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M A T E R I A L S  S C I E N C E

Machine learning–accelerated design and synthesis 
of polyelemental heterostructures
Carolin B. Wahl1,2†, Muratahan Aykol3†, Jordan H. Swisher2,4†, Joseph H. Montoya3,  
Santosh K. Suram3, Chad A. Mirkin1,2,4*

In materials discovery efforts, synthetic capabilities far outpace the ability to extract meaningful data from them. 
To bridge this gap, machine learning methods are necessary to reduce the search space for identifying desired 
materials. Here, we present a machine learning–driven, closed-loop experimental process to guide the synthesis 
of polyelemental nanomaterials with targeted structural properties. By leveraging data from an eight-
dimensional chemical space (Au-Ag-Cu-Co-Ni-Pd-Sn-Pt) as inputs, a Bayesian optimization algorithm is used to 
suggest previously unidentified nanoparticle compositions that target specific interfacial motifs for synthesis, 
results of which are iteratively shared back with the algorithm. This feedback loop resulted in successful syntheses 
of 18 heterojunction nanomaterials that are too complex to discover by chemical intuition alone, including 
extremely chemically complex biphasic nanoparticles reported to date. Platforms like the one developed here are 
poised to transform materials discovery across a wide swath of applications and industries.

INTRODUCTION
Nanoparticles (NPs) expand the design space of functional materials 
from bulk to surface and interface dominated length scales where 
previously unknown physical and chemical properties emerge (1). 
Efforts to explore this vast space and identify previously unidenti-
fied structures, primarily through size, shape, and composition control 
in an attempt to elucidate structure-function relationships, have 
been ongoing for decades. Using both experimental combinatorial 
approaches (2–4) and computational methods (5–9), new NP 
compositions and structures have been found for applications ranging 
from energy storage and conversion to therapeutics (10–12). Metallic 
NPs, for instance, show particular promise as heterogeneous cata-
lysts for industrially critical reactions, such as oxygen reduction and 
evolution, hydrogen evolution, and CO2 reduction, where complex 
design features at the nanoscale can have profound effects on cata-
lyst performance (1, 13). NP size is a widely studied design axis, as 
changes in surface-to-volume ratios or surface atom coordination 
play a vital role in controlling properties on a per-atom basis, as in 
catalysis of CO2 reduction on Au NPs (14). Beyond size, variation 
of phase morphology is emerging as another axis that can greatly 
expand the design space in nanostructured materials, as complex 
interface motifs between phases can impact properties through 
numerous mechanisms. For instance, catalytic activity can be en-
hanced by inducing lattice strain on the particle surface through a 
deliberately selected core (e.g., faster oxygen reduction on Pt in 
PtPb@Pt core-shell NPs) (15) or controlling the arrangement of 
active sites across an interface (e.g., as in tandem catalysts) (16). Yet, 
despite the potential impact interfaces can have on particle perform
ance or properties, there are few robust and controlled methods for 
deliberately producing these interfaces in nanostructures.

Recent developments in the synthesis of multimetallic NPs have 
greatly expanded their design space (17), with elemental complexities 

reaching 10 elements in a single particle and phase motifs ranging 
from homogenous alloys to core-shell particles and even to hetero-
junction multiphasic particles with up to six unique interfaces coex-
isting in a single particle (18–20). Among the techniques, scanning 
probe block copolymer lithography (SPBCL), wherein a scanning 
probe deposits a miniscule volume of block copolymer and metal 
salts to form a volume-confined nanoreactor, has emerged as a par-
ticularly robust method for the mass synthesis of heterojunction NPs 
(2, 6, 18, 21–24). In SPBCL, the block copolymer serves as a solvent 
to facilitate the aggregation and coarsening of metal precursors into 
single particles, resulting in spatially defined arrays of size and com-
position controlled NPs. Past examples include NPs with as many 
as seven elements and six unique interfaces and libraries of nano-
structures with more than a million positionally encoded discrete 
nanostructures—so-called “megalibraries” (18). This platform, there-
fore, is an excellent means for systematically investigating the prop-
erties of heterojunction NPs.

However, given the vast possible combinations of composition 
and particle size accessible through SPBCL and megalibraries in 
general (e.g., >120 million pentametallic combinations when consider-
ing particles between 10 and 20 nm in 2-nm increments), particu-
larly when generating NP megalibraries in combinatorial synthesis 
(2), experimentation alone is insufficient to realize structures of in-
terest under finite resources and in reasonable time scales. Accurate 
first-principles or atomistic-level modeling of NP properties, par-
ticularly those pertaining to interfaces, typically comes at a high 
computational cost that renders them viable for case studies but 
prohibitive for navigating the vast combinatorial space of multi-
metallic nanostructures. Thus, despite the emergent properties and 
performance gains that designer heterojunctions may impart, ratio-
nal control of interfaces between distinct phases in nanomaterials 
remains a formidable challenge.

Machine learning, particularly in the context of Bayesian opti-
mization (BO) (25–27), can help circumvent these bottlenecks by 
learning a relationship between the targeted property of NPs and 
design parameters using past experimental results and can guide the 
expensive and labor-intensive synthetic search through an iterative feed-
back loop between physical experiments and optimization algorithm. 
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Here, we demonstrate a highly efficient closed-loop integration of 
SPBCL synthesis and scanning transmission electron microscopy 
(STEM) imaging of multimetallic NPs with BO, focusing on accel-
erated discovery of isolated (single) interface, two-phase quaternary, 
quinary, and senary multimetallic NPs in a broader eight-dimensional 
(8D) element space. Our results show that the rational compositional 
design of heterojunctions in NPs is possible through BO when re-
searchers “stay in the loop,” paving the way for the machine learning–
guided design of more complex, functional multimetallic NPs.

RESULTS
Design and simulation of an optimization approach 
for NP discovery
The complexity and breadth of the phase morphologies NPs can 
adopt increases rapidly with the number of constituent elements, n. 
On the basis of the phase rule, the theoretical upper bound for the 
number of unique interfaces in multielement NPs grows quadrati-
cally with n. Interface arrangements resulting in these heterostructured 
NPs can lead to unprecedented properties (1), but we initially narrow 
our focus to the discovery of a special subset: biphasic, single-interface 
NPs (SINPs) in quaternary and higher-order chemical spaces. In 
two- or three-element NPs, expert intuition conditioned on knowl-
edge of phase diagrams, crystal structures, and past observations can 
help target SINP compositions, but this intuition does not scale well 
to designing higher-order, chemically diverse SINPs, and researchers 
can greatly benefit from a feedback loop with machine learning. 
More broadly, we see SINPs as a critical first target for closed-loop, 
machine learning–driven design of heterostructured NPs because 
(i) the single interface enables facile electron microscopy character-
ization and, in turn, robust experimental results, and (ii) developing 
the capability for SINP discovery can further accelerate the develop-
ment of NPs for applications that are influenced by interfaces, such 
as catalysis or plasmonics, by controlled deconvolution of interface-
property relationships.

Sequential optimization strategies, such as BO, have started gain-
ing attention in the chemical and physical sciences to solve high-
dimensional and expensive optimization problems where factorial 
or intuition-driven experimental designs become infeasible (5, 25–30). 
In BO, often used with a Gaussian process (GP) prior, the next ex-
periment in a sequence of experiments is selected by an acquisition 
function that combines the predictions of the GP conditioned on past 
results with a decision-making strategy, balancing the exploration-
exploitation trade-off, to maximize the gains toward an objective 
(26). We start the BO-driven SINP discovery effort by curating a 
dataset of 148 unique NP compositions from our reports, predating 
this study within the 8D Au-Ag-Cu-Co-Ni-Pd-Sn-Pt space, all syn-
thesized and characterized under a consistent SBCPL-annealing 
STEM workflow that is adopted in this work (see Material and 
Methods and the Supplementary Materials) (6, 18, 21–24). Having 
this dataset is critical not only for improving the performance of BO 
in scheduling real experiments by conditioning the model on past 
data but also for designing and testing the BO strategy itself, before 
the actual costly deployment phase.

The chemical diversity and interfacial complexity of the NPs in 
this initial dataset are depicted in Fig. 1 (A and B), with the number 
of elemental components in each particle ranging from 2 to 7 and 
with the number of unique interface counts ranging from 0 to 6. In 
Fig. 1A, we observe that the dataset is dominated by two- to four-element 

NPs with zero to three interfaces, with higher interface counts ap-
pearing exclusively in higher-order systems, as expected. There are 
45 SINPs in this dataset, limited to two- to four-element NPs, most 
abundant for ternary compositions. There are only seven quater-
nary SINPs and no pentanary or higher-order ones. Figure 1B shows 
that, except for Pt that exists in only a handful of NPs, there is no 
trivial relationship between the presence of a particular element in a 
particle and its interface count. While this dataset, to the best of our 
knowledge, is the largest compilation of microscopy-characterized 
alloy NPs, it still constitutes a highly sparse, researcher-driven sam-
pling from independent studies, at compositions in highly disjointed 
subspaces of the Au-Ag-Cu-Co-Ni-Pd-Sn-Pt space. For example, 
approximately half of all composition pairs in the dataset share at 
most one common element, and of all possible two-, three-, four-, 
five-, six-, and seven-component spaces in the 8D design space, re-
spectively, about 39, 64, 76, 80, 82, and 88% are empty, meaning 
they do not contain a single sample.

Hence, to overcome potential data inefficiencies in BO that would 
stem from sparsity and disjoint subspaces, we designed a domain-
specific upper confidence bound (UCB) strategy and simulated its 
performance in BO for SINP discovery in the existing dataset before 
using it to help researchers in actual experiments. This UCB strategy 
transforms the NP compositions into a chemically informed and 
dynamically updated embedding space, axes of which are comput-
able from composition and shared properties of elements (e.g., electro-
negativity) for all NPs rather than chemical identity of elements 
themselves (see Material and Methods for details). The first scenar-
io that we simulated broadly targets the discovery of SINPs from the 
entire NP dataset using a seed of 25 randomly selected NPs (Fig. 1C). 
The second scenario targeted a more difficult search: discovery of 
seven SINPs among all 78 n ≥ 4 particles and a seed composed of all 
n < 4 particles and 5 randomly selected particles from the n ≥ 4 set 
(Fig. 1D). Under both scenarios, we confirmed that the new BO 
algorithm outperforms the “random” acquisition baseline by a sub-
stantial margin, without much depreciation in efficiency when 
forming small batches. Crucially, we found that the new domain-
specific UCB strategy delivers up to around 10 and 40% acceleration 
relative to BO optimization with standard UCB methods over the 
compositional axis in the first and second SINP discovery scenarios, 
respectively (fig. S2). Overall, having built enough confidence in 
our BO methodology for SINPs, we next turned to actively deploy-
ing it to run a 4-week-long closed-loop experimental campaign.

Closed-loop synthesis and characterization
The workflow and results of the closed-loop iteration between ex-
periment and BO algorithm for quaternary SINP discovery are de-
scribed in Fig. 2, along with the results of a final exploratory step in 
Fig. 3, focusing on alternative composition-interface targets. Each 
round was initiated by a group of ranked target composition sug-
gestions from the BO algorithm, which were then synthesized via a 
typical SPBCL NP synthesis experiment on a silicon nitride TEM 
membrane. The success of the synthesis experiments and the com-
petency of the predictions were evaluated through STEM analysis. 
If the synthesis was successful, meaning single particles were 
formed and the resulting composition was near the suggested 
composition, three or more representative particles were quantita-
tively characterized by energy-dispersive x-ray spectroscopy (EDS) 
to determine their elemental compositions and distributions. The 
experimental data were then fed back into the algorithm database, 
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and new composition suggestions were generated (see Material 
and Methods).

To first test the efficacy of the algorithm, we selected quaternary 
SINPs as our first target structure for reasons discussed above. Three 
rounds of suggestion and synthesis were performed in this space, 
wherein we synthesized the top 4 ranked suggested compositions, 
and of the 12 suggested compositions, 11 were successfully prepared 
and formed the target structure, with one synthetic failure. After only 
one round of suggestions, the algorithm moved away from simple 
permutations of an existing quaternary SINP composition and sug-
gested novel compositions, which are visualized in Fig. 2. We find 
that the algorithm’s predictions are strongly influenced by the ex-
perimental feedback. For example, three of the four highest ranked 
suggestions in the second batch differed from the top 5 to 8 sugges-
tions in the first batch, which would have become batch 2’s top 4 if 
the rankings were not influenced by the new results. Figure 4 pro-
vides an alternative view of the 8D composition space by projecting 
the high-dimensional compositional embedding space used in our 
BO method to a more intuitive 2D visualization (see Material and 
Methods). First, we observe that the data in our initial dataset are 
distributed reasonably well throughout the large, high-dimensional 
design space we are searching. We also find that the algorithm targets 
a certain part of the chemical space in the first two rounds, exploiting 
regions near existing SINPs, although in the third and exploration 

rounds (explained below in more detail), it ventures out of that re-
gion. On the basis of the projections of our EDS measured average 
compositions on the same 2D representation in Fig. 4, apart from a 
few visible deviations, we can track the BO suggestions in the chem-
ical design space reasonably well.

Typical SINPs have an ellipsoidal shape with a single, straight 
interface whose location depends on the relative amounts of material 
present in the constituent phases (see, for example, Fig. 2B); however, 
particularly in larger particles, this desired structure is not always 
achieved. During particle coarsening, it is possible for smaller parti-
cles to attach to each other at different locations, leading to particles 
whose second phase is discontinuous or inhomogeneously distrib-
uted (Fig. 2, A1). Note that the discontinuous phase is always the 
one consisting of the lower-mobility metals, such as Ni and Co, which 
naturally take longer to form thermodynamic structures during 
low-temperature annealing. As a result, we hypothesized that these 
structures could gradually be transformed into their thermodynamic 
analogs through prolonged annealing. During annealing, the struc-
ture gradually approaches those that are thermodynamically favored 
(fig. S3). Therefore, we conclude that these particles can, for the 
purposes of identifying their interfaces, be treated as equivalent to 
ones already exhibiting the desired thermodynamic structures.

After the first three iterations of the model system resulted in 
competent suggestions, we explored several unprecedented phase 

Fig. 1. Statistics of the NP dataset and simulated optimization campaigns. (A) Distribution of the interface counts in the initial N = 148 NP dataset. Each interface 
count is broken down into segments on the basis of the number of elements making up the particle. (B) Occurrence of each of the eight elements in the initial dataset 
and the corresponding interface count box plots for each element. Performance results for the acquisition algorithm targeting single-interface particles, simulated using 
the existing dataset under two different scenarios in (C) and (D), at different batch sizes and compared to the random acquisition baseline. The performance (C) with a 
seed of 25 randomly selected particles from the space of 148 available, with the remaining space searched by the algorithm to find single-interface particles, and (D) with 
a seed made of 70 particles with n < 4 elements and 5 randomly selected from those with n ≥ 4, with the remaining space searched by the algorithm to find single-interface 
particles with n ≥ 4. Dashed lines show ideal performance limits and shaded regions show variability, limited to ±  for visual clarity.
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spaces to test the capabilities of the algorithm (Fig. 3). In particular, 
we changed our targets to ones that had no analogs in the existing 
dataset (i.e., quinary and senary SINPs), forcing the algorithm to 
extrapolate from the existing data. Starting with quinary SINPs, 
the algorithm’s top 5 suggested candidates were all variations of 
AuCuCoNiPd; however, due to a scientific curiosity and a desire to 
maximize the search space, we selected the two highest ranked variations 
of AuCuCoNiPd, the two highest ranked variations of AuAgCuCoNi, 
and one variation of AuCuCoNiPd that was markedly different 

than the other suggested compositions. Again, in each case, the 
algorithm provided competent suggestions (Fig. 3A and fig. S4), 
although there was no existing data to draw from. A related pre-
viously reported AuAgCuCoNi composition was a triphasic, two-
interface particle (22), yet the suggested compositions reported here 
all yielded the target biphasic structure, highlighting the capabilities 
of the algorithm to explore different regions of phase space.

Next, we went multiple steps further by targeting both a senary 
SINP and two-interface particles. We selected the highest ranked 

Fig. 2. Closed-loop optimization for the discovery of quaternary metallic SINPs. (A to C) Iterations 1 to 3, respectively, of the closed feedback loop process. Starting 
from available input data, the top compositions suggested by the machine learning algorithm are tabulated and then synthesized by SPBCL. The resulting experimental 
compositions, as determined by STEM-EDS, are then fed back into the algorithm for the next set of predictions. Bar graphs show elemental compositions determined by 
EDS averaged across multiple NPs, with error bars showing the SD and black bars representing the suggested targets. Below are annular bright-field (ABF) images and 
EDS maps of a representative particle for each composition. Scale bars, 20 nm. Note that particle C2 contains a small amount of Cu contamination. at %, atomic %.
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suggestion for the senary SINP from the BO model conditioned on 
all data that we collected up to this point, and we successfully syn-
thesized, to the best of our knowledge, the most chemically complex 
single-interface metallic NP ever prepared (Fig. 3B). In our attempt 
to synthesize two-interface particles, we selected the highest ranked 
permutation of an AgCuCo composition (again with BO condi-
tioned on all past data), which successfully formed the target struc-
ture (Fig. 3C).

During this final effort to explore two-interface NPs, a particular 
high-ranking suggestion in the Au-Ag-Cu space caught our atten-
tion as it conflicted with our intuition and bulk phase diagrams and, 
hence, would serve as a case study for understanding the underlying 
algorithmic and experimental causes of these conflicts. As shown in 
Fig. 5A, we confirmed that NPs synthesized at this nominal compo-
sition were off the two-interface target. Further inspection revealed 
that the GP algorithm relied on two nearby points in this ternary 

Fig. 3. STEM-EDS analysis of exploratory NP compositions suggested by the optimization agent. Elemental compositions and EDS maps of a representative 
(A) quinary SINP, (B) senary SINP, and (C) ternary two-interface NP. Bar graphs show elemental compositions determined by EDS averaged across multiple NPs, with error 
bars showing the SD and black bars representing the suggested targets.

Fig. 4. Characteristics of the 8D NP space and its BO-guided exploration for discovery of SINPs. This 2D projection of our composition-embedded BO design space 
(see Material and Methods) is generated using the t-distributed stochastic neighbor embedding (t-SNE) method. Gray circles represent the entire compositional search 
space of our 8D compositional grid (see Material and Methods). Experimental data (both initial and acquired in the loop) are color-coded with the measured interface 
counts. Acquisition suggestions by the algorithm (large open circles) and synthesized suggestions (large blue circles) are overlaid on the same projection to provide visual 
insights on how the search space is traversed with the aid of the BO algorithm. Round E corresponds to the “exploratory” search toward modified targets carried out upon 
completion of the closed-loop iteration for quaternary SINPs.
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space in our dataset with a larger than average uncertainty in com-
position and phase structure. Characterization of numerous AuAgCu 
particles reveals that the inherently random orientation of the syn-
thesized NPs on a surface can easily lead to ambiguities in charac-
terization (Fig. 5, A and B) when interfaces are not oriented along 
the optical axis of the microscope, making a region of two over-
lapping phases indistinguishable from a third phase by imaging or 
EDS. Moiré fringes can indicate phase overlap (e.g., Fig. 5B and fig. 
S3C), but their absence does not prove the existence of another phase. 
Peaks in gradients of compositional line profiles can help locate in-
terfaces [e.g., one versus two peaks in Fig. 5 (A and B), respectively], 
but by aligning its interface with the optical axis, the particle in 
Fig. 5B is identified as having a single interface (fig. S3E). Overall, 
without reliable statistical averages over the particle orientations or 
additional characterization techniques, particles such as those in 
Fig. 5 (A and B) can easily be interpreted as having more than one 
type of interface, leading to ambiguity in input data. We confirmed 
that, upon removal of the two such suspect AuAgCu points from 
our NP dataset, the BO algorithm no longer suggests any AuAgCu 
compositions for a two-interface target (not one in the top 100 sug-
gestions in ternary space). The addition of the new AuAgCu data 
does not immediately eliminate this off-target suggestion, indicating 
that it would require more BO iterations, and hence, keeping the 
researcher in the loop for the identification and elimination of “bad” 
data is a more cost-effective remedy.

We emphasize, however, that homogeneously distributed elements 
in high-order NPs can bring about more and nearly intangible 
interfaces (Fig. 5C). In certain cases, large percentages of miscible 
elements lead to these “soft” interfaces, wherein the transition from 
one phase to the other is less obvious. The examples of AuAgCu 

(Fig. 5A) and AuCuCoPd (Fig. 5C) illustrate the “hard” and soft 
interface extremes, respectively. This observation highlights short-
comings in defining what constitutes an interface. Clearly, a dis-
continuous change in crystal structure is an interface, but for 
coherent interfaces with continuous changes in structure, there is 
no universally accepted answer for exactly how steep a gradient in 
composition and/or lattice parameter must be to be classified as such. 
For the purposes of this work, all interfaces are classified equiva-
lently, but the nature of the interface poses an interesting structural 
motif that, with the requisite characterization capabilities, could be 
investigated in more detail.

Considering the success of our closed-loop implementation and 
our in-depth inspection of the AuAgCu case, we identify several op-
portunities for improvement for BO-driven NP-interface discovery: 
(i) acquiring reliable data for building predictive models for BO, (ii) 
keeping the “researcher in the loop” when the experiment through-
put allows for inspection of suggestions and interventions, and (iii) 
improving the algorithmic capabilities in all stages of BO. Methods 
such as 4D STEM would enable complete mapping of crystal struc-
ture throughout individual particles and, therefore, remove ambi-
guities otherwise present in EDS maps and allow for simultaneous 
identification of composition, morphology, and crystal structure. 
While researchers can always intervene, algorithmic improvements 
that would bring ambiguous input data to their attention would 
make interventions and, in turn, overall BO more efficient. Although 
our domain-specific, composition-embedded BO strategy improves 
upon more standard UCB methods, the optimization methodology 
certainly has room for improvement, particularly in active research 
areas (31, 32) such as accounting for the uncertainty in input com-
positions and targets in BO.

Fig. 5. STEM-EDS characterization of interfaces in different biphasic NPs. EDS line profiles taken along the red arrows in the ABF images, corresponding EDS maps, 
and schematic models of particle orientation with respect to the electron beam of (A and B) Au10Ag30Cu60 and (C) Au30Cu10Co20Pd40 NPs. Crosses and solid curves repre-
sent raw and smoothed data, respectively, and dotted curves are the corresponding gradients.
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DISCUSSION
In this work, we have demonstrated that machine learning–assisted 
optimization is a viable approach to identifying nanostructures with 
target morphological qualities, even with limited datasets. This plat-
form allowed us to synthesize new and complex materials, including, 
to the best of our knowledge, the most complex biphasic NP ever 
made, with success rates far greater than random selection (18 of 19) 
and, in more complex circumstances, greater than a keen chemical 
intuition. The limitations for expansion of such a design feedback 
loop to higher-throughput synthesis and experimentation, and into 
more complex properties, such as catalytic activity or stability, are 
almost exclusively experimental. In this work, we synthesize one 
material at a time using dip-pen nanolithography (DPN) to accom-
modate the electron microscopy characterization; parallelization of 
SPBCL to synthesize thousands or millions of unique materials in a 
single experiment is possible and has been demonstrated (2). As we 
develop new characterization techniques to extract more informa-
tion from megalibraries of nanomaterials at higher throughputs, 
and as targeted properties become increasingly more complex in 
future work, the benefits of using such a machine learning aid to 
guide the search will increase exponentially, as the capabilities of an 
algorithm can scale unlike those of human intuition.

MATERIALS AND METHODS
Materials and chemicals
Chloroauric acid hydrate (HAuCl4 xH2O; ≥99.9% trace metals 
basis), cobalt(II) nitrate hexahydrate [Co(NO3)2 6H2O; 99.999%], 
copper(II) nitrate hydrate [Cu(NO3)2 xH2O; 99.999%], nickel(II) 
nitrate hexahydrate [Ni(NO3)2 6H2O; 99.999%], palladium(II) nitrate 
dihydrate [Pd(NO3)2 2H2O; ~40% Pd basis], silver nitrate (AgNO3; 
anhydrous, ≥99.999% trace metals basis), nitric acid (HNO3; 70%, 
redistilled, ≥99.999% trace metals basis), hexamethyldisilazane (HMDS; 
99.9%), and hexane (anhydrous, 95%) were purchased from Sigma-
Aldrich. Poly(ethylene oxide)-block-poly(2-vinylpyridine) (PEO-
b-P2VP; Mn = 2.8-b-1.5 kg/mol, polydispersity index = 1.11) was 
purchased from Polymer Source Inc. DPN 1D pen arrays (type M, 
without a gold coating) were purchased from Advanced Creative Solu-
tions Technology LLC. Silicon nitride membranes for TEM (amor-
phous, thickness of 15 nm) were purchased from Ted Pella Inc.

NP synthesis
Silicon nitride membranes were functionalized with HMDS by vapor 
deposition in a closed chamber containing an HMDS/hexanes mix-
ture (1:1 v/v) overnight at room temperature; rinsed with toluene, 
isopropanol, and acetone; and dried with N2. Precursor inks were 
prepared by dissolving PEO-b-P2VP and metal precursors at desired 
ratios in deionized water, such that the final polymer concentration 
was 5.0 mg/ml and the total metal to pyridyl group molar ratio was 
1:32. The inks were then acidified with 2.0 l of 1.0 M HNO3 per 
milliliter of ink and left to shake overnight in the dark. DPN pen 
arrays were plasma-treated at 30 W for 60 s and mounted onto an 
atomic force microscopy (Park Systems XE-150) in a chamber kept 
at 20°C and a relative humidity of 80%. Pen arrays were inked by 
bringing the pen array into contact with a dropcast ink reservoir, 
and nanoreactors were deposited onto the functionalized silicon 
nitride membranes by repeatedly bringing the cantilever tips in 
contact with the surface. Samples were thermally annealed in a tube 
furnace with an H2 flow of 100 standard cubic centimeters per minute 

using the following protocol: ramped to 150°C at 2.2°C/min, held at 
150°C for 6 hours, ramped to 300°C at 2.5°C/min, held at 300°C for 
6 hours, ramped to 500°C at 3.3°C/min, held at 500°C for 12 hours, 
and then cooled to room temperature.

NP characterization
All STEM and EDS characterization was carried out on a JEOL JEM-
ARM200CF equipped with a cold field-emission gun operated at 200 kV, 
a CEOS hexapole probe aberration corrector, and two EDS detectors 
using a JEOL beryllium holder. High-angle annular dark-field (HAADF) 
and annular bright-field (ABF) images were acquired with a con-
vergence angle of 20.6 mrad and a collection angle of 68 to 280 mrad 
(HAADF) or 7.5 to 17 mrad (ABF). The L peaks of Ag, Au, and Pd 
and the K peaks of Co, Cu, and Ni were used for EDS quantifica-
tion and mapping. Elemental maps were generated from at least 
100 frames with a pixel dwell time of 20 s and processed to show 
net x-ray counts using a 3 × 3 kernel with one full pixel overlap. EDS 
quantification was carried out using the standardless Cliff-Lorimer 
correction method with the open source Python library HyperSpy 
(33). For each composition, multiple NPs were quantified to obtain 
a representative average composition.

BO algorithm design
Our BO strategy derives from the GP-UCB method (34). In GP-UCB, 
the next point of acquisition xt at step t from a decision space D 
(x ∈ D) in a sequence of experiments is decided as ​​x​ t​​  =  argmax  
[​​ t−1​​(x) + ​√ 

_
 ​​ t​​ ​ ​​ t−1​​(x)]​, which provides an exploration-exploitation 

trade-off by combining the predictions, (x), with the predicted un-
certainties (x) weighted by ​​√ 

_
 ​​ t​​ ​​. Decisions made using this ap-

proach after the first selection in a batch are made under information 
poor conditions and may lead to over- or underexploration of parts of 
D, which can, in part, be mitigated by reconditioning the GP using the 
past selections in the batch (35, 36) to update the uncertainty estimates.

In our context, NP optimization is to be carried out in an 8D 
space where x ≔ [cAg, cAu, …, cSn] and ci is the molar fraction of ele-
ment i. In practice, many compositions x are confined to a lower-
dimensional subspace of D, and hence, information from fully or 
partially disjoint subspaces (e.g., Au-Cu-Pd versus Ag-Ni-Sn) can-
not be used efficiently in BO. We therefore map x to an embedding 
space r using a transformation g that converts the design axes from 
elemental compositions to descriptors derived from stoichiometry 
and properties of elements, hence shared across all NPs. Because the 
relevance of descriptors is not known a priori, for each batch B, g is 
parameterized by data available up to that point (t′ being the latest 
measurement; t′ < t) and used to dynamically generate the embed-
ding space rB(x) = g(x; x1, x2, …, xt′) from x. Thus, to compose batch 
B, acquisitions are decided as

	​​ r​ B,t​​  =  argmax [​​ t−1​​(​r​ B​​) + ​√ 
_

 ​​ t​​ ​ ​​ t−1​​(​r​ B​​)]​	

and repeated by reconditioning GP with past selections until the desired 
batch size is reached. To recast our target-interface-count problem 
as maximization, we define ​​y​ t​​  ≔  − ∣​y​ t​ ′​ − n∣​ as our BO target, where 
the STEM interface count of a particle is ​​y​ t​ ′​​ and n is the targeted 
interface count (e.g., n = 1 for SINPs).

We parameterize g for a batch B as follows: (i) create a large set 
of m descriptors for each composition x1, x2, …, xt′ measured until 
B; a t′ × m matrix of scalars; (ii) standardize each column; and (iii) 
find a transformation to a more compact NPCA-dimensional embedding 
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space using principal components analysis (PCA). This parameter-
ized g is then used to transform the search space x to rB for batch 
B. NPCA is tuned a priori with the aim of finding a small enough 
space (NPCA ≪ m), where GP provides sufficient accuracy and BO 
can be performed efficiently.

Hyperparameters of the optimization framework
We use the compositional descriptors (m = 132) described by 
Ward et al. (37, 38), which are derived from statistical aggregations 
of stoichiometries and various elemental properties, in our im-
plementation of g. We select NPCA = 20 for the active closed-loop 
experiment-algorithm iterations on the basis of fig. S1 (see Supple-
mentary Text). We use the radial basis function kernel ​​k(r, r′) = ​
​​ 2​ exp​(​​− ​  1 _ 

2 ​ℓ​​ 2​
​ ​‖r − r′‖​​ 2​​)​​​​ with all GP models, where , ℓ, and the 

noise variance are optimized using the bfgs algorithm. Parameter t 
is dynamically set using the theorem 1 of (34) with a scaling factor 
of 0.05. We use the GPy library for implementation of GPs in BO, 
with the rest of the machine learning and data transformation steps 
handled through the scikit-learn library. The BO workflow is carried 
out using the camd python library.

Compositional search space design
For the closed-loop optimization, we generate a discretized search 
space D by creating a grid of compositions with 10% increments on 
each composition axis, i.e., Ag, Au, Cu, Co, Ni, Pd, and Sn. We use 
data from Pt-bearing particles in the BO seed, and hence, Pt is also 
included as a composition axis in D, but these particles are not tar-
geted in the search itself. We remove compositions from the search 
space that are closer than 5% in at least one of the composition axes 
to those that already exist in our initial NP dataset and those that are 
sent to and received from experimental workflow in each iteration.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj5505

REFERENCES AND NOTES
	 1.	 C. Xie, Z. Niu, D. Kim, M. Li, P. Yang, Surface and interface control in nanoparticle catalysis. 

Chem. Rev. 120, 1184–1249 (2020).
	 2.	 E. J. Kluender, J. L. Hedrick, K. A. Brown, R. Rao, B. Meckes, J. S. Du, L. M. Moreau, 

B. Maruyama, C. A. Mirkin, Catalyst discovery through megalibraries of nanomaterials. 
Proc. Natl. Acad. Sci. U.S.A. 116, 40–45 (2019).

	 3.	 A. Ludwig, Discovery of new materials using combinatorial synthesis and high-
throughput characterization of thin-film materials libraries combined with computational 
methods. NPJ Comput. Mater. 5, 70 (2019).

	 4.	 X.-D. Xiang, X. Sun, G. Briceño, Y. Lou, K.-A. Wang, H. Chang, W. G. Wallace-Freedman, 
S.-W. Chen, P. G. Schultz, A combinatorial approach to materials discovery. Science 268, 
1738–1740 (1995).

	 5.	 H. C. Herbol, M. Poloczek, P. Clancy, Cost-effective materials discovery: Bayesian 
optimization across multiple information sources. Mater. Horiz. 7, 2113–2123 (2020).

	 6.	 L. Huang, P.-C. Chen, M. Liu, X. Fu, P. Gordiichuk, Y. Yu, C. Wolverton, Y. Kang, C. A. Mirkin, 
Catalyst design by scanning probe block copolymer lithography. Proc. Natl. Acad. Sci. 
U.S.A. 115, 3764–3769 (2018).

	 7.	 A. Mannodi-Kanakkithodi, M. K. Y. Chan, Computational data-driven materials discovery. 
Trends Chem. 3, 79–82 (2021).

	 8.	 A. R. Oganov, G. Saleh, A. G. Kvashnin, Computational Materials Discovery (Royal Society of 
Chemistry, 2018), pp. 456.

	 9.	 M. Witman, G. Ek, S. Ling, J. Chames, S. Agarwal, J. C.-C. Wong, M. Allendorf, M. Sahlberg, 
V. Stavila, Data-driven discovery and synthesis of high entropy alloy hydrides 
with targeted thermodynamic stability. Chem. Mater. 33, 4067–4076 (2021).

	 10.	 M. E. Davis, Z. Chen, D. M. Shin, Nanoparticle therapeutics: An emerging treatment 
modality for cancer, in Nanoscience and Technology (Co-Published with Macmillan 
Publishers Ltd, 2009), pp. 239–250.

	 11.	 J. Liu, H. He, D. Xiao, S. Yin, W. Ji, S. Jiang, D. Luo, B. Wang, Y. Liu, Recent advances 
of plasmonic nanoparticles and their applications. Materials 11, 1833 (2018).

	 12.	 L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: From single atoms 
to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

	 13.	 J. A. Trindell, Z. Duan, G. Henkelman, R. M. Crooks, Well-defined nanoparticle 
electrocatalysts for the refinement of theory. Chem. Rev. 120, 814–850 (2020).

	 14.	 W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun, 
Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. 
J. Am. Chem. Soc. 135, 16833–16836 (2013).

	 15.	 L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.-Y. Ma, D. Su, X. Huang, 
Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 
354, 1410–1414 (2016).

	 16.	 Y. Yamada, C.-K. Tsung, W. Huang, Z. Huo, S. E. Habas, T. Soejima, C. E. Aliaga, 
G. A. Somorjai, P. Yang, Nanocrystal bilayer for tandem catalysis. Nat. Chem. 3, 372–376 
(2011).

	 17.	 W.-T. Koo, J. E. Millstone, P. S. Weiss, I.-D. Kim, The design and science of polyelemental 
nanoparticles. ACS Nano 14, 6407–6413 (2020).

	 18.	 P.-C. Chen, M. Liu, J. S. Du, B. Meckes, S. Wang, H. Lin, V. P. Dravid, C. Wolverton, 
C. A. Mirkin, Interface and heterostructure design in polyelemental nanoparticles. Science 
363, 959–964 (2019).

	 19.	 R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: Classes, properties, synthesis 
mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012).

	 20.	 T. Li, Y. Yao, Z. Huang, P. Xie, Z. Liu, M. Yang, J. Gao, K. Zeng, A. H. Brozena, G. Pastel, 
M. Jiao, Q. Dong, J. Dai, S. Li, H. Zong, M. Chi, J. Luo, Y. Mo, G. Wang, C. Wang, 
R. Shahbazian-Yassar, L. Hu, Denary oxide nanoparticles as highly stable catalysts 
for methane combustion. Nat. Catal. 4, 62–70 (2021).

	 21.	 P.-C. Chen, G. Liu, Y. Zhou, K. A. Brown, N. Chernyak, J. L. Hedrick, S. He, Z. Xie, Q.-Y. Lin, 
V. P. Dravid, S. A. O’Neill-Slawecki, C. A. Mirkin, Tip-directed synthesis of multimetallic 
nanoparticles. J. Am. Chem. Soc. 137, 9167–9173 (2015).

	 22.	 P.-C. Chen, X. Liu, J. L. Hedrick, Z. Xie, S. Wang, Q.-Y. Lin, M. C. Hersam, V. P. Dravid, 
C. A. Mirkin, Polyelemental nanoparticle libraries. Science 352, 1565–1569 (2016).

	 23.	 P.-C. Chen, J. S. Du, B. Meckes, L. Huang, Z. Xie, J. L. Hedrick, V. P. Dravid, C. A. Mirkin, 
Structural evolution of three-component nanoparticles in polymer nanoreactors. J. Am. 
Chem. Soc. 139, 9876–9884 (2017).

	 24.	 P.-C. Chen, Y. Liu, J. S. Du, B. Meckes, V. P. Dravid, C. A. Mirkin, Chain-end functionalized 
polymers for the controlled synthesis of sub-2 nm particles. J. Am. Chem. Soc. 142, 
7350–7355 (2020).

	 25.	 P. M. Attia, A. Grover, N. Jin, K. A. Severson, T. M. Markov, Y.-H. Liao, M. H. Chen, 
B. Cheong, N. Perkins, Z. Yang, P. K. Herring, M. Aykol, S. J. Harris, R. D. Braatz, S. Ermon, 
W. C. Chueh, Closed-loop optimization of fast-charging protocols for batteries 
with machine learning. Nature 578, 397–402 (2020).

	 26.	 B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, N. de Freitas, Taking the human out 
of the loop: A review of bayesian optimization. Proc. IEEE 104, 148–175 (2016).

	 27.	 B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. Janey, 
R. P. Adams, A. G. Doyle, Bayesian reaction optimization as a tool for chemical synthesis. 
Nature 590, 89–96 (2021).

	 28.	 F. Häse, L. M. Roch, C. Kreisbeck, A. Aspuru-Guzik, Phoenics: A Bayesian optimizer 
for chemistry. ACS Cent. Sci. 4, 1134–1145 (2018).

	 29.	 J. H. Montoya, K. T. Winther, R. A. Flores, T. Bligaard, J. S. Hummelshøj, M. Aykol, 
Autonomous intelligent agents for accelerated materials discovery. Chem. Sci. 11, 
8517–8532 (2020).

	 30.	 T. Ueno, T. D. Rhone, Z. Hou, T. Mizoguchi, K. Tsuda, COMBO: An efficient Bayesian 
optimization library for materials science. Mater. Discov. 4, 18–21 (2016).

	 31.	 M. Aldeghi, F. Häse, R. J. Hickman, I. Tamblyn, A. Aspuru-Guzik, Golem: An algorithm for 
robust experiment and process optimization. arXiv:2103.03716 (2021).

	 32.	 R. Oliveira, L. Ott, F. Ramos, paper presented at the Proceedings of Machine Learning 
Research, 2019.

	 33.	 F. de la Peña, E. Prestat, V. T. Fauske, P. Burdet, T. Furnival, P. Jokubauskas, M. Nord, 
T. Ostasevicius, K. E. MacArthur, D. N. Johnstone, M. Sarahan, J. Lähnemann, J. Taillon, 
T. Aarholt, V. Migunov, A. Eljarrat, J. Caron, S. Mazzucco, B. Martineau, S. Somnath, 
T. Poon, M. Walls, T. Slater, N. Tappy, N. Cautaerts, F. Winkler, G. Donval, J. C. Myers. 
(Zenodo, 2020).

	 34.	 N. Srinivas, A. Krause, S. M. Kakade, M. Seeger, Gaussian process optimization in the 
bandit setting: No regret and experimental design. arXiv:0912.3995 (2009).

	 35.	 E. Contal, D. Buffoni, A. Robicquet, N. Vayatis, in Machine Learning and Knowledge 
Discovery in Databases (Springer Berlin Heidelberg, 2013), pp. 225–240.

	 36.	 T. Desautels, A. Krause, J. W. Burdick, Parallelizing exploration-exploitation tradeoffs 
in Gaussian process bandit optimization. J. Mach. Learn. Res. 15, 3873–3923 (2014).

	 37.	 L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, A general-purpose machine learning 
framework for predicting properties of inorganic materials. NPJ Comput. Mater. 2, 16028 
(2016).

https://science.org/doi/10.1126/sciadv.abj5505
https://science.org/doi/10.1126/sciadv.abj5505
https://arxiv.org/abs/2103.03716


Wahl et al., Sci. Adv. 7, eabj5505 (2021)     22 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 9

	 38.	 L. Ward, A. Dunn, A. Faghaninia, N. E. R. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, 
J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K. A. Persson, G. J. Snyder, I. Foster, A. Jain, 
Matminer: An open source toolkit for materials data mining. Comput. Mater. Sci. 152, 
60–69 (2018).

Acknowledgments 
Funding: This material is based on the work supported by the Toyota Research Institute Inc. 
Additional support came from the Sherman Fairchild Foundation Inc. and the Air Force Office 
of Scientific Research awards FA9550-16-1-0150 and FA9550-18-1-0493. This work made use 
of the EPIC facility of Northwestern University’s NUANCE Center, which has received support 
from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-
1542205); the MRSEC program (NSF DMR-1720139) at the Materials Research Center; the 
International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, 
through the IIN. Author contributions: C.B.W. performed all characterization and 

corresponding data processing. J.H.S. and C.B.W. performed materials synthesis. M.A. and 
J.H.M. performed machine learning and data management, with input from S.K.S., C.B.W., and 
J.H.S. All authors contributed to the conceptualization and execution of the project. C.B.W., 
M.A., J.H.S., and C.A.M. wrote the manuscript. C.A.M. supervised the project. Competing 
interests: C.A.M. and J.H.S. have financial interests in Stoicheia Inc., which could potentially 
benefit from the outcomes of this research. All other authors declare that they have no 
competing interests. Data and materials availability: All data needed to evaluate the 
conclusions in the paper are present in the paper and/or the Supplementary Materials. Code is 
hosted on Zenodo (https://doi.org/10.5281/zenodo.5550999).

Submitted 19 May 2021
Accepted 10 November 2021
Published 22 December 2021
10.1126/sciadv.abj5505

https://doi.org/10.5281/zenodo.5550999

