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Abstract

Hexavalent chromium [Cr(VI)] is a global environmental pollutant that increases risk for several 

types of cancers and is increasingly being recognized as a neurotoxicant. Traditionally, the brain 

has been viewed as a largely post-mitotic organ due to its specialized composition of neurons, and 

consequently, clastogenic effects were not considered in neurotoxicology. Today, we understand 

the brain is composed of at least eight distinct cell types – most of which continue mitotic 

activity throughout lifespan. We have learned these dividing cells play essential roles in brain and 

body health. This review focuses on Cr(VI), a potent clastogen and known human carcinogen, 

as a potentially neurotoxic agent targeting mitotic cells of the brain. Despite its well-established 

role as a human carcinogen, Cr(VI) neurotoxicity studies have failed to find a significant link 

to brain cancers. In the few studies that did find a link, Cr(VI) was identified as a risk for 

gliomas. Instead, in the human brain, Cr(VI) appears to have more subtle deleterious effects that 

can impair childhood learning and attention development, olfactory function, social memory, and 

may contribute to motor neuron diseases. Studies of Cr(VI) neurotoxicity with animal and cell 

culture models have demonstrated elevated markers of oxidative damage and redox stress, with 

widespread neurodegeneration. One study showed mice exposed to Cr(VI)-laden tannery effluent 

exhibited longer periods of aggressive behavior toward an “intruder” mouse and took longer to 

recognize mice previously encountered, recapitulating the social memory deficits observed in 

humans. Here we conducted a critical review of the available literature on Cr(VI) neurotoxicity 

and synthesize the collective observations to thoroughly evaluate Cr(VI) neurotoxicity – much 

remains to be understood and recognized.
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1. Introduction

Chromium (Cr) is the seventh most abundant element on earth and naturally occurs in 

two valence states – hexavalent [Cr(VI)] and trivalent [Cr(III)]. While Cr(III) is generally 

regarded as less toxic and argued to be potentially therapeutic, Cr(VI) is widely recognized 

as a human carcinogen and an environmental pollutant (Holmes et al., 2008; DesMarias and 

Costa, 2019; Moreira et al., 2019; Farrokhian et al., 2019; Peng and Yang, 2015; Speer and 

Wise, Sr., 2018). In the US alone, 900–970 tons of Cr(VI) are released into the air every 

year, largely due to industrial activities such as burning oil and coal, pigment oxidants, 

fertilizers, oil well drilling, metal electroplating, and leather tanning (ATSDR, 2012). 

Occupational exposure poses the most significant risk, and is often encountered in industries 

that use chromic acid, or are involved in chromite ore production, paint production, or steel 

welding. Inhalation of Cr(VI) increases incidence and risk of developing lung cancers, while 

ingestion via drinking water increases risk of liver cancers. As such, Cr(VI) is listed by the 

International Agency for Research on Cancer (IARC) as a group 1 human carcinogen and is 

listed 17th on the Agency for Toxic Substances and Disease Registry’s (ATSDR’s) Hazards 

Priority List. Drinking water contaminated with Cr(VI) presents the most wide-spread risk 

of exposure, though it is currently regulated as total Cr and thus reported drinking water 

levels for Cr(VI) are sparse. Average Cr(VI) drinking water levels range from 0.2–2 μg 

Cr(VI)/L in the United States and Canada (US EPA, 2017; Moffat et al., 2018). Sources for 

Cr(VI) in drinking water may come from erosion of naturally occurring rocks/sediments or 

anthropogenic industrial pollution (see reviews by Moffat et al., 2018 and McNeill et al., 

2012 for further discussion).

Upon entry into the body, Cr(VI) particles dissociate and the Cr(VI) anion crosses cell 

membranes through ion channels or the entire particulate is phagocytosed. Due to Cr(VI) 

anion’s tetrahedral structure, it mimics sulfate and phosphate ions to passively cross the 

cell membrane through these ion channels. Interaction of Cr(VI) with arginine in these 

anion channels is critical for stabilizing the Cr(VI) anion through a network of hydrogen 
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bonds (Saha et al., 2011). In the cytoplasm, Cr(VI) is rapidly reduced to Cr(III) with 

ephemeral intermediate valences states [Cr (V) and (IV)]. This reduction produces reactive 

oxygen species (ROS, such as superoxide, hydrogen peroxide, or hydroxyl radicals), which 

contribute to carcinogenesis. Cr(VI)’s clastogenic effects are well defined, but unknown in 

the brain (Newbold et al., 1979; Watanabe et al., 1985; Wise, S. et al., 2004). Further, Cr(VI) 

induces genomic instability, a hallmark of lung cancer, by disrupting DNA damage repair 

pathways (Wise, S. et al., 2018; Browning et al., 2016; Qin et al., 2014; Wise, S. et al., 2008; 

Zhitkovich, 2005; Martin et al., 2006; Reynolds et al., 2007).

The brain is a highly specialized organ that demands up to 20% of the body’s oxygen supply 

despite making up less than 2% of body mass. Most often people associate the brain with 

neurons, and neurotoxicity with how chemicals affect neuronal health. However, there are 

at least eight distinct cell types in addition to neurons conducting the complexity of the 

brain, including: astrocytes, microglia, oligodendrocytes, ependymal cells, pericytes, brain 

vascular endothelial cells, and smooth muscle cells. Collectively, these cell types make 

up the glia and cerebrovasculature that support the health and maintenance of neurons. 

Importantly, most of these cells remain mitotic throughout life and hence are potential 

targets of clastogenic toxicants.

Several brain cells (astrocytes, microglia, pericytes, endothelial cells, and some neurons) 

work together to form the neurovascular unit (NVU) (Muoio et al., 2014). The NVU 

detects the needs of the brain parenchyma, triggers appropriate chemotactic responses (e.g. 

vasodilation, vasoconstriction), and regulates the composition and tightness of the blood-

brain barrier (BBB). In a healthy body and healthy brain, the vast majority of xenobiotics 

are kept out of the brain parenchyma by the BBB (Zheng et al., 2014; Haddad-Tóvolli 

et al., 2017; Gawdi and Emmady, 2020; Zheng and Ghersi-Egea, 2020). It is unknown 

if Cr(VI) can cross this barrier, or damage it. Alternatively, Cr(VI) could enter the brain 

through the olfactory bulb, which is unprotected by the BBB and is directly exposed to 

ambient air through its nerve fenestrations into the nasal septum (Hanson and Frey, 2008). 

Additionally, the hypothalamus and pituitary have a weaker BBB due to their roles in 

hormonal axes (e.g. hypothalamus-pituitary-gonad axis) and thus have regular interactions 

with blood components (Haddad-Tóvolli et al., 2017). Finally, Cr(VI) could enter the brain 

through cerebrospinal fluid (CSF). One study investigating metal-on-metal hip arthroplasty 

observed a small exchange of Co and Cr from blood plasma to CSF (Harrison-Brown et 

al., 2020). Yet, no data have been reported on Cr(VI) ability to cross the brain-CSF barrier 

either.

Hexavalent chromium is a widely recognized environmental pollutant with potential for 

carcinogenic, teratogenic and mutagenic effects. However, understanding the neurological 

health effects of Cr (VI) exposures are just beginning. Perhaps this is due to a lack of 

evidence for occupational Cr(VI) exposures linked to major neurodegenerative diseases (e.g. 

Alzheimer’s or Parkinson’s diseases). Regardless, we recognize the significant neurological 

health risks associated with exposure to non-essential heavy metals, and much is yet to 

be understood about most of these metals (Karri et al., 2016; dos Santos et al., 2016; Su 

et al., 2017). Our knowledge of brain health and function is growing exponentially with 

the development of newer imaging tools and more powerful computers to analyze them; 
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meanwhile our understanding of how our environment affects brain health and function lags 

behind. Much is yet to be understood about neurotoxicology and how chemicals alter the 

health and function of the brain (especially non-neuronal cells), and our ability to treat or 

prevent many diseases will be limited until we do.

The aim of this review is to summarize and discuss the available literature on Cr(VI) 

neurotoxicity. Our discussion will begin summarizing reports with humans, considering: 

Cr levels in human brain regions, risk for brain cancer after occupational exposure, 

Cr metallosis from failed metal-on-metal hip replacements, Cr(VI) and autism spectrum 

disorder, other neurological disturbances linked to Cr exposures, and the lack of regulations 

for Cr(VI) neurotoxicity. Then we will discuss reports with animals, considering: dose- 

and time-dependent Cr deposition in the brain, impacts on animal behavior, oxidative 

damage, histopathology, and other neurotoxic endpoints. We will discuss comparisons 

across exposure routes, novel insights considering co-exposures with antioxidants or other 

metals, and limitations present in the literature for Cr(VI) neurotoxicity. We briefly 

discuss the observations from cell culture studies. We then discuss studies considering 

prevention or intervention of Cr(VI) toxicology, current limitations and new insights from 

Cr(VI) neurotoxicology. We conclude our discussion with future directions for Cr(VI) 

neurotoxicology research.

2. Methods

2.1 Search Strategy

International databases (PubMed and Science Direct) and online search engine (Google 

Scholar) were searched for relevant publications throughout the composition of this review. 

The first search was executed on 3/11/2020, and the final search was on 1/7/2021. Searches 

included: 1) ((chromium) and brain) and toxicology, 2) ((chromium) and brain) and disease, 

3) (chromium) and brain levels, 4) ((chromium) and neurologic), 5) ((chromium) and 

neurotoxicity). Additionally, search terms “chromate”, “hexavalent chromium”, “Cr(VI)” 

were used in place of “chromium”, and “neuro” was used in place of “brain” to avoid 

missing papers. This search method was enhanced by following referenced literature under 

consideration in this review, and by considering articles listed under “Cited By” or “Related 

Articles” links under search results.

2.2 Exclusion Criteria

From all results obtained from searches we excluded: 1) articles not relevant to the review 

topic, 2) articles on pharmacology of trivalent chromium [Cr(III)], 3) articles that may have 

mentioned Cr as a measurement but did not report Cr data.

3. Assessment of Cr Levels in Human Brain

An understanding of the toxic effects of Cr(VI) on the brain starts with determining what 

normal, non-toxic levels of Cr are present. Here, we discuss brain Cr levels observed in 

individuals who are presumably not occupationally exposed (occupation was not reported 

for these studies). The earliest studies from 1975 and 1977 investigated the levels of trace 

elements including Cr in a few key regions of the brain – the cortex, basal ganglia, and 
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pituitary (Kanabrocki et al., 1975; Gooddy et al., 1975; Höck et al., 1975; Persigehl et al., 

1977). Gooddy et al. (1975) reported a mean brain Cr level of 0.03 μg/g based on 10 patients 

that died of accidents or cardiac infarction and resided in urban areas. Analysis of brain 

regions showed mean levels of 0.03 and 0.09 μg/g for the frontal lobe cortex and basal 

ganglia, respectively, from 2 patients. By analyzing similar brain regions in subjects aged 

5 hours to 74 years, Höck et al. (1975) reported cortex and basal ganglia Cr levels ranging 

from 0.21–1.35 μg/g and 0.43–16.11 μg/g dry weight (0.65–4.09 μg/g and 1.32–28.82 μg/g 

wet weight), respectively. From their table, there were three individuals aged 64+ and three 

younger than 25; Cr levels in each of the older individuals was higher than each of the 

younger individuals, suggesting bioaccumulation across lifespan. Kanabrocki et al. (1975) 

measured levels of Cr in four of fourteen pituitaries sampled: 0.53, 0.67, 0.33, and 0.83 

mg/g dry weight (160.6, 203.03, 100.0 and 251.15 μg/g wet weight) for individuals aged 54, 

58, 63, and 72 years, respectively. Finally, Persigehl et al. (1977) measured trace elements 

in various human organs in three age groups: 0–1, 20–40, and 50–83 and reported the 

brain Cr levels as 0.8–4.2, <2, and 2.0–9.6 μg/g dry weight (0.24–1.27, <0.61, 0.61–2.91 

μg/g wet weight), respectively. While these studies were not able to discriminate the Cr 

valence state, the >100-fold differences between pituitary and cortex or basal ganglia Cr 

levels is striking and may reflect the weaker BBB in pituitary or may reflect an unknown 

essential role for pituitary Cr. These results also may suggest some credence to studies 

investigating a pharmacological role for Cr(III) in modulating insulin signaling in diabetes 

and hyperglycemia (Moreira et al., 2019; Farrokhian et al., 2019; Peng and Yang, 2015).

Since these initial studies, several more reports on Cr levels in the brain have been published 

and are summarized in Table 1 and Figure 1. Markesbery et al. (1984) conducted a thorough 

examination of trace elements in multiple brain regions across ages from premature births 

to 85 years old. While the data in the paper was limited, we are able to make some key 

insights. Levels of Cr were gradually increased with age (except for the 60–79 age group 

where a decrease was observed), and when data were grouped as adults versus infants, a 

statistically significant increase in Cr levels was found in adults (0.13 ± 0.01 vs. 0.07 ± 

0.02 μg/g in infants, respectively), suggesting lifespan bioaccumulation. When considering 

Cr levels regionally in the brain (regions ranged from <0.01 to 0.60 μg/g), considerably more 

variation across brain regions than other elements was noticed. The highest Cr levels were 

observed in regions of the cerebellum (0.27 and 0.26 μg/g in the cerebellar hemisphere and 

vermis, respectively) and lowest levels were observed in the caudate nucleus and putamen 

(0.05 and 0.08 μg/g, respectively). Unlike the rest of the brain, however, hippocampal Cr 

levels decreased with age. Rajan et al. (1997) reported a total brain Cr content of 0.19 ± 

0.03 mg. Here, the highest Cr level observed was in the temporal cerebrum (0.18 μg/g), an 

area involved in auditory function and processing information such as speech and words; 

whereas the lowest level was observed in the hippocampus (0.10 μg/g). Calderón-Guardeñas 

et al. (2013) reported a unique study design, investigating metal levels in the frontal lobes of 

individuals living in a heavily-polluted city (Mexico City) vs. those living in low-pollution 

Mexican cities (Tlaxcala and Veracruz). All brain samples were collected from individuals 

that died suddenly in accidents and were otherwise healthy. Of the 11 metals measured, Cr 

was sixth highest reported at 910 ± 63 μg/g and 527 ± 85 μg/g dry weight (1210 ± 84 μg/g 
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and 701 ± 113 μg/g wet weight) for Mexico city residents and low-pollution city residents, 

respectively.

Only a few studies have reported Cr levels in abnormal brain conditions. Two early studies 

have reported Cr levels in a total of 17 brain tumors, but neither found a difference between 

Cr levels in control cortex tissue and either astrocytoma (n = 15), oligodendroglioma (n = 1), 

or meningioma (n = 1) tissue (Guisin et al., 1991; Civit et al., 2000). However, two recent 

studies compared levels of trace elements in cerebrospinal fluid (CSF) from Parkinson’s 

disease patients to age-matched controls (Alimonti et al., 2007; Bocca et al., 2004). Both 

studies observed lower Cr levels in CSF of Parkinson’s patients by approximately half that 

of controls.

In conclusion, Cr accumulates in the human brain and likely bioaccumulates over the course 

of a lifespan. Two studies observed high levels of Cr in the pituitary and hypothalamus, 

though it is not clear if this reflects a potential role for Cr in these regions, or if the 

elevated levels are due to a weaker BBB. Other brain regions observed with high Cr levels 

were cerebellum and temporal lobe. These areas are not known to be affected by major 

neurodegenerative diseases, but could have other detrimental impacts on an individual’s life 

if significantly damaged (e.g. impaired speech or locomotion). Further studies are needed 

to better understand Cr deposition and valence state in the human brain, what contributes 

to regional differences, and what potential symptoms or health effects might arise from 

Cr-induced damage.

4. Human Studies Involving Cr(VI) and Neurological or Neurocognitive 

Effects

The last few decades have seen a growing number of studies investigating Cr(VI) 

neurological endpoints in humans, pointing to the onset of paresthesia, depression, gait 

disturbance, essential tremor, short-term memory loss, difficulty concentrating, impaired 

olfactory function, and impaired child neuropsychological development (see Table 2 for 

summary).

4.1 Cr(VI) and Brain Cancer

Currently, eleven studies have considered links between occupational Cr(VI) exposure and 

brain cancers; of these, three reported a positive association. Becker et al. (1991) first 

reported two cases of German welders with at least a 6-month occupational exposure who 

died of brain tumors, with a risk ratio of 2.7 (95% CI = 0.2–29.3) for Cr(VI). Hara et al. 

(2010) conducted a cohort study of 1193 Japanese men employed at a Cr plating factory 

(mean age was 50) between 1970 and 1976, among which 626 workers (52%) had six 

months or longer working as a Cr plater, while 567 (48%) worked with other metals (i.e. 

nickel, zinc, precious metal, aluminum). This cohort showed an elevated mortality risk for 

brain tumors for Cr platers, with a standard mortality ratio (SMR) of 9.14 (95% CI = 

1.81–22.09). In sum, three Cr platers had brain tumors compared to only one in the non-Cr 

plater population. A retrospective case study with Finnish women with brain/CNS cancers 

and employed during the 1970 census also showed women who were employed as turners 
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or toolmakers had an estimated standard incidence ratio (SIR) of 11.9 after exposure to 12 

μg/m3 chromates (Wesseling et al., 2002). Importantly, this was the second highest reported 

SIR in this study; second to aliphatic/alicyclic hydrocarbon solvents at 20 ppm (SIR = 28), 

but still 10-fold higher than the next risk (1.5 mg/m3 of oil mist, SIR 1.80).

Contrary to these reports, eight studies reported a lack of brain cancer risk with occupational 

Cr(VI) exposure, including two meta-analyses (Cole and Rodu, 2005; Deng et al., 2019). 

Marsh et al. (2013) evaluated risk of glioblastoma in jet engine manufacturers by a dual 

design to consider risk from a case-control study and an incidence cohort study from 8 

plants in Connecticut, and considered 12 separate components of jet engine fuel, including 

Cr. They reported 304 cases of workers exposed to a mean of 0.2 μg/m3 Cr within their 

case-control study, and 113,439 exposed to 0.24 μg/m3 Cr within the incidence cohort 

study. However, their univariate exposure-risk analyses showed no significant risk for Cr in 

either study design. In a case-control study from the Canadian National Enhanced Cancer 

Surveillance System, Pan et al. (2005) evaluated the impact of occupational exposures on 

brain cancer risk. The analysis considered occupational exposure to Cr salts, but found no 

significance regardless of occupation duration or gender. In a population-based case-control 

study spanning seven countries (primarily Germany and United Kingdom), Parent et al. 

(2017) assessed occupational exposure to welding fumes and risk of developing glioma. 

They reported 178 (9.9%) cases and 359 (7.0%) controls were exposed to Cr, with an odds 

ratio of 0.9 (95% CI, 0.7–1.1), but no significant effect between any metal and glioma 

risk. Feingold et al. (1991) investigated the link between childhood cancers (age 0–14) and 

the parents’ job-exposure matrix during the year prior to the child’s birth. Their results 

showed no significant association between either parent’s exposure to Cr compounds and 

child brain cancer, but the authors noted a suggestive dose-response gradient for children 

with Cr-exposed fathers. Two other studies considered brain cancer risk in jobs known to 

have significant risk of Cr(VI) exposure. Moulin et al., 1990 considered a cohort of French 

workers producing ferroalloys and stainless steel, and reported a nonsignificant SMR of 

3.36 for CNS tumors (3 CNS tumors observed in 2,269 workers). Danielsen et al. (1996) 

investigated cancer incidence among Norwegian boiler welders, observed 10 instances of 

brain cancers in 2,957 welders (SIR = 102; 49–188). Importantly, brain cancers are a 

common phenotype in metastatic lung cancers (Schuette, 2004). Two studies emphasize this 

issue, finding 20–30% of non-small cell lung cancer patients developed metastatic brain 

cancers and both the Kentucky Cancer Registry and the Alberta Cancer Registry reported 

the highest incidence of brain metastasis from lung cancers (Porta et al., 2011; Villano 

et al., 2015). Hence it may be the few studies that observed a significant link between 

Cr(VI) exposure and brain cancer incidence were actually observing metastatic lung cancers, 

especially considering the vast majority of Cr(VI)-induce lung cancers are squamous cell 

carcinomas occurring at lung bifurcation sites (Proctor et al., 2014; Speer and Wise, Sr., 

2018).

4.2 Metal-on-Metal Hip Replacements and Co-Cr Metallosis

The systemic effects of Co-Cr metallosis after failed metal-on-metal (MoM) arthroplasty 

is thoroughly reviewed elsewhere, and discusses several neurological effects observed 

including: peripheral neuropathy, sensori-neural hearing loss, visual impairment, and 
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cognitive decline (Bradberry et al., 2014). Importantly, ~12.5% of MoM replacements 

require revision surgery within ten years, mostly due to wearing down. With at least 500,000 

people receiving MoM hip implants in the U.S. alone (as of 2012), at least 62,000 people 

will be faced with a MoM hip replacement failure (Rising et al., 2012). This presents a 

unique exposure route for Co and Cr, where the worn down metal particles can embed 

into neighboring tissue and slowly leach these metals into the blood. Further, most of these 

exposures will occur in elderly individuals, who may by differentially susceptible to metal 

toxicity due to natural aging or co-morbidities. When a patient presents with a variety of 

symptoms following MoM revision surgery, blood Co and Cr levels are routinely measured, 

providing a universal reference for comparison across studies. To discuss a few examples; 

several studies have reported neurological problems in patients exhibiting Cr and cobalt 

metallosis from 2, 4, or 8 years living with a failed MoM hip replacement (Ikeda et al., 

2010; Clark et al., 2014; Green et al. 2017). One report was a case study of a 56-year-old 

woman exhibiting polyneuropathy two years after a failed MoM hip replacement (Ikeda et 

al., 2010). This patient exhibited a variety of neurological symptoms including progressive 

and painful dysesthesia in all extremities, impaired joint sensation, numbness and tingling 

in distal limbs, auditory disturbance, and was found to have moderate axonal degeneration 

without inflammation in a sural nerve biopsy. Blood Cr and cobalt levels were reported to 

be 221 and >400 μg/L, respectively. Two years after replacement surgery the blood metal 

levels were reduced and the neurological symptoms largely resolved. Green et al. (2017) 

reported 6 women and 4 men exhibiting neurological deficits following an average of 4 

years with a MoM hip replacement failure. Mean blood Cr and cobalt levels were 338 

and 669 nmol/L, respectively. Neurological symptoms included depressed mood, short-term 

memory deficit, location disorientation, difficulty concentrating, and neurocognitive deficit 

in 7 of the 10 patients. Finally, Clark et al. (2014) reported altered brain structure and 

function after 8 years of MoM hip replacement failure in 25 men (age 59 ±7) with 1.42 

and 1.72 μg/L blood Cr and cobalt, respectively. This study reported benign essential tremor 

as well as decreased gray matter in the occipital cortex, putamen, and left head of the 

caudate nucleus. Importantly, Co toxicity can elicit many of the symptoms observed with 

MoM failed hip replacements, including: cardiomyopathy, hypothyroidism, polycythemia, 

cognitive dysfunction, neuropathy, and fatigue (Peters et al., 2017). Neurological symptoms 

observed in patients with failed MoM hip replacements also include essential tremor, 

peripheral neuropathy, auditory loss, and visual loss not typically observed with Co toxicity 

alone, and thus may be elicited by Cr neurotoxicity or the interaction of Co and Cr 

neurotoxicity.

4.3 Cr(VI) and Autism Spectrum Disorder

Heavy metal dyshomeostasis is a new perspective thought to contribute to autism spectrum 

disorders (ASD), as evidenced by multiple studies reporting differential metals levels in 

ASD children (Jory and McGinnis, 2008; Yasuda et al., 2005; Adams et al., 2006; Yorbik 

et al., 2010; Skalny et al., 2017a,b). Most of these studies assessed multiple metals in 

blood, hair, or serum, and frequently reported a significant association between Cr and 

ASD A Canadian study of 10 children diagnosed with autism and 15 age-matched control 

children found elevated Cr levels in red blood cells of autistic children (25.68 ±12.10 

vs 21.15 ±13.31 nmol/L, respectively) (Jory and McGinnis, 2008). Six studies analyzed 
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hair metals in association with ASD; five reported significantly lower Cr levels in ASD 

children, while one reported elevated levels (Yasuda et al., 2005; Adams et al., 2006; 

Al-Farsi et al., 2013; Skalny et al., 2017a; Tinkov et al., 2019; Al-Ayahdi, 2005). One 

study considered subgroups of autism with or without presence of pica, and reported Cr 

as the most statistically significant of 39 toxic metals assessed and concluded Cr was the 

most likely factor in etiology of autism with pica (Adams et al., 2006). Another considered 

ASD subgroups with or without catatonia; they observed elevated hair and serum Cr levels 

in ASD with catatonia (Tinkov et al., 2019). Their results observed the most significant 

associations between metal level and ASD with catatonia for Cu, Cr, and V. A Spanish 

study considered childhood Cr exposure (hair and urine Cr levels) and neuropsychological 

development for 393 children (171 males, 222 females, mean age 7.8) living in Cr-polluted 

areas of southern Spain (Caparros-Gonzalez et al., 2019). They concluded even low Cr 

levels can affect child attention development, and observed high Cr levels linked to poorer 

performance on neuropsychological tests. Similarly, an earlier study investigated urine levels 

of heavy metals including Cr, cadmium, and lead in children with autism (30 cases) and 

healthy children (20 controls). Urine cadmium and lead levels were significantly lower, 

but urine Cr levels were significantly higher in children with autism than healthy children, 

suggesting the potential risk of Cr exposure for the children to develop autism (Yorbik et 

al., 2010). In fact, a population-based case-control study from Pennsylvania identified an 

association between autism spectrum disorders and in utero exposure to elevated ambient 

Cr(VI) levels, as measured by the National Air Toxics Assessment (Talbott et al., 2015). In 

sum, there is provocative evidence that Cr plays a role in the etiology of ASD and further 

investigation is warranted.

4.4 Cr(VI) and Other Neurological Endpoints

The neurotoxicity of Cr(VI) to humans has been considered in a handful of other 

contexts. Two studies have shown chromate workers in Japan and Korea exhibited olfactory 

dysfunction correlated to employment duration (Watanabe and Fukuchi, 1981; Kitamura et 

al., 2003). Importantly, the two studies observed the olfactory impairment was unrelated 

to septal perforation. Sánchez-Díaz et al. (2018) conducted a geographical analysis of 

heavy metal pollution in rivers of Spain and 9,434 cases of motor neuron disease deaths. 

They reported increased risk for motor neuron disease with seven heavy metals; of these 

metals, Cr was reported to have a 15.7% increased risk and linked to 2,068 deaths (21.9% 

of total deaths). A recent meta-analysis demonstrated a link between higher blood Cr 

in patients with acute or newly diagnosed schizophrenia, but was not linked to patients 

with chronic or previously treated schizophrenia (Saghazadeh et al., 2019). Their results 

suggest increased Cr levels during early stages of schizophrenia development may cause or 

aggravate abnormalities of serotonin, contributing to disease burden. One study considered 

airborne metal emissions and adjudication of youth for felonies, reporting a statistically 

significant association for five metals considered, with the exception of Cr (Haynes et al., 

2011).

4.5 Regulations Lacking Considerations for Cr(VI) Neurotoxicity

Neurotoxic effects are not considered in any safety regulations for Cr(VI) exposure. In 

fact, the “Toxicological Profile for Chromium” from the Agency for Toxic Substances 
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and Disease Registry (ATSDR), which is considered the gold standard for toxicological 

reference, does not consider most of the literature discussed here and lacks much 

needed information on Cr(VI) neurotoxicology. Safety levels for inhalation exposures are 

determined with data pertaining to pulmonary health effects from epidemiology or animal 

studies. However, the results presented by Hegazy et al. (2021) suggest real-life exposures 

to Cr(VI) pose a significant neurotoxic risk. Here, the authors used intra-nasal instillation 

of potassium dichromate at concentrations that mimicked what an electroplater might 

be exposed to (2.4 mg Cr[VI]/kg/d), exposing rats to 0.125, 0.25 or 0.5 mg/kg/d for 5 

consecutive days and evaluated neurotoxic endpoints after 2 weeks, 1 month, or 2 months of 

this exposure regiment. Their results demonstrated behavioral and neuropathological effects 

that are discussed later. EPA standards for drinking water defines a chronic oral reference 

dose of 0.003 mg Cr(VI)/kg/d, based on a study with rats exposed to 2.5 mg Cr(VI)/kg/d 

in drinking water for 1 year (ATSDR, 2012; MacKenzie et al., 1958). This study did not 

consider behavior or neurological effects, and there are currently no studies focused on 

Cr(VI) neurotoxicity at or below 2.5 mg/kg/d for comparison. Finally, two recent review 

articles reporting on Cr(VI) regulations and health effects failed to mention neurotoxicology 

as a potential health effect after Cr(VI) exposure (Vaiopoulou and Gikas., 2020; Alvarez et 

al., 2021). Hence, there is much needed consideration for neurotoxicology in our national 

and international discussion about Cr(VI) toxicology.

4.6 Summary of Cr(VI) Neurotoxicity Observed in Humans

In sum, these papers demonstrate the need for deeper understanding of Cr(VI) impacts 

on brain health, development, and neurobehavior (Table 2). Given Cr(VI)’s known roles 

in carcinogenesis, it is not surprising brain cancer has been considered most often as 

an endpoint in these human studies. While most of the evidence suggests a lack of 

association with cancers, some indeed raise the possibility that Cr(VI) may contribute 

to carcinogenesis in the brain by mechanisms yet to be explored. Two separate groups 

reported loss of olfaction in chromate workers. This may be an early warning sign for other 

neurological problems, as hyposmia is a prodromal symptom of Alzheimer’s disease and 

Parkinson’s disease. Results from the failed MoM hip replacements were unique in that 

the Cr(VI) exposure was internal and was in elderly individuals. We do not yet understand 

the interactions between aging and metals toxicology, but this collection of papers may 

provide us with a unique glimpse of what to expect for Cr(VI): social memory loss, 

spatial disorientation, depression, polyneuropathy, and loss of regional brain mass. While 

these neurological symptoms were recognizable in a clinical setting following surgery, such 

symptoms could be easily missed in someone environmentally or occupationally exposed 

to Cr(VI). The handful of other neurological conditions linked to Cr(VI) exposures further 

reflect our poor understanding of its neurotoxicity; autism spectrum disorder, schizophrenia 

and motor neuron disease are all distinct neurological conditions with different etiologies.

5. Experimental Studies and Potential Mechanisms for Cr(VI) Neurotoxicity

5.1 Animal Models Used for Studying Cr(VI) Neurotoxicity

The neurotoxicity of Cr(VI) has been tested in nine distinct species to date (rat, mouse, 

rabbit, guinea pig, chicken, zebrafish, rockfish, Japanese quail, and C. elegans), primarily 
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with sodium chromate (Na2CrO4) or potassium dichromate (K2Cr2O7) administered 

intraperitoneally or in drinking water. Toxic endpoints are often inconsistent across studies, 

making comparisons between most studies difficult. The most common endpoints include 

brain Cr accumulation, oxidative damage (most often assessed by malondialdehyde), 

and effects on acetylcholinesterase. A few studies considered other endpoints including: 

behavioral changes, histopathology, neuroinflammation, and brain element homeostasis. The 

experimental details for animal models reported for Cr(VI) neurotoxicity are summarized in 

Table 3.

5.1.1 Cr brain levels in animal models—Only one study has conducted a thorough 

assessment for regional distribution of normal brain Cr levels in an animal model; Wasim 

et al. (2014) reported Cr levels in cerebellum, cerebrum, medulla oblongata, meninges, 

midbrain, pons, and thalamus from five healthy goats. They reported a whole brain average 

Cr level of 0.54 μg/g and regional levels ranged from 0.10 to 1.20 μg/g, with the highest 

level observed in the meninges and the lowest in the pons. In addition, Zhu et al. (2018) 

reported brain Cr levels in chickens from a control group in their investigation of Se-Cr 

interactions. Groups of five chickens were euthanized after 14, 28, and 42 days in the study 

exhibited brain Cr levels of 0.0015 ± 0.0004, 0.0026 ± 0.0003, and 0.0036 ± 0.0004 μg/g, 

respectively. Intriguingly, their observations suggest Cr bioaccumulation in the chicken brain 

with age, similar to what was observed in humans.

Eight Cr(VI) neurotoxicity studies have considered brain Cr accumulation in their reports 

(Nota Bene: two studies used a trivalent nanoparticle form, Cr [NO3]3, but were included 

in this review because the focus was on neurotoxicity and not neuropharmacology). These 

studies included doses ranging from 2–73.05 mg/kg with Cr administered either via intra-

peritoneal (i.p.) injection or drinking water and resulted in brain Cr levels ranging from 

0.06 μg/g in the hypothalamus to 5.4 μg/g in whole brain. Generally, i.p. injection of Cr(VI) 

resulted in higher accumulation in the brain than exposure through drinking water. One 

study compared i.p. injection to intra-nasal administration, observing similar proportions of 

Cr deposition relative to administered dose (Salama et al., 2016). Two studies considered 

multiple exposure times in rabbits and mice and reported similar levels regardless of time, 

though much is yet to be learned about Cr deposition in the brain over time (Mathur et al., 

1977; Ueno et al., 2001). Two studies from the same group considered regional differences 

of Cr accumulation in the brains of Wistar rats after administering 100 or 500 ppm Cr(VI) in 

drinking water (Quinteros et al., 2007; Nudler et al., 2009). These reported Cr levels in the 

pituitary and hypothalamus in comparison to liver levels; liver levels were about 100x higher 

than brain levels. Comparing the two studies, they observed a 2.3x higher Cr level in both 

pituitary and hypothalamus after 500 ppm vs 100 ppm Cr(VI) in drinking water. However, 

these reports did not include cortex or brain homogenate Cr levels, so comparison to other 

studies is currently limited. Altogether, these studies demonstrate Cr(VI) can readily enter 

the brain and accumulate with time and prolonged exposure, but there is a severe lack of 

regional analysis to determine where Cr deposits in the brains of laboratory animals.

5.1.2 Cr(VI) and neurobehavior—Behavior is an essential aspect of neurotoxicology 

analyses in animal studies, as it is the most informative way to link neurotoxicology 
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health effects across species. Unfortunately, the Cr(VI) literature is brief regarding behavior 

analyses. Hegazy et al. (2021) used an intra-nasal model to expose rats to 0.125, 0.25, 

or 0.5 mg Cr/kg/d for five days each week, and assessed neurobehavior impacts after 

two weeks, one month, or two months of this exposure regiment. They reported dose- 

and time-dependent effects for: 1) significantly decreased locomotor activity in an activity 

cage, 2) significantly impaired learning and memory with an object recognition test, and 

3) impaired motor coordination. Singh and Chowdhuri (2017) reported dose-dependent 

decreased climbing ability and jumping activity of fruit flies after 48 h Cr(VI) in their 

food, also supporting an effect of Cr(VI) on locomotor function and coordination. Heffern 

et al. (2018) observed no olfactory deficit in zebrafish after 24 hours exposure to potassium 

dichromate, even up to 2,700 μg/L. After a single intranasal doses of Cr(VI) of 0.5, 1.0 

or 2.0 mg/kg, rats exhibited dose-dependent decreased motor activity by 42%, 59%, and 

77%, respectively (Salama et al., 2016). One possible cause of this behavior the authors 

did not consider could be cerebellar toxicity, which was one of the highest Cr-laden 

regions in human brains; if the rats were uncoordinated they would likely move less. 

Estrela et al. (2017) observed short-term social memory deficits in female mice exposed 

to tannery effluent. Here, the authors used tannery effluent provided by an industry in 

Goiás State, Brazil and reported an effluent Cr level of 859 mg/L (at least 150x higher 

than other metals). This unique model exposed mice to 500 mL tannery waste for 2 hours 

per day for 20 consecutive days. In order to test social recognition, an “intruder” mouse 

was introduced to a resident mouse’s cage for 3 minutes, removed for 15 minutes, then 

re-introduced for 3 minutes again, with all encounters being recorded. A buried food test 

was also employed to test olfactory function. The tannery effluent-exposed mice exhibited 

no difference in the buried food test, but spent less time exploring the anogenital region 

and longer time displaying aggressive behavior toward an “intruder” mouse on the second 

encounter. Thus, the olfactory function was intact but their ability to recognize mice they 

recently encountered was impaired, and the authors concluded that direct contact with 

tannery effluent may cause short-term social memory deficit. While challenging to do, social 

memory would be an interesting parameter to test in humans employed at tanneries or other 

occupations with high Cr(VI) exposure (Takahashi et al., 2004). Intriguingly, these few 

behavior studies reflect some of the neurological effects observed in humans; e.g. social 

memory loss in patients with failed MoM hip replacements.

5.1.3 Cr(VI) brain oxidative stress, damage, and redox changes—Upon 

entering a cell, Cr(VI) is rapidly reduced to Cr(III) by ascorbate and biological thiols (e.g. 

glutathione). Along with ephemeral Cr(IV) and (V) species, the reduction also produces 

ROS such as superoxide anions, hydroxyl radicals and nitric oxide (Bagchi et al., 2001). 

The role of oxidative stress in neurodegenerative diseases has been thoroughly examined 

and is amply discussed in other reviews (see Niedzielska et al., 2015; Uttara et al., 2009; 

Chen et al., 2012). Most Cr(VI) neurotoxicity studies in rodents have measured redox 

changes, considering both enzymatic [superoxide dismutase (SOD), catalase (CAT)] and 

non-enzymatic [glutathione (GSH), ascorbate] antioxidants, and measuring malondialdehyde 

(MDA) levels for oxidative damage, providing a useful panel of biomarkers for comparing 

toxicity across studies. For a summary of redox data from Cr(VI) neurotoxicity in animal 
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models literature (Table 4); to simplify comparisons we adjusted the data as percentage of 

control based on reported data.

Only a few papers have sought to quantify ROS associated with Cr(VI) neurotoxicity by 

various methods. Singh and Chowdhuri (2018) measured ROS using the fluorescent probe 

DHE and reported 1.7-fold increased fluorescence in brain ganglia of Drosophila after 

receiving dietary Cr(VI) for 48 h. Travacio et al. (2000) measured brain ROS with the 

DCFH-dAc reporter and observed 47% increased fluorescence in Swiss mice given 25 

mg/kg Cr(VI) in drinking water for 3 days. Mahmoud and El-Twab (2017) reported 1.8-fold 

increased nitric oxide in rat cortex following 2 mg/kg Cr(VI) i.p. exposure for 30 days. 

The effects of ROS toxicity in the brain are widespread in neuropathologies, and thought to 

contribute to protein aggregations, mitochondrial dysfunction, autophagic dysfunction, and 

neurodegeneration (Tabner et al., 2005; Federico et al., 2012; Dasuri et al., 2013; Singh et 

al., 2019; Michalska and León, 2020).

Most studies demonstrate decreased non-enzymatic antioxidant levels after Cr(VI) 

intoxication, primarily considering GSH (Table 4). The relative decreased GSH levels 

observed across these studies were 15–95% decreased after Cr(VI) exposure. Yet, two 

papers observed GSH significantly increased following Cr(VI) exposure. One study 

observed increased GSH in rat cortex (52%) and cerebellum (15%) after Cr(VI) exposure 

in drinking water (Soudani et al., 2012). While the other instance of Cr(VI)-induced GSH 

increase (1.33x) occurred in a zebrafish model (Shaw et al., 2020). Another paper reported 

no effect on rat brain GSH levels after orally administered Cr(VI) (Sarica et al., 2019). 

Hegazy et al. (2021) observed a dose- and time-dependent decrease in GSH following 

intra-nasal instillation of potassium dichromate.

The reported effects of Cr(VI) on activity of enzymatic antioxidants [SOD, CAT, and 

glutathione peroxidase or reductase (GPx or GR)] are much more varied. Three papers 

reported no effect of Cr(VI) on brain SOD activity in rats and chickens (García-Niño et al., 

2015; Iztleuov et al., 2018; Hao et al., 2017) and one paper reported ~50% decreased SOD 

activity in rats (Mahmoud and El-Twab, 2017). Fatima et al. (2017) conducted the most 

thorough analysis published to date for SOD activity after Cr(III) nanoparticle exposure 

in rats for 24 hours, 7 days, or 14 days. After 24 hours, they observed no effect in their 

low dose (0.5 mg/kg) and ~1.8-fold increased SOD activity in their high dose (2.0 mg/kg), 

but observed decreased levels at both doses in longer exposures (7–14 days). Two other 

rodent studies reported elevated SOD activity after Cr(VI) intoxication for 3 or 30 days 

(Travacio et al., 2000; Nudler et al., 2009). Seven studies considered Cr(VI) effects on CAT 

activity, with varying effects observed. Two studies in rats showed no effect after 30 days 

exposure in drinking water or i.p. 24 hours (Nudler et al, 2009; García-Niño et al., 2015). 

Salama et al. (2016) reported decreased CAT activity after 24 hours intranasal exposure to 

1 or 2 mg/kg potassium dichromate, with a greater effect observed after 1 mg/kg (72% and 

30% decreased, respectively). Similarly, rats given Cr(VI) for 24 hours via i.p. exhibited 

a 33% decreased CAT activity (Itzleuov et al., 2018). Conversely, two studies reported 

increased CAT activity after Cr(VI) exposure. Travacio et al. (2000) reported 74% increased 

CAT activity in mice given Cr(VI) in drinking water for 3 days. In a study with zebrafish 

exposed to Cr(VI) for up to 60 days there was a time-dependent increase of CAT activity 

Wise et al. Page 13

Environ Int. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Shaw et al., 2020). Here, the authors observed an initial non-significant decrease of CAT 

activity after 7 days, then a significant increase after 15, 30 or 60 days (1.58x, 2.58x, 2.35x 

increase, respectively). Six studies considered Cr(VI) effects on the glutathione peroxidase 

(GPx) or glutathione reductase (GR) activity, predominantly reporting decreased activity for 

each. The largest effects observed were a 55% decrease in GR activity in mice exposed 

to 25 mg/kg orally for 6 weeks and a 40% decrease in GPx in rats given i.p. 2 mg/kg 

Cr(VI) for 30 days (Abu Zeid et al., 2018; Mahmoud and El-Twab, 2017). Only one study 

reported an increase in either; Nudler et al. (2009) reported 2-fold increased GR activity in 

hypothalamus of rats receiving 100 ppm Cr(VI) for 30 days.

Thus far, every study that has considered brain MDA levels after Cr(VI) exposure has 

reported elevated levels following exposure (Table 4). MDA is an end product of lipid 

peroxidation and often elevated in peripheral blood of patients with neurodegenerative 

diseases (Dib et al., 2002; Greilberger et al., 2008; Ozcankaya and Delibas, 2002). 

Importantly, MDA can have detrimental effects on neuronal mitochondrial respiration, 

targeting mitochondrial complexes I, II, and V and promote formation of ROS (Long et 

al., 2009). The highest reported Cr(VI)-induced MDA levels in a vertebrate model were 

from Hegazy et al. (2021). Using a rat model exposed to 0.5 mg Cr/kg/d, 5 d/week 

for two months, they observed a dose- and time-dependent increase in rat brain MDA 

levels that peaked at two months with 127.24 nmol MDA/g tissue (8.21x increased MDA). 

Concomitantly, 14 days also exhibited the greatest reduction in GSH levels, which were 

decreased by ~59%. Based on the reported data, MDA currently serves as the best biomarker 

to compare Cr(VI)-induced oxidative damage in rodent brain tissues and is consistently 

elevated upon exposure. Whereas antioxidant responses to Cr(VI) intoxication are variable 

across studies, possibly due to the sensitivity of redox balance or gender and age differences 

in brain ascorbic acid levels (Kume-Kick and Rice, 1998).

5.1.3 Cr(VI) Neuropathology—Nine papers reported histopathological assessments in 

their Cr(VI) neurotoxicity studies; only one reported a lack of histopathological effects 

in rats (García-Niño et al., 2015). Soudani et al. (2012) were the only to report tumor 

formation, an oligodendroglioma in a female rat. Widespread neurodegeneration was 

observed in multiple studies across multiple species, with notable toxicity to Purkinje 

cells of the cerebellum (Soudani et al., 2012; Fahmy, 2017; Hao et al., 2017). Hegazy 

et al. (2021) observed a dose- and time-dependent significant decrease in the number of 

viable neurons in cortical gray matter, with increased reactive astrogliosis. The authors 

noted GFAP+ astrocytes were significantly increased in number and characterized by 

cellular hypertrophy. Gliosis and satellitosis were also frequently observed. However, these 

effects were most likely responses to neurodegenerative effects and not due to direct Cr(VI)-

induced activation, as these were typically observed at the highest doses and durations 

tested and were often associated with neurodegeneration. Other neurodegenerative changes 

including hemorrhage, neuronal vacuolation, edema, and neuronophagia were reported after 

Cr(VI) intoxication (Mathur et al., 1977; Soudani et al., 2012; Salama et al., 2016; Fahmy, 

2017; Fatima et al., 2017; Hao et al., 2017; Abu Zeid et al., 2018; Shaw et al., 2020). 

Currently it appears Cr(VI) has a widespread neurotoxic effect with no clear evidence of 
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regional or phenotypic specificity, but more detailed studies are needed to evaluate this 

further.

5.1.4 Other Endpoints Considered for Cr(VI) Neurotoxicity—A few other points 

are worth discussing from the available Cr(VI) animal neurotoxicity studies: effects on 

inflammation, acetylcholinesterase, and trace element homeostasis.

Three papers measured neuroinflammation and found elevated pro-inflammatory cytokines 

following Cr(VI) exposure in rats (Salama et al., 2016; Mahmoud and El-Twab, 2017; 

Hegazy et al., 2021). Salama et al. (2016) reported a dose-response increase in brain IL-1β 
and phospho-PKB after 0.5, 1.0, or 2.0 mg/kg Cr(VI) exposure, but they attributed the ~4x 

increased levels for both cytokines to widespread necrosis that was evident at the highest 

Cr(VI) concentration. Mahmoud and El-Twab (2017) reported ~3- and ~4.7-fold increased 

TNF-α and IL-6 following daily 2 mg/kg i.p. injection of Cr(VI) for 30 days. Hegazy et 

al. (2021) observed dose- and time-dependent increases in IL-1β, PI3K, and PKB following 

intra-nasal instillation of potassium dichromate.

Four studies considered Cr(VI) effects on brain acetylcholinesterase, a key enzyme for 

clearing the neurotransmitter acetylcholine from synapses. Importantly, alterations to the 

cholinergic system have been observed in Alzheimer’s disease and disrupted REM sleep, 

an early non-motor symptom of Parkinson’s disease (Francis et al., 1999; Platt and Riedel, 

2011). In all cases, studies showed Cr(VI) decreased acetylcholinesterase activity by at least 

40% (Soudani et al., 2012; Kim and Kang, 2016; Mahmoud and El-Twab, 2017; Abu Zeid et 

al., 2018).

Several studies considered changes in expression of stress response genes. Shaw et al. 

(2020) observed upregulation of stress response genes Nrf2, Nqo1, HO-1, and Ucp2 as 

well as apoptotic genes p53, Bax, Caspase-9, and Caspase-3 after 60 days Cr(VI) exposure 

in zebrafish. Nudler et al. (2009) reported elevated levels of metallothionein isoform 3 

(MT3) in hypothalamus, of metallothionein isoform 1 (MT1) in anterior pituitary gland, 

and HO-1 in both regions of rats after 30 days exposure to 100 ppm Cr(VI) in drinking 

water. Importantly, they observed no effect on these genes in the liver, suggesting the brain 

is more vulnerable than the liver to Cr(VI) in drinking water. Mahmoud and El-Twab (2017) 

observed elevated levels of JAK-STAT genes JAK1 and STAT3, along with elevated SOCS3 
in cerebrum of rats after 30 days daily i.p. 2 mg/kg Cr(VI). They suggested the SOCS3 
elevation was in response to the JAK-STAT induction, and these effects were associated 

with the ongoing neuroinflammation. Abu-Zeid et al. (2018) also observed chronic Cr(VI)-

induced elevated p51, Bax, and Caspase-3 in rats.

As a measure of Cr(VI)-induced DNA damage, Abu-Zeid et al. (2018) observed 

approximately 2-fold increased 8-hydroxy-2′-deoxyguanosine (8-Oxo-dG) in brain 

homogenates of rats exposed to Cr(VI) orally for 6 weeks.

Zhu et al. (2018) assessed trace element homeostasis in chickens following 14, 28, or 42 

days of potassium dichromate exposure. Their results showed levels of calcium, copper, 
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zinc, and magnesium increased following Cr(VI) exposure, while manganese and iron levels 

decreased with Cr(VI) exposure doses and time.

Singh and Chowdhuri (2017) utilized reporter strains of fruit flies to assess Cr(VI)-induced 

toxicity across neuronal subtypes (cholinergic or dopaminergic) and in glial cells of brain 

ganglia. They showed a dose- and time-dependent decrease in fluorescence intensity for 

flies with a pan-neuronal marker (ELAV-GAL4), but no change in fluorescence intensity 

for flies with a glial cell marker (Repo-GAL4). Fly strains with cholinergic neurons labeled 

(ChAT-GAL3) exhibited a dose- and time-dependent decrease in fluorescence intensity, 

while dopaminergic neurons (Ddc-GAL4) only exhibited a decrease in neuron count at the 

highest and longest Cr(VI) exposure studied. These observations were supported by their 

Annexin V staining, demonstrating significantly elevated apoptosis in their highest dose (20 

μg/mL) and longest duration (48 h).

5.1.5 Summary of Neurotoxicity Observed in Animal Models—It is clear from 

these in vivo studies that Cr(VI) can accumulate in the brain and induce histological and 

biochemical damage. Impaired locomotor and memory functions were observed in multiple 

studies following Cr(VI) exposure. Oxidative damage, AChE levels, and neurodegeneration 

have been most often considered for Cr(VI) neurotoxic endpoints. Some studies have 

shown elevated pro-inflammatory cytokines in response to Cr(VI). Much work remains to 

determine what regions or cell types are most vulnerable, and what neurobehavioral deficits 

might arise.

5.2 Cell culture work

Three different groups have reported Cr(VI) neurotoxicity studies in cell culture, using 

concentrations ranging from 0.1–100 μM Cr(VI) for up to 72 h; the experimental details 

are summarized in Table 5. Quinteros et al. (2007, 2008) observed different sensitivities 

to Cr(VI) for different neuronal subtypes (lactotrophs and gonadotrophs) within the 

anterior pituitary. Using primary rat neuronal cultures, they demonstrated Cr(VI) induced 

ROS- and caspase-3-mediated apoptosis more severely in lactotrophs than gonadotrophs. 

Dashti et al. (2014) exposed mouse primary cerebellar granule cells (CGCs) at various 

stages of neuronal maturation, and identified immature CGCs were significantly more 

sensitive than cells undergoing maturation or fully matured. Subsequently, this same group 

observed elevated ROS production (DCFH-DA) and lipid peroxidation (MDA) in PC12 

cells exposed to potassium dichromate for 24, 48, or 72 hours and reported IC50 values 

of 22.02, 1.88, and 1.85 μM, respectively. Altogether, these studies agree Cr(VI) induces 

ROS-mediated apoptosis in a concentration-dependent manner, but the impact of exposure 

duration was inconsistent. These studies assert the need for further in vivo investigation 

into Cr(VI) neurotoxicology to assess sensitivities to neuronal subtypes and toxicity 

across neurodevelopment. Already we can see a difference in Cr(VI) sensitivity between 

lactotrophs and gonadotrophs in the hypothalamus and different effects depending on neuron 

maturity (Quinteros et al. 2007, 2008).
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5.3 Potential prevention and interventional studies

Several studies have considered antioxidant co-administration to alleviate Cr(VI) 

neurotoxicity. Selenium has a well-established role for quenching ROS in the brain (see 

review by Solovyev, 2015), and has been considered in three separate Cr(VI) neurotoxicity 

studies using rat, chicken, and guinea pig models (Soudani et al., 2012; Hao et al., 2017; 

Fahmy, 2017). In all three studies selenium co-treatment reduced neuronal loss, and in 

the rat study appeared to alleviate Cr(VI)-induced oxidative damage and pathology. The 

guinea pig study also observed an increase in the astrocyte number following Cr(VI), which 

was decreased by co-administration of selenium and interpreted as decreased astrocyte 

activation (Fahmy, 2017). These observations suggest selenium prevents ROS-mediated 

neurodegeneration, alleviating subsequent astrocyte activation. More recently, boron has 

received similar consideration as an antioxidant supplement (see review by Pizzorno, 2015). 

When co-treated with Cr(VI), two studies in rats showed boron attenuated Cr(VI)-induced 

oxidative damage and endogenous antioxidant depletion (Sarica et al., 2019; Iztleuov et 

al., 2018). Ascorbic acid is widely known for attenuating Cr(VI) toxicity and is well 

documented in the rodent brain, so it is surprising only one study has considered the effects 

of ascorbic acid on Cr(VI) neurotoxicity (Standeven et al., 1992; Wise et al., 1993; Xie et al., 

2004; Kume-Kick and Rice, 1998). Abu Zeid et al. (2018) conducted a rat study involving 

groups given ascorbic acid for six weeks as either co-treatment (120 mg/kg ascorbate and 25 

mg/kg potassium chromate co-administered) or pre- and co-treatment (ascorbate treatment 

started 2 weeks prior to chromate, and continued for all six weeks). The groups receiving 

ascorbic acid were found to have: (1) reduced oxidative damage, measured by levels of 

MDA, protein carbonylation, and 8-oxo-2’-deoxyguanosine, (2) reduced apoptotic markers 

p-53, Bax and caspase-3, (3) restored endogenous antioxidant enzymes and AChE levels, 

and (4) alleviated pathological effects (e.g. neuronal vacuolation). Other phytochemicals 

have been considered for alleviating Cr(VI) neurotoxicity, including caffeic acid phenethyl 

ester, rosmarinic acid, and curcumin (Mahmoud and El-Twab, 2017; Dashti et al., 2014; 

García-Niño et al., 2015). In each case, the antioxidant was shown to attenuate Cr(VI) 

toxicity, but whether this effect was from simply preventing Cr(VI) uptake was not 

determined in these studies. Singh and Chowdhuri (2018) considered a genetic approach 

to alleviate Cr(VI) neurotoxicity using a Drosophila model and modulating expression 

of the oxidative stress response gene sestrin. The authors found sestrin overexpression 

protected neurons from Cr(VI)-induced death by upregulating autophagy and reducing ROS 

levels, whereas sestrin knockdown increased neuronal vulnerability to Cr(VI). These studies 

demonstrate a possible pharmacological intervention for individuals exposed to Cr(VI), such 

as patients with failed MoM hip replacements; especially since most of these supplements 

are already commercially available.

6. Current Limitations and New Insights into Cr(VI) Neurotoxicology

Collectively, from human, animal, and cell culture studies it is clear that Cr(VI) is a sinister 

neurotoxicant that can affect behavior and health in subtle ways. These observations are 

generally summed up in Figure 2. While Cr(VI) is a known human carcinogen and poses a 

significant occupational health hazard, there is little evidence that Cr(VI) has a significant 
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contribution to brain cancer, as two meta-analyses of the current literature failed to find an 

association (Cole and Rodu, 2005; Deng et al., 2019).

There is growing evidence suggesting Cr(VI) can have a variety of effects on neurobehavior. 

Various studies in human populations exposed to Cr(VI) exhibited social memory loss, 

depression, polyneuropathy, olfactory dysfunction, and neuropsychological impairments. 

These effects are particularly alarming for children and elderly individuals, who seem to 

be more susceptible to Cr(VI) behavioral effects. Importantly, it seems that neurons are 

more susceptible to Cr(VI) toxicity during neurodevelopment, as demonstrated in the child 

neurodevelopment study in Spain, the in utero exposure assessment for autism spectrum 

disorder, and the study using primary cerebellar granule cells (Caparros-Gonzalez et al., 

2019; Dashti et al., 2014; Talbott et al., 2015). However, there is little to no neurotoxicology 

data investigating how age affects neurotoxic outcome of Cr(VI). Perhaps in children this 

vulnerability is due to the mitotic activity of a developing brain, as Cr(VI) is a well-defined 

clastogen. Whereas geriatric vulnerability may be due to clastogenic toxicity combined 

with life-long accumulation of neurodegenerative endpoints (e.g. protein aggregation, 

DNA damage accumulation, persistent neuroinflammation, weaker BBB). Data considering 

Cr(VI) exposure and neurologic morbidity in children and geriatrics would greatly help the 

Cr(VI) neurotoxicology field define the scope of Cr(VI) neurotoxic potential.

From the collection of animal studies available, it is clear that Cr(VI) is more neurotoxic 

via inhalation than i.p. injection or drinking water. Salama et al. (2016) demonstrated this 

with a comparison of i.p. versus intra-nasal administered Cr(VI) for 24 h, showing similar 

neuropathology with a much lower dose administered intra-nasally. However, i.p. injection 

does not adequately reflect a real life exposure, and lacking data for blood Cr in these 

models limits their translatability to occupational or environmental exposure settings. The 

impact of exposure route is also apparent when comparing across studies using similar 

concentrations and durations; for example, intra-nasal 0.5, 1.0 or 2.0 mg Cr/kg induced a 

greater fold increase in MDA than 15 mg Cr/kg i.p. as observed between Salama et al.’s 

study and others (Table 4). As is the case for most metals, Cr(VI) typically exhibited a dose-

response effect for inducing ROS and oxidative damage in the brain. Interestingly, though, 

the duration of Cr(VI) exposure seemed to have little effect (Bagchi et al., 2002; Dashti et 

al., 2014). Perhaps the most limiting factors for understanding Cr(VI) neurotoxicity are: 1) 

the lack of recognizing what brain regions are most vulnerable to Cr(VI), and 2) the lack of 

recognizing which cell types are most vulnerable to Cr(VI).

Cr(VI) is most often encountered with other metals, but such metal mixtures have not been 

thoroughly considered. Two studies have considered the neurotoxicity of Cr in combination 

with other metals. In one study investigating neurotoxicity of welding fumes, rats were given 

an intratracheal dose of: (i) 2 mg/kg manganese nanoparticles in combination with (ii) 2 

mg/kg chromium hydroxide nanoparticles, (iii) 2 mg/kg iron nanoparticles, or (iv) both, 

once a day, five times a week for four weeks (Máté et al., 2017); the design of this study was 

to use doses that replicate typical daily exposures for welders. Electrocorticogram readings 

shifted to higher frequencies and lengthened evoked potential latency following manganese 

nanoparticle exposure. These effects were strongly diminished by iron, but unaffected by Cr 

nanoparticles. In the other study, human neuroblastoma cells (SK-N-SH) were exposed to 
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a combination of arsenic, Cr, and copper leached from chromated copper arsenate-treated 

wood (Hu et al., 2013). Here, the authors noted arsenic neurotoxicity was inhibited by 

Cr(III), suggesting a potential neuro-pharmacological role for the Cr(III).

7. Conclusions and Future Directions for Cr(VI) Neurotoxicity Studies

The neurotoxicity of Cr(VI) has been considered across a wide variety of species, including 

humans, rodents, chicken, fish, birds, and flies. The results largely describe to Cr(VI) 

induction of oxidative stress and oxidative damage, though the implications on long-term 

brain health and neurobehavior is unknown. Pathologic effects of Cr(VI) on the brain are 

likely to be regionally specific due to regional differences in GSH and ascorbic acid levels, 

reducers of Cr(VI) and oxidative damage, and differing vulnerability observed between 

gonadotrophs and lactotrophs in the anterior pituitary.

7.1 Cr(VI) Entry to the Brain

It’s clear that Cr(VI) can induce widespread oxidative damage, but the effects of that 

damage have yet to be fully understood, especially in the brain. This widespread effect may 

indicate Cr(VI) can cross the BBB or, alternatively, target the BBB.

7.2 Cr(VI) and Considerations for Age

We need a better understanding of how Cr(VI) affects neurodevelopment; we can see 

it is more toxic to immature neurons, exposed children may be neurodevelopmentally 

challenged, and exposed pregnant mothers have an increased risk of their child developing 

autism. On the flip side of the age spectrum, little is known how Cr(VI) might affect the 

brain in an aged individual, where Cr might pass the BBB more easily or might have 

bioaccumulated to a hazardous level in the brain. One study measured normal Cr levels, 

without any exposure, in an aging mouse model, observing a non-significant 19.9% decrease 

in Cr content (Massie et al., 1983). This outcome was a similar trend to Cr levels measured 

in CSF from Parkinson’s disease patients, begging the question if Cr has an essential role 

in some brain regions (Bocca et al., 2004; Alimonti et al., 2007). Studies have also shown 

Cr(VI) induces cellular senescence in bronchial fibroblasts, germ cells, and hepatocytes, 

suggesting a potential role as a gerontogen, i.e. a chemical that contributes to or accelerates 

the aging process (Zhang et al., 2016; Sivakumar et al., 2014; Val et al., 2015; Sorrentino et 

al., 2014). Indeed, a case-control study of welders exposed to Cr(VI) found blood Cr levels 

to be the main determinant for elevated levels of senescence biomarkers in blood samples, 

which replicated the observations from their earlier in vitro and in vivo studies (Alexopoulos 

et al., 2008; Katsiki et al., 2004). Hence, we need to understand more about how Cr(VI) 

might affect brain aging and an aged brain, which can inform us more about how exposures 

may contribute to age-related diseases.

7.3 Cr(VI) and Brain Cell Target

Thus far no studies have compared how Cr(VI) affects different types of brain cells, and 

most cell types in the brain have yet to be considered. There are at least 8 major cell types 

in the brain, including neurons, astrocytes, microglia, ependymal cells, pericytes, and brain 

endothelial cells. Most studies have not considered which cell types are responsible for 
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oxidative damage observed in the brain following Cr(VI) exposure, and the implications 

for each cell type are strikingly different. Studies with homologous cell types in other 

tissues show the importance of this distinction. A study from Cao et al. (2020) reported 

Cr(VI) effects on human umbilical vein endothelial cells (HUVECs) and THP-1 cells 

(monocytes) increased expression of ICAM-1 and VCAM-1, and enhanced the adhesion 

of THP-1 cells to HUVECs. These results are useful to inform future Cr(VI) neurotoxicity 

studies investigating effects on brain vascular endothelial cells, and suggest Cr(VI) may 

affect endothelial cells to recruit peripheral monocytes/macrophages, inducing inflammatory 

effects. This study also reported Cr(VI)-induction of NF-κB, cleaved caspase-1, and IL-1β 
in THP-1 cells, which may be translatable to homologous microglial cells in the brain. Given 

the often observed “widespread neurodegeneration” in Cr(VI) animal studies, it would be 

informative to determine Cr(VI) effects on cells of the neurovascular unit and BBB. Results 

from such a study would further aid in identifying other potential neurological endpoints to 

consider in Cr(VI)-exposed human populations.

7.4 Cr(VI) Neurotoxic Mechanism

Thus far no studies have determined a mechanism for Cr(VI) neurotoxicity. Toxic 

effects have been pinpointed, such as lipid peroxidation, induction of apoptosis, altered 

acetylcholinesterase, and changes in neuroinflammatory markers – but no studies have 

pieced together a mechanism for Cr(VI)’s toxic effects in the brain or in any particular 

type of brain cells. Figure 3 summarizes the mechanistic data currently available for Cr(VI) 

neurotoxicology. In other organs and cell types, the mechanisms of Cr(VI) toxicity are 

much better developed and can provide useful insights for future Cr(VI) neurotoxicology 

studies (for reviews, see Holmes et al., 2008, Wise et al., 2008, Saha et al., 2011; DesMarias 

and Costa, 2019). Briefly, Cr(VI) is well characterized to induce ROS in a Fenton-like 

reaction (Shi and Dalal, 1990; Ding and Shi, 2002). Further details into Cr(VI)-mediated 

oxidative damage or damage from its resulting ROS may help inform neurodegenerative 

diseases affected by ROS-driven mechanisms. Cr(VI) is reduced in cells, ultimately to 

Cr(III) with Cr(V) and Cr(VI) produced during the reduction and these species rival ROS 

in mechanisms in other organs, but the role of these species is unknown in the brain. 

Epigenetics play an important role in neurodevelopment and brain organization. Several 

studies in other cell types illustrate Cr(VI) can disrupt methylation status of multiple genes 

in a variety of species and can increase expression of histone methyltransferases, key 

enzymes in modulating methylation status (Sun et al., 2009; Chen et al., 2016; Wang et 

al., 2018; Lv et al., 2018; Feng et al., 2018). Mitochondrial health is critical to neuronal 

health, given their high demand for ATP to maintain their polarized state, and many 

neurodegenerative diseases exhibit impaired mitochondrial dynamics. Recently there has 

been a resurgence of investigations into Cr(VI) and mitochondrial effects in other cell types, 

with many reporting altered expression of mitochondrial proteins, altered calcium signaling, 

and impaired mitochondrial respiration and ATP production (Xiao et al., 2012; Wise et al., 

2018; Zhang et al., 2021; Yang et al., 2021). In sum of this review, it is clear Cr(VI) is 

neurotoxic, but there is much to be discovered.
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Figure 1. Relative distribution of reported Cr deposition in human (A) and rodent (B) brains.
Dark red indicates Cr levels greater than 100 μg/g; red = 10–100 μg/g; pink indicates less 

than 1 μg/g; white areas indicate no data reported. NB: most rodent studies measured whole 

brain Cr, thus there is limited data for regional Cr deposition.
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Figure 2. Summary of key findings from Cr(VI) neurotoxicity literature.
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Figure 3. Schematic of early events in Cr(VI) neurotoxicity.
Cr(VI) enters a cell through phosphate or sulfate channels. In the cytoplasm, it is rapidly 

reduced to Cr(III), which also produces ROS. Oxidative stress and oxidative damage were 

most often reported as decreased GSH and increased MDA, while several studies have 

reported increased mRNA of stress response genes often induced by ROS. Cr(VI) increases 

pro-inflammatory cytokines (e.g. IL-1β, IL-6, TNFα) and decreases AChE levels, though it 

is currently unclear by what mechanism(s). Gray semi-circle represents cell membrane, with 

pink shapes to represent sulphate/phosphate channels.
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