
Databases and ontologies

Refget: standardized access to reference sequences

Andrew D. Yates 1,2,*, Jeremy Adams2,3, Somesh Chaturvedi1,4,

Robert M. Davies2,5, Matthew Laird1, Rasko Leinonen 1, Rishi Nag1,2,

Nathan C. Sheffield6, Oliver Hofmann2,7 and Thomas M. Keane 1,2

1European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10

1SD, UK, 2Global Alliance for Genomics and Health, 3Ontario Institute for Cancer Research, Toronto, ON, Canada, 4Google Summer of

Code, 5Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK, 6Center for Public Health Genomics, School of

Medicine, University of Virginia, Charlottesville, VA 22903, USA and 7University of Melbourne Centre for Cancer Research, University of

Melbourne, Melbourne, VIC, Australia

*To whom correspondence should be addressed.

Associate Editor: Zhiyong Lu

Received on March 22, 2021; revised on June 18, 2021; editorial decision on July 7, 2021; accepted on July 12, 2021

Abstract

Motivation: Reference sequences are essential in creating a baseline of knowledge for many common bioinformatics
methods, especially those using genomic sequencing.

Results: We have created refget, a Global Alliance for Genomics and Health API specification to access reference
sequences and sub-sequences using an identifier derived from the sequence itself. We present four reference imple-
mentations across in-house and cloud infrastructure, a compliance suite and a web report used to ensure specifica-
tion conformity across implementations.

Availability and implementation: The refget specification can be found at: https://w3id.org/ga4gh/refget.

Contact: ayates@ebi.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Reference genome sequences are central to genomic interpretation
and to defining a baseline of knowledge upon which our understand-
ing of biological systems, phenotypes and variation are based. The
ability to interpret such data is essential for the delivery of genomics
into the clinic. As precision medicine becomes mainstream in health-
care systems, organizations such as the Global Alliance for
Genomics and Health (GA4GH) are developing interoperable stand-
ards to ensure the discovery and provenance of baseline knowledge.

Reference sequences suffer from two issues: sequence identity and
non-standardized access. Genomic analysis, such as read alignment, typ-
ically use a FASTA-formatted collection of sequences downloaded from
a provider with inconsistent naming, e.g. INSDC (Karsch-Mizrachi
et al., 2018), Ensembl (Yates et al., 2020) or UCSC (Lee et al., 2020).
For example, chromosome 1 from GRCh38 (GCA_000001405.15) is
known as chr1 from hg38 (UCSC), 1 from GRCh38 (Ensembl) or
CM000663.2 (INSDC). When it is critical to unambiguously identify an
underlying reference sequence, it is better to use an identifier derived
from the sequence itself, such as a cryptographic checksum digest. This
method is employed in the CRAM format (Hsi-Yang Fritz et al., 2011),
which uses a MD5 digest to identify the correct reference during read re-
constitution. The European Nucleotide Archive (ENA) developed the
CRAM reference registry (CRR) to retrieve reference sequences by an

MD5 sequence checksums. Similar ideas have been employed by tximeta
to aid reproducible RNA-seq analysis (Love et al., 2020).

This manuscript describes a new application programming interface
(API), called refget, which enables retrieval of full-length sequences or
sub-sequences via a checksum identifier, returns metadata associated
with an identifier and maintains compatibility with the CRR. Our API
operates over HTTP(s) and so is accessible in all main-stream program-
ming languages. We also present four implementations of the refget
specification deployed across in-house and cloud infra-structures, and a
toolkit to assess implementation compliance.

2 Results

The refget protocol operates with a client providing a supported di-
gest identifier with an optional linear or circular genomic coordinate
range, specified as URL parameters or a Range header, via a HTTP(s)
GET request. An implementation responds with an unbroken stream
of sequence characters. Users may request a metadata JSON docu-
ment, which provides information about the sequence length, top-
ology, known digests and any other known aliases. Finally, clients
can request a JSON document of server capabilities allowing for
adaptation to possible limitations of an implementation.
Implementations are not restricted to a single type of reference

VC The Author(s) 2021. Published by Oxford University Press. 299

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(1), 2022, 299–300

doi: 10.1093/bioinformatics/btab524

Advance Access Publication Date: 14 July 2021

Applications Note

https://orcid.org/0000-0002-8886-4772
https://orcid.org/0000-0002-2639-7187
https://orcid.org/0000-0001-7532-6898
https://w3id.org/ga4gh/refget
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab524#supplementary-data
https://academic.oup.com/


sequence to serve and can provide DNA, mRNA, cDNA, CDS or
peptide sequences. Should an implementation wish to provide a
CRAM reference registry (CRR) compatible deployment they must
mirror reference sequences as found in ENA.

The Refget defines three supported identifier algorithms: MD5,
TRUNC512 and GA4GH Identifier. All three algorithms normalize
sequences by stripping all whitespace characters and restricting to char-
acters in the range A-Z. We chose this as a compromise between the
methods and requirements employed by CRAM, ENA and the
Variation Representation Specification (VRS). MD5 is supported to
maintain compatibility with CRAM format. However, hash collisions
are a known weakness and to mitigate this concern, we have used the
sha512t24u identifier scheme (Hart and Prli�c, 2020) (also known as the
GA4GH identifier) as employed by the VRS standard. In addition, we
created a parallel format called TRUNC512, which represents
sha512t24 as a hex string to maintain a similar representation to MD5.
These schemes are described in Figure 1. However, sha512t24u is the
preferred representation due to its use in VRS. We tested sha512t24u to
the MGnify (Mitchell et al., 2018) May 2019 protein database of �1
billion entries and found no collisions (see Supplementary Material). To
retrieve a reference sequence, a client constructs a URL such as https://
www.ebi.ac.uk/ena/cram/sequence/3332ed720ac7eaa9b3655c06f6b9e
196, sets the acceptable media type to text/plain and uses a HTTP
library such as Python’s requests package to negotiate the request (see
Supplementary Material for additional examples).

3 Implementation and compliance

Four implementations exist across a diverse range of providers
including ENA, Amazon Web Services (AWS) and Heroku (see
Supplementary Materials). We developed a refget compliance docu-
mentation (https://compliancedoc.readthedocs.io/) and library suite
(https://pypi.org/project/refget-compliance/) to ensure implementa-
tion compatibility. The compliance toolkit mandates an implementa-
tion hosts three sequences; Enterobacteria phage phiX174 sensu lato
(NC_001422.1) and Saccharomyces cerevisiae S288C chromosomes
I (BK006935.2) and IV (BK006938.2). Certain tests can be skipped
if a pass was not possible e.g. we do not test circular sequence re-
trieval if a server declares it does not support circular sequences.
Tests are run daily against all known implementations and a report
is published at https://w3id.org/ga4gh/refget/compliance. We have
also implemented a local Python interface in the refget Python pack-
age, hosted at PyPI (https://pypi.org/project/refget/). This package
provides a local implementation of the refget protocol with SQLite,
or MongoDB back-ends, and can connect to a remote API to provide
local caching of retrieved results to improve performance for appli-
cations that require repeated lookups. It also provides Python func-
tions to compute refget identifiers from within Python using raw
sequences or FASTA files. Use of this package is shown below.

import refget
srv ¼ “https://w3id.org/”
url ¼ srv þ “ga4gh/refget/reference/sequence/”
rgc ¼ refget. RefGetClient(url)

rgc.refget(“6681ac2f62509cfc220d78751b8dc524”,
start¼0, end¼10)

4 Discussion

Reference sequences are fundamental for providing a stable method
of describing genomic variation and annotation. Refget formalzses a
method for generating identifiers from reference sequence and speci-
fies an API to retrieve sequences, sub-sequences and metadata. The
specification is easy to implement with a mechanism to assert specifi-
cation compliance. Refget can host any type of reference sequence,
allows deployments to implement subsets of functionalities and pro-
vides a mechanism for deployments to programmatically declare
this. Future work includes the definition of a reference sequence col-
lection using checksums and sequence metadata, e.g. a genome and
to provide a way to convert between known reference sequence
names to refget identifiers.

Acknowledgements

The authors acknowledge the support of the GA4GH secretariat, data security

work stream, regulatory and ethics work stream, steering committee and ex-

ecutive committee. They thank Dixie Baker, James Bonfield, Gustavo

Glusman, Reece Hart, John Marshall, Mike Love, Angel Pizzaro and Heidi

Sofia for insightful comments.

Funding

This work was supported by the Wellcome Trust [grant numbers WT201535/

Z/16/Z, 206194]; the Australian Genomics Health Alliance [NHMRC grant

number 1113531]; the Australian Medical Research Future Fund; National

Institute of General Medical Sciences under award number GM128636; and

the European Molecular Biology Laboratory. For the purpose of Open

Access, the author has applied a CC BY public copyright licence to any

Author Accepted Manuscript version arising from this submission.

Conflict of Interest: none declared.

Data availability

No new data were generated or analysed in support of this research.

References

Hart,R.K. and Prli�c,A. (2020) SeqRepo: a system for managing local collec-

tions of biological sequences. PLoS One, 15, e0239883.

Fritz,M.H.-Y. et al. (2011) Efficient storage of high throughput DNA

sequencing data using reference-based compression. Genome Res., 21,

734–740.

Karsch-Mizrachi,I. et al.; International Nucleotide Sequence Database

Collaboration. (2018) The international nucleotide sequence database col-

laboration. Nucleic Acids Res., 46, D48–D51.

Lee,C.M. et al. (2020) UCSC Genome Browser enters 20th year. Nucleic Acids

Res., 48, D756–D761.

Love,M. et al. (2020) Tximeta: reference sequence checksums for provenance

identification in RNA-seq. PLoS Comput. Biol., 16, e1007664.

Mitchell,A.L. et al. (2018) EBI Metagenomics in 2017: enriching the analysis

of microbial communities, from sequence reads to assemblies. Nucleic Acids

Res., 46, D726–D735.

Yates,A.D. et al. (2020) Ensembl 2020. Nucleic Acids Res., 48, D682–D688.

Fig. 1. Summary of the sequence normalization and algorithm used to generate checksum identifiers for TRUNC512 and GA4GH Identifier. All methods move through the

same normalization process but differ in their choice of checksum algorithm (MD5 versus SHA-512)

300 A.D.Yates et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab524#supplementary-data
https://www.ebi.ac.uk/ena/cram/sequence/3332ed720ac7eaa9b3655c06f6b9e196
https://www.ebi.ac.uk/ena/cram/sequence/3332ed720ac7eaa9b3655c06f6b9e196
https://www.ebi.ac.uk/ena/cram/sequence/3332ed720ac7eaa9b3655c06f6b9e196
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab524#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab524#supplementary-data
https://compliancedoc.readthedocs.io/
https://pypi.org/project/refget-compliance/
https://w3id.org/ga4gh/refget/compliance
https://pypi.org/project/refget/

