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Replisome disassembly is the final step of eukaryotic DNA replication and is triggered
by ubiquitylation of the CDC45-MCM-GINS (CMG) replicative helicase' . Despite
being driven by evolutionarily diverse E3 ubiquitin ligases in different eukaryotes
(SCF”%2in budding yeast!, CUL2'"®*® in metazoa*”), replisome disassembly is governed
by acommon regulatory principle, in which ubiquitylation of CMG is suppressed
beforereplication termination, to prevent replication fork collapse. Recent evidence
suggests that this suppression is mediated by replication fork DNA%°. However, it is

unknown how SCF”#2 and CUL2'®®! discriminate terminated from elongating
replisomes, to selectively ubiquitylate CMG only after termination. Here we used
cryo-electron microscopy to solve high-resolution structures of budding yeast and
human replisome-E3 ligase assemblies. Our structures show that the leucine-rich
repeat domains of Dia2 and LRR1 are structurally distinct, but bind to acommonssite
on CMG, including the MCM3 and MCM5 zinc-finger domains. The LRR-MCM
interactionis essential for replisome disassembly and, crucially, is occluded by the
excluded DNA strand at replication forks, establishing the structural basis for the
suppression of CMG ubiquitylation before termination. Our results elucidate a
conserved mechanism for the regulation of replisome disassembly in eukaryotes, and
reveal a previously unanticipated role for DNA in preserving replisome integrity.

Theeukaryoticreplisomeisassembled around the CMG helicase at repli-
cationoriginsduringreplicationinitiation. Once assembled, CMG remains
stably associated with replication forks until two forks emanating from
adjacent origins converge, or asingle fork encounterstheend of alinear
chromosome or atemplate discontinuity, at which point replicationter-
minates (Fig.1a). Upontermination, the replisomeis disassembled in two
steps: first, CMG s ubiquitylated onits Mcm7 subunit by a cullin-RINGE3
ubiquitin ligase (SCF?*?in budding yeast, CUL2"*" in metazoa); second,
ubiquitylated Mcm7 is unfolded by the Cdc48 ATPase (also known as
p97inhigher eukaryotes), leading to disassembly of the replisome! 50,
Asthereis noknown mechanism for origin-independent CMG assembly
inS phase, premature disassembly of CMG must be avoided, to prevent
replication fork collapse and genome instability". CMG translocates on
theleading-strand template while excluding the lagging-strand template
fromits central channel™. It has been suggested that this ‘excluded’ DNA
strand, which is lost upon termination (Fig. 1a), inhibits ubiquitylation
of CMG at replication forks® '°. However, because there are currently no
structures of terminated replisomes in complex with SCF?*2 or CUL2'%®,
how ubiquitylationof CMGisregulatedto restrict replisome disassembly
to termination remains a key unanswered question.

Terminated yeast replisome structures

To determine the molecular basis for the regulation of CMG ubiqui-
tylation, we aimed to solve the structure of a terminated replisome,

by adapting our system for reconstituting budding yeast replisomes for
structural analysis®. After convergence of two replication forks, CMG
translocates onto nascent double-stranded DNA (dsDNA) produced
by the converging replisome>®** (Fig. 1a). To trap a replisome bound
around dsDNA, we used a DNA substrate that lacked a 5’ flap and con-
tained a short stretch methylphosphonate modifications embedded
in dsDNA, which slow translocation of CMG" (Extended Data Fig. 1a).
This DNA substrate wasincubated with CMG, the replisome factors Tofl-
Csm3, Mrcland Ctf4, SCF®®2 (Hrt1-Cdc53-Skpl-Dia2), an E2-ubiquitin
conjugate (Cdc34-Ub)', and the leading-strand DNA polymerase Pol-g,
inthe presence of ATP (Extended Data Fig. 1a). After glycerol gradient
sedimentation, complexes containingall replisome and SCF°*?subunits
wereisolated (Extended DataFig. 1b). Cdc34-Ub did not associate with
the complex, perhaps reflecting the absence of neddylation on the
Cdc53 cullin subunit of SCF?#2 (refs. 7*$).

After gradient fixation, samples were prepared for cryo-electron
microscopy (cryo-EM), yielding three-dimensional (3D) reconstruc-
tions at average resolutions of 3.2-4.0 A (Fourier shell correlation
(FSC) =0.143 criterion; Extended DataFig.1c-h, Extended Data Table1).
DNA binding was heterogenous across the dataset, with the majority
of particles still engaging single-stranded DNA (Extended Data Fig. 2).
Nonetheless, we identified a subset of particles, which was subsequently
subclassified into two conformations (conformations I and 1), that
had unambiguously translocated onto dsDNA, representative of bona
fide termination intermediates produced after fork convergence
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Fig.1|Cryo-EMstructures of terminated replisomes from Saccharomyces
cerevisiaebound by SCF®*2, a, Schematic of the regulation of replisome
disassembly. For clarity, replisomes are depicted as CMG. CMG ubiquitylation
andreplisome disassembly are inhibited at replication forks by anas yet
unknown mechanism, dependent onthe excluded DNA strand (in red box).
Thisinhibitionis relieved following translocation onto dsDNA (in green box, left
and middle) or offDNA (in green box, right). b, Slice-through view of cryo-EM
density for complexes assembled on dsDNA. The density shownisacomposite
offocused maps (refer to Extended DataFig. 2). c, DNA engagement within the
MCM C-tier motor domains by complexes assembled on dsDNA (coloured) or

(Fig. 1b, Extended Data Figs. 2, 3a-e). While the configuration of the
MCM C-tier differed between conformations I and Il (Extended Data
Fig.3),inboth cases theincoming dsDNA was bent by approximately 46°
betweenthe MCM N-tier and C-tier, necessitating distortion of the DNA
duplexwithinthe N-tier (Extended DataFig. 3f). For conformation|, the
nucleotide occupancy and interactions with the phosphate backbone
of the leading-strand template are similar to replication fork-bound
CMG" (Fig. 1c, Extended Data Fig. 3b, g), suggesting a shared mecha-
nism for translocation of CMG over single-stranded DNA and dsDNAP.

Having identified particles that had translocated onto dsDNA, we
were able to build an atomic model of a terminated replisome (Fig. 1d).
The overallarchitecture of CMG, Ctf4, Tof1-Csm3 and the non-catalytic
module of Pol-g (Pol-£""“") was almost indistinguishable from previous
structures™”2 (for details of the structure of Pol-¢, see Extended Data
Fig.4). We observed an additional, large region of density at the N-tier
face of CMG beside Mcm3 and Mcm7, which closely approaches Csm3
and the dsDNA ahead of CMG, before extending away from the core
of the complex, forming an elongated arm characteristic of the cullin
subunit (Cdc53) of SCF™™? (Fig. 1d, e). The resolution of the cullin arm
isrelatively poor (precluding model building for Cdc53-Hrtl), duetoa
large degree of flexibility in this region, as highlighted by comparison
of 3D classes (Extended Data Fig. 5a). We predict that this flexibility is
important for conjugating the long K48-linked polyubiquitin chains
required for Cdc48-dependent replisome disassembly®. Regardless, the
orientation of SCF” can be unambiguously defined, placing the Cdc53
Cterminus and Hrt1-45-70 A from the primary ubiquitylation site on
Mcm?7 (Lys29)%?? (Extended Data Fig. 5a, b), consistent with previous
structures of un-neddylated cullin-RING E3 ligases®.

Density corresponding to the E3 ligase substrate-recognition
module (Skpl-Dia2) is adjacent to the N-tier face of CMG (Fig. 1d, e).
The N-terminal tetratricopeptide repeat domain of Dia2, which binds
Ctf4 and Mrcl (refs.®?*%) wasnotvisiblein our structure. However, clear
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onareplication fork (grey; PDB: 6SKL").d, Cryo-EM density asin b (left) and
corresponding atomic model (right) for complexes assembled on dsDNA.

For the atomic model, only SCF®2, DNA and MCM subunits that interact with
SCF"™2are coloured. e, Alternative view of the atomic modeliind. f, Cryo-EM
density for complexes assembled in the absence of DNA, derived from
multibody refinement. g, Comparison of the MCM-Dia2"®® interface from
complexes assembled on dsDNA (b-e), off DNA (f) or on areplication fork (PDB:
6SKL"). For the regions of MCM at thisinterface, the root mean square
deviation (r.m.s.d.) of the replication fork-bound complex compared with the
dsDNA-bound or off-DNA complexesis1.39 Aand 0.93 A, respectively.

secondary structure and side chain density enabled us to build ade novo
atomic model for the remainder of Dia2, encompassing the F-box (resi-
dues 211-247),15 tandem leucine-rich repeats (LRRs) (248-716) and a
C-terminal tail (717-732), which folds back onto the concave surface of
the horseshoe-shaped LRRs (Extended Data Fig. 5c-k). The C-terminal
end of the LRR domain forms an extensive interface with the N-tier of
the Mcm3, Mcm5 and Mcm?7 subunits of CMG (Fig. 1d, Extended Data
Fig. 51-n; see text below for a detailed description), demonstrating
that Dia2 binds directly to CMG bound around dsDNA, equivalent to
the situation after convergence of two replication forks.

When DNA replication terminates at the end of linear chromo-
somes, CMG is thought to dissociate from DNA, at which point the
loss of the excluded strand triggers CMG ubiquitylation®® (Fig. 1a).
To establish how SCF™? engages the replisome following termina-
tion at chromosome ends, we repeated cryo-EM sample preparation
as described above, except in the absence of DNA. This yielded a 3D
reconstruction of an ‘off DNA' replisome at 3.9 A resolution (Fig. 1f,
Extended DataFig. 6). Notably, binding of the Dia2 LRRs across Mcm3,
McmS5 and Mcm?7 is indistinguishable from complexes bound around
dsDNA (Fig. 1g, Extended Data Fig. 3e). Furthermore, comparison of
our dsDNA-bound and off-DNA complexes witha previous structure of
areplication fork-associated replisome' revealed no conformational
changes in the region of the MCM N-tier to which Dia2 binds (Fig. 1g,
Extended DataFig.3e). Therefore, we conclude that termination does
notinduce conformational changesin CMG that areimportant for the
regulation of CMG ubiquitylation by SCF”#2 (ref. %), either following
fork convergence or when CMG dissociates from DNA.

Dia2'®R-MCM interface

The extensive interface between Dia2"** and MCM is predominantly
formed by the Mcm3 N-tier (helices al and o5 and the zinc-finger (ZnF)
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Fig.2| The MCM-Dia2'"®Rinterface is required for replisome disassembly.

a, Overview of the MCM-Dia2'*® interface. Leading-strand and lagging-strand
template DNAis coloured orange and pink, respectively. Residues altered in
Dia2"®*® mutants arein yellow. b, Reaction scheme to monitor CMG-Mcm7
ubiquitylation after Pif1-stimulated replication fork convergence in vitro' (left).
Immunoblot of reactions conducted asindicated isalso shown (right). The
experiment was repeated three times. IP,immunoprecipitation; Mut, mutant;
Ub, ubiquitin; WT, wild type. ¢, SDS-PAGE and immunoblotting of TAP-SId5
immunoprecipitations from Gl-arrested yeast cells with the indicated Dia2
alleles. The experiment was repeated twice. Also see Extended DataFig. 7i. TAP,
tandem affinity purification. d, Spot-dilution assay (tenfold serial dilutions)
withtheindicated yeaststrains. The experiment was repeated three times. For
gelsource data, see Supplementary Fig.1. YPD, yeast extract peptone dextrose.

domain), which forms a cradle for the C terminus of Dia2"®® (Fig. 2a,
Extended Data Fig. 51-n). In addition, the N terminus of Mcm7 wraps
around the ZnF domain of Mcm3 and becomes sandwiched between

CUL2-RBX1

& Pol-gnon-Cat

Fig.3|Cryo-EMstructures of humanreplisomesbound by CUL2'**'. a, Cryo-EM
density of the human replisome bound by CUL2"**!, The density shownis a
composite of focused maps (refer to Extended DataFig. 8). b, Atomic models for the
humanreplisome bound by CUL2'*®! displayed using transparentsurface
rendering, except for CUL2'*®, Only CUL2"**!, DNA and the CUL2"**-interacting

Mcm3 and Dia2, while the ZnF domain of Mcm5 interacts with the
C-terminal end of Dia2'®®, at the periphery of the Dia2"**-MCM interface.
Thedetails of the residuesinvolved areillustrated in Extended Data Fig. 5n.

To examine the significance of the Dia2"®*~-MCM interaction for
CMG ubiquitylation and replisome disassembly, we generated a series
of point mutants targeting the Dia2"**-MCM interface, in both Dia2
(Fig. 2a) and MCM. The majority of MCM mutants exhibited defectsin
the formation of the Mcm2-7-Cdt1 complex or in MCM loading (data
not shown), probably because the Dia2 LRR binding site is positioned
at the inter-hexamer interface in the MCM double hexamer®. While
this precluded analyses of Mcm7 ubiquitylation after convergence of
two replication forks in vitro, we were able to purify a CMG complex
containing mutations in Mcm3 and McmS5, which, while being profi-
cient for DNA replication, was defective for ubiquitylation of Mcm7
(Extended Data Fig. 7a-d). Dia2"*® mutants formed stable tetrameric
SCF?2 complexes and supported ubiquitylation of Ctf4 (Extended
DataFig. 7e-g). Importantly, with the exception of Dia2-3A, the Dia2"®
mutants were defective for ubiquitylation of Mcm7, both after replica-
tion fork convergence (Fig. 2b) and off DNA (Extended Data Fig. 7h), with
Dia2-13A showing the most penetrant defect. Haploid yeast cells with
the dia2-13A allele accumulated CMG in the G1 phase of the cell cycle
(Fig.2c, Extended DataFig. 7i), reflecting afailure to disassemble CMG
duringreplication terminationin theS phase of the previous cell cycle.
Furthermore, these cells exhibited a profound growth defectat 20 °C,
indistinguishable from cells lacking Dia2 (ref. **) (Fig. 2d). Together,
these datademonstrate that the Dia2"***~-MCM interface that we describe
is essential for CMG ubiquitylation and replisome disassembly, both
after fork convergence and when CMG dissociates from DNA.

Human replisome-CUL2"™® structure

Ubiquitylation of CMG in metazoais driven by CUL2"*®! (LRR1-CUL2-
ELOB-ELOC-RBX1)*”. Although LRR1displays no apparent sequence
homology to Dia2, metazoan CUL2"** ubiquitylates CMG on its MCM7
subunit*®and is suppressed by the excluded DNA strand®'°, suggest-
ing there might be common features of replisome associationthat are
important for the regulation of both SCF?*? and CUL2'®™, To investigate
this, we used our approach for human replisome assembly?® and a DNA
substrate lacking a5’ flap, to determine a high-resolution structure of
CUL2"*®in the human replisome (Fig. 3a, b, Extended Data Figs. 8, 9).

The overall architecture of human CMG, AND-1, TIMELESS-TIPIN
and Pol-¢ are indistinguishable from our previous structure lacking
CUL2"R® (ref. ?8) (Fig. 3a, b, Extended Data Fig.10a). LRR1is positioned
across the MCM N-tier, in close proximity to the parental DNA duplex.
Inaddition, an elongated arm of lower-resolution density, into which the
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Fig.4|A conserved mechanism forregulating replisome disassembly in
eukaryotes.a, Comparison of cryo-EM density maps for humanreplisome
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b, Alternative views of the ZnF domains of MCM3 and MCMS during replication
elongation (red box, excluded strand present®®) and termination (greenbox,
excluded strand absent). Inthe upper panel of the red box, the dashed line

crystal structure of ELOB-ELOC-CUL2-RBX1 could be unambiguously
docked?, projects from the MCM N-tier in an analogous manner to yeast
Cdc53-Hrtl (Fig. 3b). Although metazoan CUL2 and yeast Cdc53 are
tethered to theirrespective substrate adaptors (ELOB-ELOC-LRR1for
CUL2, Skpl-Dia2 for Cdc53) via very different interactions, the cullin
C terminus and RING-box protein are similarly located in both cases,
~45-70 A from the primary ubiquitylation sites in Mcm?7 (refs. 892)
(Figs. 1d, 3b). Furthermore, like Cdc53, CUL2 displays considerable
conformational variability, which is probably important for the con-
jugation of long polyubiquitin chains onto MCM7 (refs. 3*°) (Extended
Data Figs. 5a,10b).

The majority of LRR1waswell resolvedin our cryo-EM map (Extended
DataFig. 9e, k-n), which enabled de novo modelling of an N-terminal
pleckstrinhomology domainand a C-terminal LRR domain, whichare
connected by aflexible linker thatstretches perpendicularly across the
parental dsDNA (Fig. 3¢, d). The pleckstrinhomology domaininteracts
with the ZnF domains of MCM2 and MCM6, parental dsDNA and the
N-terminal region of the TIMELESS a-solenoid (Extended DataFig.10c,
d), consistent with the reported role for TIMELESS-TIPIN in recruit-
ing CUL2"* to the replisome in Caenorhabditis elegans®®. The LRR
domain comprises seven canonical and two irregular LRR motifs and
formsashallowarc, reaching fromthe parental dsSDNA to the N-tier face
of MCM3 and MCMS5 (Fig. 3d, Extended Data Fig. 10e, f). The BC and
CUL2boxes, whichlink LRR1to ELOB-ELOC-CUL2-RBX]1, are situated
between LRRrepeats 8and 9 (Fig.3c, d, Extended DataFig.10e, f),and a
two-stranded antiparallel -sheet caps the LRR domain atits C-terminal
end (Extended Data Fig. 10g). In addition, the C-terminal HMG box of
AND-1 could be docked into a small region of density alongside ELOC
and LRR1 (Extended data Fig. 10h, i), which was absent in 3D classes
that lacked AND-1 (Extended Data Fig. 10j, k), indicating that AND-1
interacts with CUL2'"®* in the human replisome.
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shows a putative path for the excluded ssDNA beyond the density observedin
a, right.Inthe lower panel of thered box, four sugar-phosphate backbone
linkages were builtinto the excluded strand density (see a, right; EMDB: EMD-
13375 (ref. 28)). H. sapiens, Homo sapiens. ¢, Model for the regulation of CMG
ubiquitylation. LRR-interacting regions of MCM are occluded in the MCM
double hexamer (see Extended Data Fig.11a) and by the excluded DNA strand at
replication forks (see a, b) (red box). Loss of the excluded strand upon
termination allows LRR-MCM engagement, CMG ubiquitylationand replisome
disassembly (green box).

Remarkably, despite the very different architectures of the LRR1and
Dia2 LRR domains, they bind to the same region of the MCM N-tier,
butdosoviacompletely different modes ofinteraction. The LRR1LRR
domaininteracts predominantly with the three-stranded antiparallel
B-sheet of the ZnF domain of MCM3, which extends the shallow arc of
the LRR1p-sheet (Extended Data Fig.10l). This interface is augmented
ononesidebyinteractions betweenthe MCM7 N terminus and the tip
of the ZnF domain of MCM3 and LRR1repeats 8 and 9 (Extended Data
Fig.10l, m). On the other side, MCM3 residues 3-8 and 164-174 are
significantly rearranged upon CUL2"*®' binding, such that the N termi-
nus of MCM3, now projecting between the ZnF domains of MCM3 and
MCMS5, stabilizes aninteractionbetween MCM3 residues164-174 and a
loop and short helix preceding LRR1repeat 9 (Extended DataFig.10n).
Finally, charged residues immediately preceding the 3-strands of LRR1
repeats 4-7 form multiple polar contacts with the tip of the ZnF domain
of MCMS5 (Extended Data Fig. 10m). Further details are illustrated in
Extended Data Fig.10m, n.

Regulation of CMG ubiquitylation

Ubiquitylation of CMG by both SCF”*2and CUL2"*"is suppressed by the
excluded DNA strand at replication forks® % our discovery that Dia2 and
LRR1bind directly toacommonsite across the ZnF domains of MCM3
and MCMS5 suggested that this region of MCM might be important for
the regulation of ubiquitylation. In our recent structure of the human
replisomebound to areplication fork?, cryo-EM density that we attri-
butedto the excluded strand was positioned inthe channel between the
ZnF domains of MCM3 and MCMS5, consistent with previous structures
of Drosophila and budding yeast CMG"™*"*2, To further validate our
assignment of the excluded strand, we identified a subset of particles
lacking CUL2"®® from our dataset of replisomes assembled without an



excluded strand (Extended Data Figs. 8, 9g). In the resulting density
map, the MCM N-tier was identical to our previous map of replication
fork-associated CMG?®, apart from a single region of density, extending
fromthe forkjunction between the ZnF domains of MCM3 and MCM5
(Fig. 4a, Extended Data Fig. 100). This density was present only in the
complex associated with the replication fork, thus confirming that it
is contributed by the excluded DNA strand.

Crucially, Fig. 4b shows that the presence of the excluded strand
between the ZnF domains of MCM3 and MCMS5 sterically blocks the
engagement of the Dia2 and LRR1LRR domains with MCM. As the LRR-
MCM interaction is essential for ubiquitylation of CMG and, in turn,
replisome disassembly, the occlusion of thisinterface by the excluded
strand provides an elegant and universal explanation for the regula-
tionof replisome disassembly across yeasts and metazoa. Notably, the
LRR domains of Dia2 and LRR1 are not demonstrably homologous in
sequence or structure. Thus, we propose that the binding of Dia2"**
and LRR1*® across the exit channel of the excluded strand reflects
convergentevolution, probably indicative of astringent evolutionary
pressure to accurately regulate replisome disassembly, and thereby
safeguard replication forks. This evolutionary constraintis not evident
inparts of the replisome disassembly machinery that do not contribute
totheregulation of CMG ubiquitylation. For example, the Dia2 tetratri-
copeptiderepeat domainbinds yeast Mrcland Ctf4, whereas the LRR1
pleckstrin homology domain binds human TIMELESS.

On the basis of our results, we propose the model summarized in
Fig. 4c. Ubiquitylation of the MCM double hexamer is blocked by the
occlusion of the LRR binding site at the inter-hexamer interface?”
(Extended Data Fig. 11a). This occlusion probably also suppresses
ubiquitylation during the conversion of MCM double hexamers into
pairs of active CMG helicases®, before the lagging-strand template
is excluded. Once bidirectional replication forks are established and
elongation begins, the spooling of the excluded DNA strand between the
ZnF domains of MCM3 and MCMS5 sterically blocks LRR engagement on
MCM. Itis possible that the binding of proteins to the excluded strand
may help toblock LRR-MCM engagement. However, ubiquitylation of
CMGisinhibited at reconstituted budding yeast replication forksin the
absence of the lagging-strand machinery (Extended Data Fig. 11b, ¢),
consistent with the excluded DNA alone being sufficient to suppress
SCFP during elongation. In principle, the binding of yeast Dia2 to Mrcl
and Ctf4, and human LRR1 to TIMELESS and AND-1, could still occur at
replicationforks, even whenthe LRR-MCM interactionis blocked by the
excludedstrand. Accordingly, Mrc1-Ctf4 can support SCF?*2" recruit-
menttoreconstituted replisomes (Extended DataFig.11d, e). Critically,
however, the essentiality of the LRR-MCM interaction for ubiquitylation
of CMG will restrict replisome disassembly to termination, independ-
ent of the timing of E3 ligase recruitment, and irrespective of whether
areplication fork terminates via fork convergence, or at atelomere.

Finally, we note that if the excluded strand is ever mispositioned, for
example, duringreplication fork stalling or reversal, replisome disassem-
bly couldbe triggered, due to premature LRR-MCM engagement. Assuch,
theregulatory mechanismthat we describe here may have implications for
thestability of the replication fork under conditions of replication stress.
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Extended DataFig. 5| Supportinginformation for the Dia2 structure and
itsinteraction with thesS. cerevisiaereplisome. a, Cryo-EM density for
Cdc53-Hrtlfor two 3D classes following signal subtraction/3D
subclassification, demonstrating the flexibility observed in the position of
replisome-bound SCF®?2, The position of Hrtlis shown, derived fromrigid-
body fitting the crystal structure of homologous CUL1-RBX1 (PDB: 1LDK?). The
approximate distance between Hrtland the primary ubiquitylation site
(K29™") jsindicated. b, Cryo-EM density map for Cdc53-Hrtlwith the

crystal structure ofhomologous CUL1 (PDB: 1LDK?) rigid-body fitted.
c,Representative cryo-EM density (mesh) across different regions of Dia2.

d, Dia2 domain architecture; TPR domain and nuclear localisation signal (NLS)
asinref.?. e, f, Alternative views of the Dia2 LRR domain coloured by repeat.
The F-box domain and C-terminal tail are shown for contextine.g, Comparison
of Dia2 LRR domain repeats to the LRR consensus sequence®. Lis Leu/Val/lle/
Phe,NisAsn/Thr/Cys, xisany amino acid; we consider Lyas the first repeat
residue. The core LxxLxL motifis highlighted. h, Comparison of Dia2 F-box to

the consensus sequence®. Exact matches coloured red, conservative
differences coloured green.i, The Dia2 LRR domain (repeats1and 2) closely
approachesthe parental dsDNA (orange: leading-strand template; pink:
lagging-strand template) and Csm3. The region of Csm3 upstream of the DNA-
binding motif (DBM) is observed tointeract with the Dia2 LRR domain -sheet
and Dia2 C-terminal tail, however cryo-EM density for this region was
insufficient toidentify details of this interaction. Dia2 residues whichare
positioned close to DNA arelabelled. j, Dia2-Skplinteraction.k, Interactions of
Skplwithalternative LRR-domain-containing F-box proteins, to show
similarity withj. Human SKP1-SKP2: PDB:1FQV*’; human SKP1-FBXL3: PDB:
416J%.1, Overview of interaction between Dia2 LRR domain and Mcm subunits.
m, The MCM:Dia2"*®interaction does notinvolve the concave B-sheet surface
of Dia2'*®. n, Detail of the MCM:Dia2'"®Rinterface. Residues altered in Dia2'®®
mutants are yellow. For the Mcm3 ZnF, interaction networks are subdivided
intothose above (A) and below (B) the position of the Mcm7 N-terminus.
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Extended DataFig. 6 | Supporting datafor cryo-EMinvestigation of S. small-scale gradient preparations. b, Representative cryo-EM micrograph.
cerevisiaereplisome:SCF"*2 complexes assembledin the absence of DNA. ¢, Representative 2D class averages, 40 nmbox width.d, Angular distribution
a, Silver-stained SDS-PAGE gel analysing 100 pL fractionstakenacrossal0-30%  of particle orientations contributing to cryo-EM density map (Fig. 1f). e, Fourier
GraFix gradient. Fractions 1-17 (of 23) shown. Fractions 11-13 used for cryo-EM shell correlation curve for the multi-body refinement map presented in Fig. 1f.
sample preparation areindicated. Large-scale sample preparation was f, Cryo-EM density map (related to Fig. 1f) coloured by local resolution. For gel

performed once; similar results were observed in three independent source data, see Supplementary Fig. 1.
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Extended DataFig.7|Supporting datafor functional analyses of Dia2 and
MCM mutants. a, Coomassie-stained SDS-PAGE gel of purified CMG complex
containing mutationsin Mcm3 and Mcm5 at Dia2"**-MCM interface b, Reaction
scheme forinvitroreplication of 9.7 kb forked DNA template using CMG and
theindicated replication proteins. ¢, Reaction conducted asin panel bwith
wildtype or mutant CMG. Samples were separated onan alkaline agarose gel
and visualised by auto-radiography. This experiment was performed twice.
d, Invitro CMG ubiquitylationreactioninthe absence of DNA. The indicated
proteins were incubated in the presence of ubiquitin and ATP and then
visualised by SDS-PAGE and immunoblotting. This experiment was repeated
threetimes. e, Positions of residues mutated in Dia2 LRR domain. LRR repeats
12-15are coloured and numbered as in Extended Data Fig. Se, f. Residues are
coloured accordingto the Dia2 mutantin which they are present; all residues

shown were mutated in Dia2-13A. Dia2-8A featured the following mutations:
D632A,F657A,1662A,Y665A, Q694A,1698A, T699A and Y716A. f, Coomassie-
stained SDS-PAGE gel of purified SCF®*2 complexes containing Dia2"** mutants
g, Invitro Ctf4 ubiquitylation reaction. Theindicated proteins were incubated
inthe presence of ubiquitin and ATP and then visualised by SDS-PAGE and
immunoblotting. The Hrtlimmunoblot serves as aloading control for SCF>*2,
Thisexperiment was repeated twice. h, Reaction conducted asin paneld with
theindicated Dia2"*® mutants. This experiment was repeated three times.

i, DNA content of Gl-arrested cells from experiment in Fig. 2c was monitored by
flow cytometry after propidiumiodide staining. The proportion of G1 cells,
expressed as a percentage of the total cells, is given. For details of gating
strategy and assignment of the G1 peak see Supplementary Fig.2.For gel
source data, see Supplementary Fig. 1.
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Extended DataFig. 9|See next page for caption.



Extended DataFig. 9 |Supporting datafor cryo-EMinvestigation of H.
sapiensreplisome: CUL2"®* complexes. a, Schematic of reconstitution
approachused for preparation of replisomes bound to CUL2"**! for cryo-EM.
Aschematic of the DNA substrate used is shown witha39 nucleotide 3’armand
no 5 arm.b, Silver-stained SDS-PAGE gels analysing 100 pL fractions taken
across 10-30% glycerol gradients, either lacking (top) or containing (bottom)
crosslinking agents. Fractions 15+16 used for cryo-EM sample preparation are
indicated. This experiment was performed twice. ¢, Representative cryo-EM
micrograph.d, Representative 2D class averages, 40 nm box width. e-j, (Top)
cryo-EMreconstructions coloured by local resolutionaccording to inset keys
(Bottom) angular distribution of particle orientations. e, Consensus
refinement for replisome:CUL2'**! fully engaged. f, Consensus refinement for

replisome:CUL2'"** where the LRR1™ domainisbound but the LRRs are
disengaged. g, Consensusrefinement for particles lacking CUL2'®®!, h, Multi-
body refinement for AND-1:CDC45:GINS. i, Multi-body refinement for
LRRLI:ELOB:ELOC:CUL2:AND-1-HMG. j, Multi-body refinement for CUL2:RBX1.
k, Cryo-EM density for the LRR1LRRs.1, Cryo-EM density for the LRR1PH
domain.m, Representative cryo-EM density fora LRR1LRR domain B-strand at
3.5Aresolution. n, Representative cryo-EM density for aLRR1LRR domain
a-helix at 3.7 Aresolution. o, Fourier-shell correlation (FSC) curves for the
various maps used in model building. p, Map-to-model FSC curves for the
complete model docked into the consensus refinement for replisomes fully
engaged by CUL2"® For gel source data, see Supplementary Fig. 1.
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Extended DataFig.10 | Supporting information for the CUL2'R®! structure
anditsinteraction with the H.sapiensreplisome. a, Structural overlay of
aligned model from replisomes bound to CUL2"%*! (blue) and in the absence of
CUL2'®*! (red). b, Composite model and map representing the conformational
variability of CUL2/RBX1. The model for the replisome, bound to LRR1and
ELOB-ELOC, is displayed using pipes and planks rendering and coloured
accordingtosubunit. Three representative 3D classes are displayed
encompassing density for CUL2:RBX1obtained through 3D classification
withoutalignment. The distance between RBX1and K29,y isindicatedasa
dotted orange line and distances denoted in theinsetkey. c, Overview of the
interfacebetweenthe LRR1PH domain and the replisome. Subunitsinteracting
with the LRR1PH domain are displayed using transparent surface rendering.
Boxed regionsindicate key interactioninterfaces expandedin paneld.

d, Detailed structural views of the interface between the LRR1PH domainand1:
TIMELESS, 2(A): MCM6 ZnF, 2(B): dsDNA and 3: MCM2 ZnF. e, Model for the
LRR1ILRRs withnumberingindicating the order of the leucine-rich repeats.

f, Consensus motif for the LRR1LRRs. The sequence of eachrepeatisindicated
with the positionsofthe key L, L;and Lsresidues highlighted inred. Repeats
land9representirregular LRRs. Lis Leu/Val/lle/Phe, Nis Asn/Thr/Cys, xis any
aminoacidLisLeu/Val/lle/Phe, Nis Asn/Thr/Cys, xis any amino acid. g, LRR1
modeldockedinto transparent cryo-EM density with the capping 2-stranded

B-sheet highlighted ingold. h, Overview of the LRRI:ELOB:ELOC:CUL2:AND-1
interface. Models displayed docked into transparent cryo-EM density with
MCM subunits visualised using surface rendering. i, Structure of the AND-1
HMG box (PDB:2D7L) docked into the AND-1-dependent cryo-EM density
adjacentto ELOC and LRR1. Selected hydrophobic core residues displayed.
j,Map ofthereplisome bound to CUL2"®*!in the absence of AND-1coloured
accordingto subunit. k, Cryo-EM density of the LRR1:ELOB:ELOC:CUL2
interface obtained through multi-body refinement from particles lacking AND-
1. Thedensity attributed tothe AND-1HMG box is dependent upon AND-1.

1, Overview of the MCM:LRR1**® interface. MCM subunits displayed with
additional transparent surface rendering and the order of the LRR1*®*s
numbered. Red-dashed boxesindicate key interaction sites, expanded in panel
m.m, Detail of the MCM:LRR1'**Rinterface involving contacts between the
LRR1***and1-MCM3,2-MCMS ZnF and 3 - the MCM7 N-terminus. n, Model
highlighting local rearrangements of MCM3 upon binding CUL2"®®!, Structures
inthe absence (top) and presence (bottom) of CUL2'*®, coloured according to
insetkey, highlight the rearrangement of MCM3,.5;and MCM3 ;4174

0, Comparison of the CUL2"®*\-interacting regions of MCM from complexes
assembled onaDNA substrate either lacking a 5-flap (green) or containing a

15 nucleotide 5-flap (gold, PDB: 7PFO%). Complexes lacked CUL2'®®!,
Ther.m.s.d.between the twostructures for the regionshownis 0.43 A.
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Extended DataFig.11|Supporting datafor model for regulation of CMG

ubiquitylation.a, The MCM:Dia2"**interfaceis occludedin theinac
7 double hexamer. The structure of the budding yeast Mcm2-7 doubl

is shown (PDB: 5BK4 (ref.*)): one Mcm2-7 hexamer is displayed as a cartoon, the
otherasasurface.Double-stranded DNA is coloured orange. The positions of
the N-tier (N) and C-tier (C) are labelled for each hexamer. Inset: focused view of

inputs

tive Mcm2-
e hexamer

IPs of SId5

proteins (top), which are predicted tointeract with the excluded DNA strand
duringlagging strand synthesis. Pif1was omitted to block fork convergence.
DNase wasincluded after thereplication step torelease the replisome from

DNA, which triggers CMG ubiquitylation®. ¢, Reaction conducted as in panel b
and analysed by SDS-PAGE and immunoblot. This experiment was repeated

twice.d, Reaction scheme for experimentin panel e, to monitor theinteraction
of SCFP*2with thereplisome. e, Reaction conducted asin panel d and analysed
by SDS-PAGE and immunoblot. *is rabbit IgG. This experiment was repeated
twice. For gel source data, see Supplementary Fig. 1.

theregions of Mcm2-7 involved ininteraction with the Dia2 LRR domain,
demonstrating the inaccessibility of these regions to Dia2 in the context of a
double hexamer. b, Reaction scheme for experimentin panel ¢, to monitor the
suppression of CMG ubiquitylation by DNA inthe absence of the indicated



Extended Data Table 1| Cryo-EM statistics

S. cerevisiae
Replisome-SCFPia2
conformation I
(EMD-13537) +

S. cerevisiae
Replisome-SCFPia2
conformation II
(EMD-13539) +

H. sapiens
Replisome-CUL2LRR!

(EMD-13494)

(PDB: 7PMK) (PDB: 7PMN) (PDB: 7PLO)

Data collection and processing
Magnification 81,000 X 81,000 X 81,000 X
Voltage (kV) 300 300 300
Electron exposure (€ /A?) 38.8 38.8 38.3
Defocus range (um) -0.4to -2.2 -0.4to -2.2 -0.8t0 -2.8
Pixel size (A) [super-resolution] 0.53 0.53 0.536
Symmetry imposed None None None
Initial particle images (no.) 2,160,000 2,160,000 2,412,000
Final particle images (no.) t 56,000 — 369,000 56,000 — 369,000 39,000 — 232,000
Map resolution (A) 32-4.0 32-4.0 2.8-10.8

0.143 FSC threshold
Map resolution range (A) 3-7 3-7 3-20
Refinement
Initial model used (PDB code) 6SKL,6HV9,INEX 6SKL,6HV9,INEX 6XTX, SMQI
Model resolution (A) 4.0 43 3.2

0.5 FSC threshold
Map sharpening B factor (A?) -20 to -50 -20 to -50 -30to -100
Model composition

Non-hydrogen atoms 74,708 74,666 78,016

Protein residues 9,130 9,134 9754

Ligands 7 Zn**, 3 Mg*, 7 Zn*", 2 Mg*, 7 Zn**, 3 Mg*,

3 AMP-PNP 2 AMP-PNP 3 AMP-PNP

B factors (A?)

Protein 112.76 99.89 66.61

Ligand 109.20 80.56 40.51
R.m.s. deviations

Bond lengths (A) 0.006 0.006 0.005

Bond angles (°) 0.930 0.930 0.890
Validation

MolProbity score 0.74 0.78 1.03

Clashscore 0.37 0.32 0.53

Poor rotamers (%) 0.31 0.53 1.01
Ramachandran plot

Favored (%) 97.45 97.12 95.09

Allowed (%) 2.55 2.88 4.81

Disallowed (%) 0.00 0.00 0.10

Model statistics generated using Phenix comprehensive validation (cryo-EM)*. , refer to Extended Data Figs. 2, 8 and Methods for details related to individual maps.
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Cryo-EM density maps of the yeast replisome-SCFDia2 complex on dsDNA have been deposited in the Electron Microscopy Data Bank (EMDB) under the following
accession numbers: EMD-13495 (full complex unsharpened map, conformation 1); EMD-13496 (full complex sharpened map, conformation 1); EMD-13497 (multi-
body refinement [MBR], MCM N-tier, conformation 1); EMD-13498 (MBR, MCM C-tier, conformation I); EMD-13500 (full complex unsharpened map, conformation
I1); EMD-13512 (full complex sharpened map, conformation Il); EMD-13513 (MBR, MCM N-tier, conformation Il); EMD-13514 (MBR, MCM C-tier, conformation Il);
EMD-13515 (MBR, Dia2-Skp1); EMD-13516 (MBR, Cdc45-GINS-Ctf4-Dpb2NTD); EMD-13517 (MBR, Pol enon-Cat-Mcm5WH); EMD-13518 (full complex enriched for
Csm3-Tof1); composite maps produced using Phenix combine_focused_maps have been deposited under accession numbers EMD-13537 (conformation 1) and
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EMD-13539 (conformation I1). Cryo-EM density maps of the yeast replisome-SCFDia2 complex in the absence of DNA have been deposited in the EMDB under the
following accession numbers: EMD-13519 (full complex unsharpened map) and EMD-13540 (MBR). Cryo-EM density maps of the human replisome-CUL2LRR1
complex used in model building have been deposited in the EMDB under the following accession numbers: EMD-13494 (full complex, consensus refinement),
EMD-13491 (MBR, AND-1/CDC45/GINS), EMD-13490 (MBR, ELONGIN-BC/LRR1/CUL2), EMD-13492 (MBR, CUL2-RBX1). An additional map of the core human
replisome not engaged by CUL2LRR1 on a DNA substrate lacking a 5’-flap has been deposited under the accession number EMD-13534. Atomic coordinates have
been deposited in the Protein Data Bank (PDB) with the accession numbers 7PMK for the yeast replisome-SCFDia2 complex on dsDNA (conformation 1), 7PMN for
the yeast replisome-SCFDia2 complex on dsDNA (conformation I1), and 7PLO for the human replisome-CUL2LRR1 complex.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Our study does not include cohort/population based analysis or comparison and thus does not entail predetermination of sample size. Cryo-
EM data were collected, as described in methods; these numbers of micrographs were sufficient to either allow model building or
comparative analysis.

Data exclusions  During processing of cryo-EM data, poor quality micrographs/particles were excluded based on manual inspection and 2D/3D classification.

Replication Cryo-EM datasets for yeast and human complexes comprised individual sample preparations and datasets. Complex formation was found to
be reproducible across multiple independent sample preparations. Details of the number of experimental repeats have been acknowledged in

the relevant figure legends. All attempts at data replication were successful.

Randomization  For calculation of the resolution of the cryo-EM reconstructions, Fourier shell correlations were calculated using independent halves of the
complete datasets, into which the component particles were segregated randomly.

Blinding Our analysis did not require blinding because it did not involve human subjects or live animals.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
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Antibodies

Antibodies used All polyclonal primary antibodies used in this study were raised in sheep against the indicated S. cerevisiae proteins by the Labib
laboratory in conjunction with MRC PPU Reagents and Services (https://mrcppureagents.dundee.ac.uk/). Mcm5 (160), Mcm6 (161),
Mcm7 (19), Cdc45 (29), Psf1 (58), SId5 (32), Ctf4 (30), Hrtl (203).
Peroxidase anti-peorxidase (Sigma, P1291) conjugate to horseradish peroxidase of anti-sheep IgG from donkey (Sigma, A3415).

Validation With the exception of anti-Hrt1 (203), the validation of all antibodies is described in Gambus et al, Nat. Cell Biol., 2006 (doi: 10.1038/
ncb1382). Anti-Hrt1 (203) was validated by immunoblotting against purified SCFDia2 and yeast whole cell extracts containing
wildtype Hrtl or 6HA-Hrt1.
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

Flow Cytometry

SF9 cells were obtained from OXFORD EXPRESSION TECHNOLOGIES, LTD, Cat No. 600100. High-5 cells (bti-tn-5b1-4) were
obtained from Thermo-Scientific Cat no. B85502.

Cell lines were not authenticated.
Cell lines tested negative for mycoplasma contamination.

None

Plots
Confirm that:

|X| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

g All plots are contour plots with outliers or pseudocolor plots.

|X| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software
Cell population abundance

Gating strategy

For each sample, 10 million yeast cells were harvested and fixed by resuspension in 1 ml of 70% ethanol. Subsequently, 3 ml
of 50 mM sodium acetate and 50mg of RNase A was added to 150 ul of fixed cells, followed by incubation at 37°C for 2 h.
The cells were then pelleted and proteins degraded by incubation at 37°C for 30 min in 500 ulL of 50 mM HCI containing 2.5
mg of Pepsin. Finally, cells were pelleted and then re-suspended in 1 ml of 50 mM sodium citrate containing 2 mg of
propidium iodide. Samples were sonicated and then analysed.

FACSCanto Il flow cytometer (Becton Dickinson)
FlowJoTM v10.8 software Software (TreeStar Inc.)
The percentage of cells in G1-phase is provided in EDF 7i.

Gating was performed to remove cell debris and dead cells based on forwards and side scatter properties, as exemplified in
Supplementary Fig. 2

|X| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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