Table 1. Improved DBSCAN clustering algorithm.
Input: D = {D1
(x1, y1), D2
(x2, y2),. . . Dm
(xm, ym)} E, M MaxNum, MinNum, MaxEps, MinEps Output: resultC, MinIDECI, bestEps, bestMinPts |
1. Set D = undefined 2. for Eps in E and Minpts in M do 3. for each p in D do 4. If label(p) ≠ undefined then 5. continue 6. end 7. else 8. Check Eps(p) if Eps(p) < MinPts then 9. The Label (p) = Noise; 10. end 11. else 12. Label(p) = core, new C, Eps(p) join C for q in Eps(p) and Label(q) = undefined do 13. Check Eps(q) if Eps(q) and Label(q) not in any C then 14. Eps(q) join C 15. end 16. end 17. end 18. end 19. end 20. if IEDCI(C) < MinIDECI then 21. MinIDECI = IDECI(C) 22. bestEps = Eps 23. bestMinPts = MinPts 24. resultC = C 25. Eps + = 1,MinPts + = 1 26. end 27. end |