tryptophan showed a 

statistically significant decrease in the diabetic group, however there was marked overlap 

between the groups and the clinical relevance of this finding is questionable. Various bile 

acids, including taurine conjugated bile acids, have been studied in the context of glucose 

metabolism and diabetes (Rajani and Jia, 2018). In humans with type 2 diabetes and in 

those with intermediate glucose tolerance, total taurine conjugated bile acids were elevated 

(Wewalka et al., 2014). Tauroursodeoxycholic acid was found to stimulate glucose induced 

insulin secretion in mouse islets in-vitro (Vettorazzi et al., 2016). The amino acid glutamine 

also stimulates glucose induced insulin secretion (Han et al., 2021). Our findings in diabetic 

dogs showing decreased TUDCA, kynurenine, and glutamine, all metabolites that stimulate 

glucose induced insulin secretion in rodents, are intriguing, though further study is needed 

to determine if these metabolites could be involved in a decrease or dysfunction in insulin 

secretion in this species.

A limitation of the present study is that many factors aside from disease state may affect 

serum metabolites. Metabolomic profiles have been shown to vary by dog breed (Lloyd et 

al., 2016, Lloyd et al., 2017) and size (Middleton et al., 2017). To address this, control 

dogs were breed matched to diabetic dogs whenever possible, and mixed breeds were 

size matched to other mixed breeds. Although differences in diet affect the metabolome, 

one study showed that breed was a stronger determinant of metabolic differences among 

individual dogs than environmental conditions such as diet (Lloyd et al., 2016). The post-

prandial state may lead to additional changes in some metabolites. In one study of canine 

diets differing in calcium content, several metabolites showed significant changes within 

four hours post meal, although none were the key metabolites found in our study (Allaway 

et al., 2019). In the present study, we attempted to decrease this source of variability 

by matching fasted or fed status among dogs with similar characteristics, although exact 

timing after feeding was not standardized. Importantly, one of our goals is to identify 

robust biomarkers that can be measured in either the fasted or fed state, supporting our 

decision to include both fasted and fed dogs in our studies. An additional limitation of this 

study is that we cannot determine whether these differences in metabolites are a feature 

of the underlying disease etiology or a consequence of the loss of endogenous insulin 

and subsequent metabolic derangements, which may be particularly relevant for those dogs 

with newly diagnosed disease versus dogs with more established disease in this study. 

O’Kell et al. Page 11

Metabolomics. Author manuscript; available in PMC 2022 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Future studies evaluating these metabolites in dogs in a pre-diabetic state are necessary to 

investigate such questions.

5. Conclusions

We believe this represents the first study to report a selection of candidate serum 

biomarkers in canine diabetes using untargeted metabolomics analysis followed by targeted 

metabolomics to obtain quantitative confirmation of results. Of the biomarkers found to be 

statistically significant, valine, GABA, N-acetyl-L-aspartic acid, and indoxyl sulfate were 

among those that distinguished diseased from healthy groups. GABA in particular is of 

interest given similar findings in the plasma of human subjects, as well as GABA’s depletion 

in β-cells of humans with both type 1 and type 2 diabetes (Menegaz et al., 2019, Bhandage 

et al., 2018). Further studies to investigate the role of GABA, BCAAs, and other key 

metabolites in canine diabetes and human T1D patients are warranted.
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Fig.1. 
Flow chart for biomarker selection for targeted metabolomics analysis
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Fig. 2. 
Study organizational flow chart
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Fig 3. 
Scatter dot plots of metabolites significantly different between diabetes and control groups. 

Each circle represents an individual subject. The center line denotes the median. The lower 

limit of quantification for N-acetyl-L-aspartic acid and citramalate is 50 ng/mL and for 

TUDCA is 5 ng/mL. GABA=ɣ-aminobutyric acid; TUDCA = tauroursodeoxycholic acid
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Fig 4. 
a. Visualization of the separation of control and diabetes groups utilizing two metabolite 

features valine and N-acetyl-L-aspartic acid, where open symbols indicate dogs that are part 

of the training data and the filled-in symbols are the dogs in the validation set

b. The change in area under the curve (AUC) as each metabolite feature identified via 

machine learning is added. Each point represents all features to the left on the x-axis 

included in the model. The optimal Linear Discriminant classifier model includes valine, 

n-acetyl-L-aspartic acid, and indoxyl sulfate
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Table 1.

Patient Characteristics – Confirmatory Study

Group Breed Age
(years)

Weight
(kg) Sex

a
Fasted/Non-

fasted
Duration since

diagnosis of diabetes
(months)

Diabetic

Pomeranian 7.75 9.6 NM Fasted 0.5

Miniature Pinscher 8.75 5.9 SF Fasted 30

Bichon Frise 13 6.7 NM Fasted 10

Mix 8.5 32.8 SF Fasted 0.03

Silky Terrier 13 6.8 NM Fasted 5

Mix 6.5 10.8 SF Fasted 1.5

Rottweiler 8 41.6 SF Fasted 10

Maltese 11 5.4 NM Fasted 8

Mix 10.5 8.2 NM Fasted 14

Cavalier King Charles Spaniel 7.5 17.4 NM Non-fasted 24

Labrador retriever 12 43.9 MI Non-fasted 7

Miniature Australian Shepherd 8 19 NM Non-fasted 12

Mix (Pug/beagle) 11 16 NM Non-fasted 16

Rottweiler 5 57.7 NM Non-fasted 16

Miniature Schnauzer 7.5 6.9 SF Non-fasted 6

Control

Pomeranian 4 5.4 SF Fasted N/A

Miniature Pinscher 8 5.5 SF Fasted N/A

Bichon/Poodle 8.5 5.3 SF Fasted N/A

Mix 6.5 32.5 SF Fasted N/A

Silky Terrier 10 5.1 SF Fasted N/A

Mix 3 7.5 SF Fasted N/A

Rottweiler 3 45.9 NM Fasted N/A

Mix 3.5 5.4 NM Fasted N/A

Mix 3.5 5.9 SF Fasted N/A

Cavalier King Charles Spaniel 3.5 6 SF Non-fasted N/A

Labrador retriever 4 32.2 NM Non-fasted N/A

Miniature Australian Shepherd 7 17.7 NM Non-fasted N/A

Mix 9 16.6 NM Non-fasted N/A

Rottweiler 6.5 44.1 NM Non-fasted N/A

Miniature Schnauzer 5.5 8.4 SF Non-fasted N/A

a
SF=spayed female; NM= neutered male; MI= male intac
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Table 2:

Candidate Biomarkers for Targeted Metabolomic Analysis

2-hydroxyisobytyric acid

5-hydroxymethyl-2-furaldehyde

6-deoxy-hexose

Anthranilate

Aspartate

Citramalate

D-galacturonic acid/D-glucuronic acid/D-glucuronolactone

Erythritol

(fucose)

GABA

Glucosamine

Glycine

Indoxyl sulfate

(Kynurenic acid)

Kynurenine

LL-2,6-Diaminoheptanedioate

L-Glutamine

L-Histidine

L-Isoleucine

L-Proline

L-Tyrosine

(Leucine)

Mannosamine

Methyl-β-D-galactoside

N-acetyl-L-aspartic acid

Pyridoxal

(Serotonin)

(Tryptophan)

TUDCA

Uridine

Valine

(Xanthenuric acid)

Metabolites in brackets represent metabolites that were not chosen based on data, but were within the same metabolic pathway as another chosen 
metabolite with a readily available analytic method.
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Table 3.

Targeted Metabolomics Results – Group Comparisons and Biomarker Analysis

Diabetic Group Control Group

Metabolite Median
(ng/mL)

Range
(ng/mL)

Median
(ng/mL)

Range
(ng/mL) p-value

± AUC

Valine 36672 16448-87972 20746 12648-34134 <0.0001* 0.90

2-hydroxyisobutyric acid 13347 2953-54254 3856 1756-23773 <0.0001* 0.90

GABA 3441 1424-9801 1891 1089-3579 <0.0001* 0.88

N-acetyl-L-aspartic acid 50 50-74 66 50-125 0.0005* 0.88

Indoxyl sulfate 1813 165-7975 6585 145-16000 <0.0001* 0.85

Kynurenine 448 160-1196 786 427-1625 <0.0001* 0.80

Anthranilic acid 10 4-39 20 7-56 0.0008* 0.80

Citramalate 72 50-1877 50 50-116 0.005* 0.80

L-Glutamine 95185 65313-141746 114128 81839-187058 0.0031* 0.80

Glucosamine/mannosamine 28771 7879-71427 17489 6901-48921 0.012 0.76

Tauroursodeoxycholic acid 15 5-98 34 5-191 <0.0001* 0.75

Tyrosine 12730 5614-18737 16096 8369-30475 0.0032* 0.72

Isoleucine 14296 5943-63445 8590 4603-13830 0.0008* 0.71

L-proline 22402 9551-55733 32011 14221-52155 0.11 0.68

Leucine 33934 12285-89882 22438 10383-42380 0.0021* 0.68

2,6-diaminoheptanedioate 28 15-135 43 16-199 0.066 0.50

5-hydroxymethyl-2-furaldehyde 7 5-16 6 5-14 0.45 0.62

Glycine 138 52-291 169 75-325 0.58 0.52

Histidine 556 326-1223 505 378-707 0.36 0.64

Kynurenic acid 671 500-5047 918 500-2812 0.16 0.57

Pyridoxal 51 50-393 73 53-151 0.74 0.61

Serotonin 1215 208-2222 1145 423-2058 0.62 0.5

Tryptophan 33636 14811-57219 35376 20522-92416 0.0035* 0.62

*
p-value <0.0051 considered significant

AUC=area under the receiver operating characteristics curve

±
p-values were estimated from the regression model using log10 of the metabolites as the outcome
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Table 4.

Metabolites Included in Machine Learning Training Set

Metabolite Bonferroni p-value Average AUC

Valine 0.0001 0.935

GABA 0.0003 0.920

2-hydroxyisobutyric acid 0.0005 0.896

L-Glutamine 0.0194 0.800

N-acetyl-L-aspartic acid 0.0229 0.765

Citramalate 0.0090 0.774

Kynurenine 0.0399 0.770

Indoxyl sulfate 0.0304 0.795

*
AUC=area under the receiver operating characteristics curve
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