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Purpose: Low-signal correction (LSC) in the raw counts domain has been shown to effectively
reduce noise streaks in CT because the data inconsistency associated with photon-starved regions
may be mitigated prior to the log transformation step. However, a systematic study of the perfor-
mance of these raw data correction methods is still missing in literature. The purpose of this work
was to provide such a systematic study for two well-known low-signal correction schemes using
either the adaptive trimmed mean (ATM) filter or the anisotropic diffusion (AD) filter in the raw
counts domain.

Methods: Image data were acquired experimentally using an anthropomorphic chest phantom and a
benchtop cone-beam CT (CBCT) imaging system. Phantom scans were repeated 50 times at a
reduced dose level of 0.5 mGy and a reference level of 1.9 mGy. The measured raw counts at
0.5 mGy underwent LSC using the ATM and AD filters. Two relevant parameters were identified for
each filter and approximately one hundred operating points in each parameter space were analyzed.
Following LSC and log transformation, FDK reconstruction was performed for each case. Noise and
spatial resolution properties were assessed across the parameter spaces that define each LSC filter;
the results were summarized through 2D contour maps to better understand the trade-offs between
these competing image quality features. 2D noise power spectrum (NPS) and modulation transfer
function (MTF) were measured locally at two spatial locations in the field-of-view (FOV): a posterior
region contaminated by noise streaks and an anterior region away from noise streaks. An isotropy
score metric was introduced to characterize the directional dependence of the NPS and MTF (viz.,
enps and eyry, respectively), with a range from 0 for highly anisotropic to 1 for perfectly isotropic.
The noise magnitude and coarseness were also measured.

Results: (a) Both the ATM and AD LSC methods were successful in reducing noise streaks, but their
noise and spatial resolution properties were found to be highly anisotropic and shift-variant. (b) NPS
isotropy scores in the posterior region were generally improved from expg = 0.09 for the images with-
out LSC to the range enps = (0.11, 0.67) for ATM and exps = (0.06, 0.67) for AD, depending on the
filter parameters used. (¢) The noise magnitude was reduced across the parameter space of either LSC
filter whenever a change along the axis of the controlling parameter led to stronger raw data filtration.
Changes in noise magnitude were inversely related to changes in spatial resolution along the direction
perpendicular to the streaks. No correlation was found, however, between the contour maps of noise
magnitude and the NPS isotropy. (d) Both filters influenced the noise coarseness anisotropically, with
coarser noise occurring along directions perpendicular to the noise streaks. The anisotropic noise
coarseness was intrinsically and directly related to resolution losses in a given direction: coarseness
plots mimic the topography of the 2D MTF, i.e., the coarser the noise, the lower the resolution.
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Conclusions: Both AD and ATM LSC schemes enable low-dose CBCT imaging. However, it was
found that noise magnitude and overall spatial resolution vary considerably across the parameter
space for each filter, and more importantly these image quality features are highly anisotropic and
shift-variant. © 2018 American Association of Physicists in Medicine [https://doi.org/10.1002/

mp.12856]
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streaks, spatial resolution

1. INTRODUCTION

Ionizing radiation used in x-ray computed tomography (CT)
remains a public concern because of the associated small but
non-zero potential cancer risk." Much effort has therefore
been spent developing innovative CT technologies involving
both software and hardware and optimizing scanning proto-
cols to acquire CT images at a reduced dose with acceptable
image quality. One approach to reduce radiation dose in CT
is decreasing the incident photon fluence; however, a reduced
number of photons at the detector leads to a marked increase
in the measured fluctuations of detected photons. These large
uncertainties are subsequently amplified by the log transfor-
mation to generate line integral projection data.” As a result,
two potential consequences may arise with the reduction of
photon fluence: an increase in noise magnitude and an
increased likelihood for structured noise streaks to appear in
the reconstructed image. Therefore, it is critically important
to handle the photon-starved projection measurements such
that the associated data inconsistency can be reduced and the
presence of noise streaks in the final CT image can be effec-
tively mitigated.

To address these challenges in low-dose CT, three major
classes of denoising schemes have been proposed to accom-
pany the conventional image reconstruction pipeline, viz. fil-
tered backprojection (FBP): (a) denoising in the image
domain after image reconstruction;’ > (b) sinogram smooth-
ing techniques, i.e., denoising line integral data in the log-
transformed projection data domain;®° and (c) low-signal
correction (LSC) schemes®'” performed directly in the raw
counts domain before the log transformation step is taken.

Despite the partial success of schemes (a) and (b) for noise
magnitude reduction, schemes that work directly in the raw
counts domain (c) are in principle, more effective at reducing
noise streaks caused by photon starvation, since once the log
transformation step is performed, the signal variance may be
amplified to a degree that is hard to recover from later on in
the data processing chain. A widely used LSC method is the
adaptive trimmed mean (ATM) filter.” An alternative denois-
ing method that has shown good performance in low-dose
CT is anisotropic diffusion'' (AD). However, AD has only
been implemented in the log-transformed domain,'” and it
therefore remains to be investigated whether or not AD has
additional potential in the raw counts domain. The main
advantage of AD is that it can guide the denoising process by
extracting the image object edge structural information,
potentially favoring spatial resolution and the conspicuity of
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low contrast features. Both the ATM and AD methods, as
well as a conventional boxcar filter for comparison purposes,
were investigated in this paper to study the impact of their
key parameters on the filter performance.

In order to properly account for the potential nonlinear
behavior and to optimize filter parameter selection, an
appropriate imaging performance assessment framework is
needed. Current approaches to evaluate the imaging perfor-
mance of a given filtration method and to optimize parame-
ter selection have been limited to a subjective assessment of
noise streaks removal and structural preservation in the dif-
ference images”™® between the reference and the denoised
images, or quantitative measures of noise magnitude and
spatial resolution. However, there are two major limitations
in these analyses: (a) To produce datasets for noise and spa-
tial resolution measurements, either numerical phantoms
with a noise model were used or simulated noise and
objects were inserted in real data from a single scan.>®%10
Since it is difficult to know the noise distributions from
actual experimental systems or to model the many factors
affecting spatial resolution, measurements will highly
depend on choices made during simulation. (b) Only zero-
dimensional (0D) or one-dimensional (1D) surrogates of
noise and spatial resolution have been considered in most
cases;”* ®%19 the noise magnitude lacks frequency infor-
mation, and although the directional dependence of spatial
resolution has typically been described qualitatively, the res-
olution metrics that have been used — edge profile gradi-
ents, point spread function (PSF) widths, or 1D modulation
transfer functions (MTF) — do not quantify the potential
directional dependence comprehensively. In order to obtain
a deeper understanding of these important image quality
features, higher dimensional analysis of the frequency distri-
bution of noise and the response of the CT imaging system
to multiple frequencies is needed, and the directional
dependence needs to be characterized.

The purpose of this work was to provide a systematic
study for ATM and AD based LSC schemes in the raw counts
domain. This work is divided in two parts: Part I describes in
detail the implementation of both LSC methods and the
assessment of their spatial resolution and noise performances.
More specifically in Part I, ATM and AD were parameterized
and used to filter raw data from a physical anthropomorphic
phantom scanned on a CBCT system under a severe photon
starvation scenario. An exhaustive exploration of the filter
parameter space was performed, and an ensemble averaging
approach''* was taken to study the noise and spatial
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resolution properties of each LSC method across its parame-
ter space. The local two-dimensional (2D) modulation trans-
fer function (MTF) and the 2D noise power spectrum (NPS)
were measured, and noise magnitude and texture as well as
spatial resolution directionality were assessed across the
parameter space. These frequency-dependent metrics provide
a comprehensive understanding of noise and spatial resolu-
tion as it depends on the spatial location and filter parame-
ters. Part II'> of this work will then incorporate these
frequency dependent metrics into a task-based detectability
framework to optimize parameter selection for a given LSC
method.

2. MATERIALS AND METHODS
2.A. Low-signal correction methods

In this work, the measured counts at a given view angle 6
and detector spatial location (u, v) are denoted as
P(u,v) :=p!, where i is the index of the detector pixel
located at (u, v). Using this notation, three LSC schemes — a
conventional linear boxcar filter, the adaptive trimmed mean
filter, and the anisotropic diffusion filter — are presented in
the following subsections.

2.A.1. Mean boxcar filter

The simplest LSC scheme is a shift-invariant linear fil-
ter for the raw data. For this work, mean filtering with a
2D boxcar function was chosen. The 2D boxcar can be
defined as a square with side length s (units of pixels)
and density 1/s* inside the square and O outside. Convolu-
tion of the raw data in each view angle with this function
yields the LSC data. For brevity, this method will be
referred to as “BOX”.

2.A.2. Adaptive trimmed mean filter

The ATM'® is an Order Statistical (OS) filtration method
that forms the basis of some current state-of-the-art LSC
schemes in clinical CT.> As will be described in more detail
below, “trimmed” refers to how many of the sorted values to
exclude from the averaging step; and “adaptive” refers to the
functional dependence of two items, (a) the size of the win-
dow used for sorting, and (b) the proportion of this sorted
window to trim away.

The adaptive mean (AM) filter is a mean filter with adjus-
table window width, namely, for a given signal at location
centered at detector spatial location (i, v), the filtered value is
equal to the average of all signal values in a specific neigh-
borhood of that location, e.g., a centered window with
dimension W x W, where the extent of the window W
depends on the original signal level itself. Specifically, a win-
dow width W can be calculated as a function of P’(u, v) and
the filtered value P*(u, v) is equal to the mean signal level of
P’ina W x W window centered at (u, v). The window width
function is defined piecewisely as
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Wo pP<pi

Wo(pn—p1)
W Do-p gy PSP SPh M
1 P > D

Note that W has units of pixels, and the range is all real
numbers €[1, Wy], regardless of whether the input signal P’
is continuous or sampled. If the sampling interval on the
detector is Au having units of length, then the real window
width is simply W Au. Figure 1 displays examples of various
window width functions overlaid the histogram of raw count
data P’ in a given view.

The window width function is designed so that the largest
window width W, is used to filter signals whose levels are
below a low threshold p, where the signal-to-noise ratio
(SNR) is poor and electronic noise may have a non-negligible
impact. In contrast, for signals with levels exceeding a high
threshold p;, (p;, > p;), where the SNR is very high, the mean
is performed over a window that is only 1 pixel wide, i.e., the
signal is not filtered. For signals with levels somewhere in
the middle of these two thresholds, the window width is for-
mulated as being inversely proportional to the signal level so
as to make W (p) a piecewise continuous function.

To facilitate the numerical implementation of the AM fil-
ter for the digital image P’ the adaptive window width in
Eq. (1) is mapped to integer values as follows:

W(p) =

o w if W is odd
W(p;) = {QL@J + 1 otherwise, @

where |w| gives the largest integer less than or equal to w.
Namely, an adaptive window width in Eq. (1) is mapped to
the smallest odd integer greater than or equal to W.

To facilitate the following discussion, let p represent a col-
umn vector of length M containing only the signal values
from this 2D window, i.e., p? and it’s (interpolated) neighbors
included by Eqs. (1) and (2). The AM filter is thus
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Fic. 1. Example of a histogram of the raw count data in a given view overlaid
with the signal-dependent window function W (p) parameterized by Wy = 5
and various (p;, pj) pairs. [Color figure can be viewed at wileyonlinelibrary.-
com]
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where 17 is the transpose of an all ones column vector of
length M.

ATM filtration is done by adding signal trimming to
the above AM filtration procedure such that one can
threshold out both very high and very low signal values.
This can be accomplished by sorting signal values p from
high to low to generate a new sequence of signals denoted
as p. After this sorting step, the average is then taken
among the central values only. As a result, the AM mean
filter in Eq. (3) is changed into the desired ATM filter as
follows:

" =&, “
where elements of the ¢ column vector are given by
i L+ [aM] <j<M — [oM]

5= Sz = laMlorj=M+1—[aM] )
0 otherwise,

where [w] gives the smallest integer greater than or equal to
w. The trimming proportion « can also be signal dependent.
In this work, it was allowed to linearly climb from O at the
low signal threshold to 0.5 for the high threshold:

0 P<pi
a(p) =4 0.5 pi<p<p ()
0.5 P > ph.

The motivation for this choice was to have the regions of
low SNR be filtered with the standard mean filter (o = 0
case) and to have regions with high SNR signals be filtered
with a median filter (z — 0.5 case). Cases where
M(1 — 20) <1 were flagged for median filtration so that
Eq. (5) was well-defined.

2.A.3. Anisotropic diffusion filter

Without invoking the use of order statistics, one can also
perform edge preserving spatial filtration in the raw counts
domain to handle the photon starvation problem. In this
regard, AD,""""""?! a partial differential equation (PDE)-based
iterative image processing method, is a good choice.

Increasing the number of iterations in the AD algorithm
is analogous to moving forward in time for the diffusion
process. One important feature of AD is that it enables a
spatially variant filtration of an image through the use of a
brightness gradient function. Preferably, this spatially vari-
ant filtration would give preference to intraregion smooth-
ing rather than inter-region smoothing, so that after each
iteration of AD the result is a version of the input signal
with reduced noise and without the associated loss of rele-
vant structural information.

By introducing a pseudo-time dimension, 7, where signal
can be allowed to diffuse, the continuous anisotropic diffu-
sion equation for the 2D detector signal in view angle 0 is
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i dlv(Dg(u7 v, ‘L')VPH)

= D(u,v,7)V*P’ + VD’ . VP’

)

where D’ is the diffusion coefficient which depends on both
the spatial location and the pseudo-time 7, and the symbols
div, V, and V? correspond to the divergence, gradient, and
Laplacian operators, respectively.

It can be shown that if D is a function of VP, then both
terms in Eq. (7) have similar polarity, with the Laplacian
term having a smaller magnitude than the dot product term.
Here, similar polarity means that the signals are strongly cor-
related with each other. Therefore, in a digital implementa-
tion, the potentially costly and numerically unstable second-
order term does not need to be explicitly calculated. The
pseudo-time-derivative and dot product term can thus be dis-
cretized as follows'!

pI"t = plt o+ AVD! - wpl. ©)
B
pl(),t+l — pl{),t + At Z vbDl(‘)7tvbpl(‘)7t~ (9)
b=1

where At is the step size. In this digital representation, f is
now the index of the iteration number. The dot product term
was written as the summation over components extended to
B-nearest neighbors and V,, denotes the directional derivative
along the b-th direction. In this work, B = 8 and At = 1/8.

The digital form to map the raw data gradient to a diffu-
sion coefficient for a given direction b is

Vil = g(19sp)"1) (10)

where for the domain s > 0, g(s) is a monotonically decreas-
ing function with range between 0 and 1. The function g is
commonly called the brightness gradient function. For a suc-
cessful denoising process, low signal-gradients originating
from noise fluctuations should be given a large diffusion
coefficient close to 1, whereas real edges, which should be
preserved, should have a small diffusion coefficient near 0.
Different brightness gradient functions have been proposed
and a generalized form of one of the most common ones used

s 1l
18

1

|VbP?“‘ v
{H(ﬁ )

where f, §, and y are scalars that determine the amount
of diffusion allowed for a local gradient value across iter-
ations.

The selection of the parameters f5, 6, and y has a direct
influence in the performance of the AD method. In order to
facilitate the parameter selection process and to obtain more
consistent results across different imaging scenarios, f§ was
utilized as a normalization parameter to generate a dimen-
sionless argument for the function g(s) and its value in each
iteration was given by

g(19a"]) = (an
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FiG. 2. Example of a histogram of the normalized gradient information for a
view angle 6 in a specific direction (b = 1) overlaid with brightness gradient
functions parameterized by various (J, y) pairs. [Color figure can be viewed
at wileyonlinelibrary.com]

B = 1/2[max (Vi) + min(Vie, )], (12)

where

v{)‘z _

comp,i

13)

The parameters ¢ and 7y, therefore, ultimately dictate the
shape of g. The exponent § governs the length of the diffu-
sion plateau in the low gradient region, while y loosely deter-
mines the slope at which the curve drops from the plateau to
zero. Figure 2 displays an example of different brightness
gradient functions obtained with different values of 6 and y
overlaid on the histogram of V; P%'/B: the “normalized” edge
information of the 2D raw dataset at view angle 6. It is possi-
ble to see how each of the brightness gradient functions has a
different shape with larger or smaller plateaus and steeper or
flatter slopes based on the selection of the function parame-
ters. For example, the function defined by the solid red line
would allow diffusion across only very small gradients, while
the function represented by the green dotted curve would
have high rates of diffusion for almost all of the gradients in
the image.

Finally, it was empirically determined that eight iterations
gave good results for the input noise level associated with the
exposure level and phantom used in this study. Therefore, in
this work, the iterations were fixed at this value for all view
angles.

2.A.4. Filter parameterization

As these three filters have been described in detail in the
previous sections, it is clear that each filter has only a few
free parameters. For the boxcar filter, the only free parameter
is s and results were analyzed for s = {2, 3, 4, 5, 6, 7}. For
the ATM filter, the free parameters are Wy _p,, and p,,. For the
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data acquired in this work, after empirical optimization,
Wy = 5 showed good results and it was therefore fixed at this
value. For AD, the free parameters are ¢ and y (since f was
calculated, and the number of iterations was fixed). The
parameter spaces were sampled with 106 and 100 operating
points for ATM and AD, respectively.

2.B. Physical phantom data acquisition

In this study, the chest region at the shoulder’s level of an
anthropomorphic pediatric phantom (ATOM 10-year-old
phantom, Model 706, CIRS Inc., Norfolk, VA) was scanned
using a benchtop CBCT imaging system (Fig. 3). This imag-
ing system consists of a rotating anode x-ray tube (Varian G-
1592, Salt Lake City, UT) and a flat panel energy-integrating
detector (EID) (PaxScan 4030CB, Varian, Salt Lake City,
UT). This detector has an active area of 30 x 40 cm contain-
ing an array of 2,048 x 1,536 detector elements with a native
pixel pitch of 194 um which were binned under a 2 x 2
scheme during acquisition.

The source-to-isocenter distance was 766 mm, and the
source-to-detector distance was 1,163 mm. The beam colli-
mation at the detector plane was 130 x 111 mm in the row
and column directions, respectively. The tube potential was
set at 70 kVp, and no bowtie filter was used, but the beam
was hardened with a 1 mm Cu filter. Two exposure levels
were used, 520 and 130 mAs, corresponding to 1.9 and
0.5 mGy, respectively. These doses were determined using a
conventional CTDI,,; measurement with the 16 cm CTDI
phantom. Fifty repeated scans were performed at each dose
level in order to perform the image quality measurements
described in the next section. The CBCT system was operated
under the pulsed fluoro-mode with a pulse width of 8 ms and
a detector readout of 30 frames/s. The object was rotated at
10°/s and a full scan dataset of 360° was acquired for each
scan. The image acquisition process was automated and syn-
chronized to assure repeatability between scans.

Once the raw data were acquired, it underwent LSC
through each of the filtering methods in this work, followed
by image reconstruction. CT image reconstruction was

FiG. 3. Experimental setup: benchtop CBCT imaging system and anthropo-
morphic phantom. [Color figure can be viewed at wileyonlinelibrary.com]
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performed using the Feldkamp-Davis—Kress (FDK) algo-
rithm?? and a band-limited ramp kernel without any apodiza-
tion. Reconstructed CT images had a voxel size of
0.19 x 0.19 x 0.47 mm>. The small in-plane image resolu-
tion was required for measurements of non-aliased noise at
the current detector binning level. An empirical beam harden-
ing correction scheme® was applied to mitigate the beam
hardening artifacts. The three LSC methods were imple-
mented in MATLAB (The MathWorks Inc., Natick, MA).
Denoising the raw count volumes using the current imple-
mentations took 9 s for the boxcar, 23-26 s for ATM (param-
eter dependent), and 38 s for AD. However, these
comparisons in efficiency are limited since further improve-
ments are possible such as additional parallelizability and
using a lower level processing language. Image reconstruc-
tion was performed in C++.

2.C. Frequency-dependent image quality metrics

In this work, spatial resolution and noise measurements
were explored across the parameter space for both LSC meth-
ods. Spatial resolution and noise were characterized locally in
order to account for the potential shift-variant behavior intro-
duced by the given image object and LSC method. Local 2D
NPS and 2D MTF measurements were performed at two
characteristic spatial locations in the central slice within the
phantom [Fig. 6(a)]: (a) posterior: corresponding to a highly
photon-starved region along the path of largest attenuation
and (b) anterior: corresponding to a region located further
from the photon-starved measurements. Repeated scans were
acquired to assess noise performance. These also facilitate

Local
ensemble average

—» Avg. ESF
\
—> 1D LSF
\

Ensemble average

* -» -»>
{ W\
] \

-’ W
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the spatial resolution measurements by removing noise from
the mean image without affecting the inherent blurring mech-
anisms.

2.C.1. Noise

Experimental local 2D NPS measurements can be per-
formed by using the ensemble of reconstructed CT images
from the repeated scans,”® and can be mathematically
described as

1 AxAy & —

NPS (k. k) = - N, ; IDFT{ROL — ROI}|*>,  (14)
where N, x N, is the ROI matrix size (57 x 57), Ax = Ay
corresponds to the CT image pixel size (0.19 x 0.19 mm),
DFT represents the 2D discrete Fourier transform, and ROI is
the average ROI image obtained from R = 50 repeated scans.
The noise magnitude, denoted as g, was also calculated as
the square root of the area under the 2D NPS.

Figure 4 shows how noise coarseness and directionality
can be measured. First, radial profiles (1D NPS) at each angle
0 are extracted from the 2D NPS (a total of Ny spokes). For
the coarseness analysis, the mean frequency (horizontal axis
value, k) for each spoke is plotted as a function of angle in
the polar plot. For the directionality assessment, the areas
under the 1D NPS curves, defined as A(0), are first normal-
ized with respect to the maximum area, A, and then the
normalized areas are plotted as a function of angle. An addi-
tional scalar metric for NPS directionality, which is referred
to as the “isotropy score” and denoted enps, can be obtained

Local 2D MTF Radial profiles

Directionality

7 =A4(0)/Amax

~ EmTF

-»>

1D MTF k (mm™)
MTF isotropy
NPS isotropy
LN -»>

N \

k (mm™b)
: = =k T =A(0)/Amax

- Local Avg. Local . L .

Noise ensemble noise ensemble 2D NPS Radial profiles Coarseness Directionality

Fic. 4. Workflow to measure local 2D NPS and 2D MTF. Coarseness and directionality of the 2D NPS and the directionality of the 2D MTF can also be
extracted as 1D metrics. The 0D isotropy score, ¢, is the average radius of the directionality of either the NPS or MTF. [Color figure can be viewed at wileyonli-
nelibrary.com]
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by calculating the average radius of the directionality plot,
i.e., enps = (1) = (4(0)/Amay). Because ¢? = [A(0)d0, the
following intuitive relationship is readily apparent:

c*/2n

enps = . (15)
e Amax

Thus, isotropy is a measure of how uniformly the noise is
distributed around 27. A perfectly isotropic NPS would have
a value of exps = 1. Any measure of anisotropy in the NPS
leads to a value less than 1, with a minimum occurring at 1/
Ny for the most anisotropic NPS possible. Finally, contour
maps of noise magnitude (standard deviation, ¢) and enps
were plotted across the parameter spaces of each LSC
method.

2.C.2. Spatial resolution

The spatial resolution performance of an imaging system
is usually assessed by measuring the PSF or the MTF. In this
work, the 2D MTF was measured as shown in the diagram
from Fig. 4. Repeated scans were averaged in the image
domain to obtain a “noiseless” estimate of the image object.
Since photon starvation is a stochastic process, any associated
noise streaks present in individual images are considerably
mitigated by this approach and facilitate the measurement of
spatial resolution. The rods in the posterior and anterior
regions had the same high contrast (poste-
rior = 1442 4+ 43 HU, anterior = 1427 + 46 HU). While
the contrast dependence of the LSC methods was out of the
scope of this work, very high contrast was used because the
resolution measurement is more reliable at such low dose.
Additionally, rods were suitable for these measurements
because the analysis was limited to 2D. For the measurement
of each of the rods in the mean image, noise reduction was
performed for both the interior of the rod and the lung back-
ground, but not the edge of the rod itself.””> The interior and
exterior regions were both defined 3-5 image pixels away
from edge. Then, 3.5 mm long radial edge profiles were
extracted around 360 degrees with an angular step size of 1
degree. Next, a low noise edge spread function (ESF) for each
angle was found by radially averaging all the profiles within a
span of —30 and +30 degrees. This approach is valid under
the assumption that the local variability between edge profiles
extracted at adjacent angles is low. Next, each average ESF
was differentiated and fitted to a Gaussian function to obtain
an upsampled 1D line spread function (LSF). Subsequently,
the 1D Fourier transform was performed to obtain the respec-
tive 1D MTF, and the 2D MTF was formed by assembling all
of the radial 1D MTFs and interpolating between them to fill
in the missing data.

Additionally, for the 1D MTF along the k, and k, axes, the
frequency where the MTF fell to 10% was determined. These
values serve as OD surrogates of the spatial resolution and
were denoted as MTF,o, and MTF,q, Finally, the 2D MTF
underwent the same directionality analysis as the 2D NPS
with the respective isotropy scores denoted as eyrp (the
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FiG. 5. (a) Gammex breast phantom with ROIs where noise (dashed) and
resolution (solid) were measured, (b) ROI in the mean image, (c) 2D NPS,
(d) 2D MTF. [Color figure can be viewed at wileyonlinelibrary.com]

analogous interpretation to Eq. (15) is how uniformly the
area under the 2D MTF is distributed in 27). Contour maps
of MTF o, MTF ¢, and emrr were also plotted across the
parameter spaces of each LSC method.

2.C.3. Validation

To validate the benchtop system and these measurement
methodologies, noise and spatial resolution measurements
were performed for a custom-made cylindrical breast phan-
tom (Gammex, Middletown, WI) acquired at high dose and
reconstructed using FBP. Figure 5 demonstrates that the NPS
and MTF are both isotropic under these conditions and serves
as a benchmark for the benchtop system. When changing to
the anthropomorphic pediatric phantom used in this work,
several effects are understood for FBP reconstructions: (a) the
NPS is very anisotropic because the phantom is highly
heterogeneous, but (b) the noise coarseness is still constant in
every direction, and (c) the MTF is still isotropic. Given this
benchmarking of the CT system, the full impact of LSC
applied to the raw counts domain will have been isolated.

3. RESULTS
3.A. Qualitative assessment

Figure 6 shows reconstructed images. Full FOV images
are shown in the left column, and zoomed-in images of a
region-of-interest (ROI) in the right lung are shown in the
right column. Object features are clearly visible in the
1.9 mGy image without LSC [Fig. 6(a)]. However, noise
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Fic. 6. Full FOV (214 x 109 mm?) and zoomed ROI (58 x 58 mm?)
images. (a) 1.9 mGy without LSC, (b) 0.5 mGy without LSC, post-log
(c, d), and pre-log (e, f, g) corrections for low-dose image. Parameters for
each method are indicated [ATM: (p;, p,), AD: (0, 7)]. Images displayed with
W/L = 2500/0 HU. Subfigure (a) shows posterior (magenta) and anterior
(cyan) locations for image quality measurements. [Color figure can be
viewed at wileyonlinelibrary.com]

streaks across the L/R axis of the phantom (=20 cm) in the
0.5 mGy image without LSC [Fig. 6(b)] obstruct most of the
smaller rods in the lungs and make it difficult to resolve bone
edges in the scapula, spine, and humerus. Figures 6(c)-6(g)
are each corrections for the low-dose image. To validate
selection of the pre-log domain over the post-log domain for
correction, images were first generated using correction in
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the post-log domain with many different parameterizations of
the BOX and AD filters (ATM was not included since it is
not directly applicable to the post-log domain). Figures 6(c),
6(d) correspond to the parameterizations in the post-log
domain that yielded the best subjective image quality and
therefore demonstrate why performing correction in this
domain is insufficient to remove noise streaks. For correction
in the raw counts domain, the BOX image [Fig. 6(e)] also
still has residual streaks. However, both the nonlinear meth-
ods — ATM and AD [Figs. 6(f), 6(g)] — are successful in
removing noise streaks while preserving to some extent spa-
tial resolution.

3.B. Noise performance

Figures 7(a), 7(c) show how noise magnitude, &, and
noise isotropy scores, exps, vary as a function of s for
BOX images for both the anterior and posterior spatial
locations. Values at s = 1 correspond to the image without
correction [Fig. 6(b)]. The s =4 image is analyzed in
more detail in the first row of Fig. 12 which contains: a
noise only image (subfigures a, d); 2D NPS (subfigures b,
e); and coarseness plots (subfigures c, f). Additionally, the
coarseness curve for a given spatial location from the
1.9 mGy image without LSC is also overlaid in Figs. 12
(¢c) and 12(f) for comparison. For the images without
LSC, coarseness plots have a constant mean frequency
(=1 mm™") in every direction despite topological variation
observed in the 2D NPS (shown in Fig. 4).

Figure 8 shows how the noise performance varies across
the 2D parameter space of ATM for both spatial locations.
Figures 8(a) and 8(b) display the noise magnitude, and

(a)1200 () 1
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Fic. 7. Zero-dimensional image quality metrics across the parameter space
for BOX images at 0.5 mGy. s = 1 corresponds to the FBP image without
LSC [Fig. 6(b)].
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FiG. 8. Noise contour maps in ATM-space for the anterior and posterior spa-
tial locations. (a, b) Noise standard deviation, ¢, in HU. (c, d) NPS isotropy,
enps. Indexed parameters in (b) correspond to rows in Fig. 12. Note that
ATM is not defined in the white space where p;, < p;. [Color figure can be
viewed at wileyonlinelibrary.com]

Figs. 8(c) and 8(d) show the isotropy scores. The three oper-
ating points that are indexed and overlaid in Fig. 8(b) are ana-
lyzed in more detail in Fig. 12.

Results for the noise performance of the AD filter follow
an analogous presentation as the ATM filter. Figure 9 shows
how the noise performance varies across the 2D parameter
space of AD, and the three operating points that are indexed
and overlaid in Fig. 9(b) are analyzed in more detail in
Fig. 12.

Anterior

0.1

0.9

(b)
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0.1

Fi1G. 9. Noise contour maps in AD-space for the anterior and posterior spa-
tial locations. (a, b) Noise standard deviation, o, in HU. (c, d) NPS isotropy,
enps. Indexed parameters in (b) correspond to rows in Fig. 12. [Color figure
can be viewed at wileyonlinelibrary.com]
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3.B.1. Noise magnitude

The noise magnitude, o, for BOX images decreases as s
increases [Fig. 7(a)]. This is a natural result. For the ATM
method [Figs. 8(a), 8(b)], noise magnitude decreases rapidly
when moving from low to high p, and p, values. This is
expected, since whenever p; or p,, is increased, there is more
smoothing in the raw domain and thus lower noise in the
reconstructed image. This trend can best be explained using
Fig. 1 and Eq. (6). Increasing either p; or p;, means that for a
given signal level, both a larger spatial window and less data
trimming will be applied. Since the contours are approxi-
mately linear with a slope of —1, this means that the noise
reduction is approximately equal per unit of p; or p,, increase.
This slope is slightly larger than —1 due to the fact that
increasing p,, has the added effect that more of the higher sig-
nal levels are also being filtered. These trends are true for
both spatial locations.

A similar observation can be described for the AD method
[Figs. 9(a), 9(b)]. There is a decrease in noise magnitude
when moving from low ¢ and high y to high J and low 7. This
trend can best be explained using Fig. 2. Brightness gradient
functions with small § and large y have a short plateau and
rapid fall, and will therefore provide hardly any filtration of
the raw data. On the other hand, functions with large 6 and
small y have a long plateau and a more gradual fall and will
therefore filter more of the data in the raw domain leading to
lower noise images.

3.B.2. Noise directionality and coarseness

Despite decreasing noise magnitude with increasing s, the
noise isotropy, exps, for BOX images remains relatively flat,
only increasing from 0.09 to 0.14 in the posterior or from
0.29 to 0.39 in the anterior regions [Fig. 7(c)]. This indicates
streaks are still present and this is validated in the recon-
structed image [Fig. 6(e)] and by the 2D NPS [Figs. 12(b),
12(e)].

For both nonlinear LSC methods, the NPS isotropy con-
tour maps (Figs. 8 and 9) demonstrate a more complex
dependence across parameter space. The NPS of the CT
image without LSC (not shown) is highly anisotropic in the
posterior ROI because of noise streaks. The analogous oper-
ating point for an uncorrected CT image in the ATM-space is
at the bottom left corner (p, p,) = (0, 0), where exps = 0.11
for the posterior ROI. The ATM filter is able to increase the
NPS isotropy to as high as 0.67 in the island near (p,
pi) = (20, 400). For the anterior ROI, the isotropy is higher
overall compared to the posterior ROI since the value at (p,
pr) = (0, 0) was already 0.29. The highest isotropy value for
this ROI is 0.73 occurring near (p, p;) = (0, 1000). For both
spatial locations therefore, a high isotropy was observed at
small p, -values, but there is a spatial location dependence for
Dh-

In the case of the AD method, the NPS isotropy trends do
not change as a function of spatial location, but the
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magnitude of the metric is higher for the anterior region than
the posterior one. The analogous operating point for an
uncorrected CT image in the AD-space is at the top right cor-
ner. Operating points with high NPS isotropy occur at high
values of ¢ and high values of 7.

NPS isotropy is related to the noise magnitude by
Eq. (15). However, because A,,,x may differ for LSC images
with the same noise magnitude (i.e., the noise is distributed
differently), the expg contours are not the same shape as the ¢
contours.

The noise coarseness for BOX images is reduced isotropi-
cally [Fig. 12(c), 12(f)]. However, noise coarseness for the
ATM and AD filters is reduced anisotropically. While the
mean noise frequencies can sometimes be preserved in direc-
tions parallel to the streaks, they are lower in directions per-
pendicular to the streaks.

3.C. Spatial resolution performance

Figures 7(b), 7(d) shows how the spatial resolution met-
rics — the MTF,, value extracted along the k, axis and the
resolution isotropy, eytr — vary as a function of s for BOX
images for both the anterior and posterior spatial locations.
The image for s = 4 is analyzed further in Fig. 13 which
contains: ROIs of the high-contrast rod used for measure-
ment (subfigures a, d); the 2D MTF (subfigures b, ¢); and
1D MTF curves in the positive k, and positive &, directions
(subfigures ¢, f). The radial averaged 1D MTF from the
1.9 mGy uncorrected CT image for a given spatial location
is also overlaid in Figs. 13(c) and 13(f) for comparison.

Figure 10 shows the variation of these metrics across the
2D parameter space of ATM. Figures 10(a) and 10(b) show
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FiG. 10. Spatial resolution contour maps in ATM-space for the anterior and
posterior spatial locations. (a, b) Spatial resolution surrogate in the y-direc-
tion, MTF gy, in mm~". (¢, d) MTF isotropy, exirr Indexed parameters in (b)
correspond to rows in Fig. 13. [Color figure can be viewed at wileyonlineli-
brary.com]
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MTF,o,, and Figs. 10(c) and 10(d) show eyrp. The same
three ATM operating points from before [indicated again in
Fig. 10(b)] are shown in greater detail in Fig. 13.

Figure 11 shows the spatial resolution performance across
the parameter space of AD. Figures 11(a) and 11(b) show
MTF,o,, and Figs. 11(c) and 11(d) show eyrr. The same
three AD operating points from before [indicated again in
Fig. 11(b)] are shown in greater detail in Fig. 13.

3.C.1. Spatial resolution MTF;,,,

The limiting resolution surrogate, MTFq,, for BOX
images decreases as s increases for both posterior and ante-
rior locations [Fig. 7(b)]. This is expected since there is an
accompanying noise reduction. However, the reduction is the
same for both spatial locations because the boxcar filter is
shift-invariant. Figures 10 and 11 show that for both the
ATM and AD filters, there is also a dependence of spatial res-
olution on the filter parameters, and also a more complex
dependence on the spatial location in the image. As noted
previously, there is more noise reduction in ATM when either
p;or py, is increased. As a result, there is a corresponding loss
in spatial resolution along these axes and this is true for both
spatial locations [Figs. 10(a) and 10(b)]. However, the spatial
resolution loss is not equal in the two spatial locations — the
directions of the spatial resolution contours for both ROIs are
oblique to each other. This is because the ATM filter depends
on the magnitude of the raw signal itself. Therefore, if there
is a small change in the filter parameters, the resulting
changes in image spatial resolution will be different in pho-
ton-starved regions than the spatial resolution changes for
less attenuating regions.

(a) (c) EMTF (A.U.)
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FiG. 11. Spatial resolution contour maps in AD-space for the anterior and pos-
terior spatial locations. (a, b) Spatial resolution surrogate in the y-direction,
MTFqy, in mm~ . (¢, d) MTF isotropy, eprr. Indexed parameters in (b) corre-
spond to rows in Fig. 13. [Color figure can be viewed at wileyonlinelibrary.-
com]
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For AD, there is more denoising if J increases and 7y
decreases. Figures 11(a) and 11(b) confirm the associated
spatial resolution loss when these parameters are changed this
way. In fact, the spatial resolution contours are inversely
related to the noise contours observed in Figs. 9(a) and 9(b).
Additionally, the contours for the anterior and posterior direc-
tions are in the same direction. This is a convenient feature of
AD, since it means that the trade-off between noise and spa-
tial resolution is smooth and the magnitude of the degrada-
tions is approximately the same for different spatial locations.
In contrast to ATM, AD has this property because the filter
in AD depends on the magnitude of the gradient of the raw
signal instead of the signal itself.

3.C.2. Spatial resolution directionality

The MTF isotropy score for the CT image without LSC
was eyrr = 0.80 (posterior) and eyrp = 0.82 (anterior).
BOX images maintain this constant eyrp value as s is
increased [Fig. 7(d)], despite a decrease in the spatial resolu-
tion magnitude [Fig. 7(b)]. This is because the boxcar filter
reduces spatial resolution equally in all directions. The first
row of Fig. 13 clearly demonstrates this isotropic nature for
s =4.

For both the ATM and AD methods, the MTF isotropy
contour maps (Figs. 10 and 11) have contours that behave
differently than the MTF,(,, contour maps. This is because
the isotropy contours absorb the behavior of all the directions,
and the contours of MTF g in any given direction 6 would
have either different magnitudes, different shapes, or both.
Interestingly, the MTF isotropy for ATM now has similarly
shaped contours for the anterior and posterior directions
[Figs. 10(c), 10(d)], despite having MTF(, contours that dif-
fered in both magnitude and shape. The MTF isotropy for
AD also has similarly shaped contours for the anterior and
posterior directions [Figs. 11(c), 11(d)]; MTF,q, contour
maps for AD had contours that differed in magnitude but not
shape.

Resolution isotropy scores were generally smaller than the
uncorrected image across the ATM parameter space because
this filter always reduces spatial resolution unequally in dif-
ferent directions (e.g., contours of MTF,q, have different
shape than MTF(,,,. AD isotropy was less than, equal to, or
greater than the isotropy obtained for the uncorrected CT
images; however, the shape of these contours was generally
the same for different directions.

3.D. Spatial resolution and noise interplay

The trade-off between noise and spatial resolution for
BOX images has been discussed and remains relatively clear.
Figure 7 and the first row of Figs. 12 and 13 show that noise
and resolution are reduced isotropically for a linear filter and
as such it is insufficient to remove noise streaks.

The three operating points of ATM or AD in Figs. 12 and
13 were selected to be representative of the potential within

Medical Physics, 45 (5), May 2018

1952

each of the parameter spaces to provide different levels of
denoising. For each filter, the first row corresponds to cases
where there was minimal filtration. The second row corre-
sponds to a large amount of filtration and hence excessive
blurring. Finally, the third row was selected to balance the
trade-off between noise and spatial resolution.

For the images where filtration was minimal, the spatial
resolution does not change significantly from the low-dose
image without LSC. For both ATM and AD in the anterior
position, the k, and k, 1D MTFs are the same as the radial
average 1D MTF from the reference image [Fig. 13(c)]. Sub-
sequently, the noise coarseness is preserved here [Fig. 12(c)].
In the posterior position, there is a slight drop in k, resolution
for ATM [Fig. 13(f)] accompanied by a small decrease in
noise coarseness along this same direction [Fig. 12(f)]. For
AD, resolution is actually enhanced, but the streaks are never-
theless unacceptable here [Figs. 12(d)—12(f)].

The reduction in spatial resolution accompanied by a
decrease in noise coarseness along the same direction can be
observed for the other two operating points as well (second
and third row of each filter in Figs. 12 and 13). For these
cases, the larger the reduction in resolution, the larger the
drop in noise coarseness. These reductions are also highly
anisotropic. Because the filters reduce noise frequencies
along the k, axis more than the k, axis, spatial resolution is
also reduced more along the k, axis than it is along the k,
axis. This can be seen in the LSC images by the separation of
the 1D MTFs [Figs. 13(c), 13(f)].

Interestingly, for the operating points in the third row for ATM
or AD with good noise-resolution trade-off, the coarseness and
resolution along the k, direction are reduced, but for the most part
these noise frequencies and MTF are both preserved along the k.
direction. Because of this anisotropic behavior, the NPS isotropy
scores are higher and the MTF isotropy scores are lower than the
uncorrected image. The impact of the noise-resolution trade-off
for these operating points is best observed in the noise only
images [Figs. 12(a), 12(d)], where the noise appears less direc-
tional in the third row than in the first row, and in the ROI images
for these operating points [Figs. 13(a), 13(d)], where signal along
the vertical direction is observed to be leaking out while the hori-
zontal direction has a well-defined edge.

4. DISCUSSION

In this work, the noise and spatial resolution characteris-
tics of low-dose CBCT via LSC in the raw counts domain
with the AD and ATM filters were systematically investi-
gated. It was found that these LSC methods were able to
reduce noise streaks in the reconstructed CT image effec-
tively when compared to linear filters and/or denoising in the
post-log domain. It was also found that their success
depended strongly on the filter parameters used. Additionally,
the images reconstructed from raw data corrected using ATM
or AD presented highly anisotropic and shift-variant noise
and spatial resolution properties. Specifically, three major
aspects about the imaging performance of the investigated
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FiG. 12. Noise measurements for BOX, ATM, and AD images. One example of the boxcar filter is provided, while three operating points for each nonlinear filter
are also shown as examples, corresponding to those indicated by the markers in Figs. 8 and 9. For both anterior and posterior ROIs, three figures are shown:
(a, d) the local noise only image, (b, ) normalized 2D NPS, and (c, f) coarseness plots. The coarseness curve for the given ROI obtained at 1.9 mGy without
LSC is also shown for reference. Values of noise magnitude, ¢ (HU), and NPS isotropy, exps, for each case are also provided. [Color figure can be viewed at

wileyonlinelibrary.com]
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LSC methods in terms of noise and spatial resolution can be
highlighted: (a) noise magnitude and spatial resolution along
the direction perpendicular to the noise streaks are inversely
related, (b) noise directionality is independent of noise mag-
nitude, and (c) noise coarseness and spatial resolution direc-
tionality have an intrinsic direct relationship.
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The behavior highlighted in (a) agrees with qualitative
observations from previous work with ATM and other noise
streaks reduction methods.”® Even though noise magnitude
could be reduced considerably and the spatial resolution along
the direction parallel to the noise streaks was preserved to
some extent, there was still some degradation of spatial
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resolution along the perpendicular direction. The point in (b)
highlights the importance of taking into account noise direc-
tionality; it was observed that a NPS with the same magnitude
could have different degrees of isotropy. This is important
since image feature conspicuity can be influenced by the direc-
tionality of the noise texture.”* Finally, the point in (c) high-
lights the relationship between noise coarseness and MTF
isotropy. It was observed that for a given spatial location in the
FOV, the preferential denoising along photon-starved view
angles resulted in a lower mean noise frequency along these
same directions, which directly correlated with degradation of
the spatial resolution along these directions. In other words,
the coarseness plots mimic the topography of the 2D MTF,
and any anisotropic reduction of noise coarseness would be
reflected by a decrease in the MTF isotropy as well. These
findings agree with previous work done with penalized likeli-
hood reconstruction®® where a similar complementary behav-
ior between the MTF and the NPS was also observed.

This work has some limitations. The imaging performance
assessment was limited to 2D. Analyzing the imaging perfor-
mance across slices would be relevant since the LSC methods
implemented in this work process the raw data two-dimen-
sionally at the detector plane, not just along the row direction.
However, this would only impact the noise properties, not the
spatial resolution since the phantom used in this study is uni-
form along the slice direction. Additionally, even though the
ensemble averaging approach enables the measurement of
noise and spatial resolution in highly nonlinear CT systems,
its accuracy for severely photon-starved scenarios may
depend strongly on the amount of repeated scans, particularly
for uncorrected raw data with streaky CT images. This large
amount of repeated scans may not be practical, particularly if
multiple imaging scenarios are considered for imaging per-
formance assessment. However, these kinds of rigorous stud-
ies with repeated physical data for a given phantom may
serve as a basis to validate future numerical simulation stud-
ies or theoretical models that can facilitate the prediction of
the behavior of noise and spatial resolution at different oper-
ating points within the filter parameter space and spatial loca-
tions.

The extent of the imaging performance assessment in Part
I of this work was limited to noise and spatial resolution. Fig-
ures 7—13 provide an overall understanding of the noise and
spatial resolution performance for each filter, but what con-
clusions can be drawn so that optimal filter parameters can
be chosen? Is it best to have an isotropic NPS at the expense
of a highly anisotropic MTF? Or should spatial resolution
remain isotropic without any regard to the texture of the
NPS? Should certain spatial locations within the image have
more favorable properties than others? Is one filter better than
the other? Final consideration of the noise and spatial resolu-
tion metrics in Part I suggests that it is challenging to choose
optimal parameters that capture all of the favorable properties
of any single metric when considered on its own. In other
words, no clear optimal point stands out. Optimizing parame-
ter selection based on noise standard deviation ¢ or limiting
spatial resolution MTF;, would lead to one operating on the
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boundaries of the parameter space. Alternatively, optimizing
based on the isotropy of the NPS or MTF might favor one
spatial location in the image FOV over another.

Therefore, while a detailed quantitative assessment of
noise and spatial resolution provides a foundation to under-
stand the imaging performance of a given LSC method, in
order to properly select optimal parameters, this process
needs to be targeted to a given imaging task. This approach is
taken in Part IT'"> of this work where a task-based detectability
framework incorporates the noise and spatial resolution prop-
erties simultaneously for an imaging task of interest.

5. CONCLUSION

Performance of LSC schemes in low-dose CBCT was
investigated using the AD and ATM filters in the raw counts
domain. For each filter, the parameter space was extensively
sampled and assessed using frequency-dependent image
quality metrics of noise and spatial resolution. The noise and
spatial resolution characteristics of the LSC schemes are
highly anisotropic and shift-variant. A simple parameter opti-
mization based solely upon the noise and spatial resolution
characteristics may be difficult. Instead, a task-based
detectability framework is required to fully capture the imag-
ing performance of either LSC method and to optimize the
parameter selection for the filters, and this will be discussed
in Part II of this work."
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