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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) enables transcriptome-wide gene expression measurements at
single-cell resolution providing a comprehensive view of the compositions and dynamics of tissue and organism devel-
opment. The evolution of scRNA-seq protocols has led to a dramatic increase of cells throughput, exacerbating many of
the computational and statistical issues that previously arose for bulk sequencing. In particular, with scRNA-seq data all
the analyses steps, including normalization, have become computationally intensive, both in terms of memory usage
and computational time. In this perspective, new accurate methods able to scale efficiently are desirable.

Results: Here, we propose PsiNorm, a between-sample normalization method based on the power-law Pareto distri-
bution parameter estimate. Here, we show that the Pareto distribution well resembles scRNA-seq data, especially
those coming from platforms that use unique molecular identifiers. Motivated by this result, we implement PsiNorm,
a simple and highly scalable normalization method. We benchmark PsiNorm against seven other methods in terms
of cluster identification, concordance and computational resources required. We demonstrate that PsiNorm is
among the top performing methods showing a good trade-off between accuracy and scalability. Moreover, PsiNorm
does not need a reference, a characteristic that makes it useful in supervised classification settings, in which new
out-of-sample data need to be normalized.

Availability and implementation: PsiNorm is implemented in the scone Bioconductor package and available at
https://bioconductor.org/packages/scone/.

Contact: davide.risso@unipd.it or chiara.romualdi@unipd.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene expression data exhibit a scale-free power-law distribution
(k=) with the exponent fluctuating from 1 to 3. This result holds in-
dependently of experimental techniques (such as SAGE, microarray
and RNA-seq experiments) and across different organisms (Awazu
et al., 2018; Furusawa and Kaneko, 2003; Kuznetsov et al., 2002;
Nacher and Akutsu, 2006; Ueda et al., 2004).

A power-law distribution has the property that large numbers
are rare, while smaller numbers are more common. In transcriptom-
ics, this translates to the presence of a relatively low number of genes
with high expression levels along with many low-abundant genes.
This suggests the presence of a complex organization conserved
among species (Barabasi and Albert, 1999).

Supported by this observation, Lu et al. (2005) and Wang (2020)
proposed two normalization methods based on Zipf’s law, a type of
power law, for microarray and RNA-seq data, respectively, showing
promising results. Zipf’s law (also known as Z distribution) is a
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discrete variant of the Pareto distribution that in turn is a continuous
power law.

Many between-sample normalization methods have been pro-
posed for bulk and single-cell RNA-Seq data, and several attempts
have been made to determine the best normalization procedure
(Cole et al., 2019; Dillies et al., 2013; Evans et al., 2018; Tian et al.,
2019). The general conclusion of these studies is that different data-
sets require different normalization strategies, and that the perform-
ance of normalization is influenced by many dataset-specific
characteristics, such as sample heterogeneity, library preparation
protocol and sequencing depth.

Apart from the statistical aspects, single-cell RNA sequencing
(scRNA-seq) has posed new considerable computational challenges.
The increase in the number of cells per experiment translates into a
dramatic increase in the data points to be analyzed, requiring meth-
ods able to efficiently scale to millions of cells, both in terms of
memory usage and computational time. Typically, each step of the
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analysis, from normalization to clustering and functional analyses,
can be highly demanding when dealing with hundreds of thousands
or even millions of cells (Hicks et al., 2021; Lihnemann et al.,
2020). In this perspective, a desirable normalization method should
be able to scale efficiently with the number of cells, while simultan-
eously maintaining a good performance.

In the analysis of bulk and single-cell RNA-seq data, two major
classes of between-sample normalization methods have been pro-
posed: global scaling and non-linear approaches. The simplest scal-
ing method is the Count Per Million (CPM) transformation, which
simply scales the observed read [or unique molecular identifiers
(UMI)] counts by the total number of sequenced reads (or UMIs)
per sample. More robust scaling procedures have been proposed in
the bulk RNA-seq literature, such as TMM (Robinson and
Oshlack, 2010), geometric mean scaling (DESeq2; Anders and
Huber, 2010) and upper-quartile scaling (Bullard ez al., 2010). In
the context of single-cell data, a popular scaling approach is the de-
convolution strategy proposed in Lun et al. (2016a) and imple-
mented in the scran Bioconductor package (Lun et al., 2016b).
Linnorm (Yip et al., 2017), a linear model-based scaling algorithm,
although not as popular as scran, has been shown to outperform
other methods in a recent benchmark (Tian ef al., 2019). More re-
cently, sctransform (Hafemeister and Satija, 2019) has gained
popularity due to its good performance and its integration in the
popular Seurat package (Stuart et al., 2019). Briefly, sctransform
uses the Pearson residuals of a regularized negative binomial model
as normalized data.

While CPM is scalable to millions of cells, its performance is not
always optimal (Hafemeister and Satija, 2019; Robinson and
Oshlack, 2010; Tian et al., 2019); on the other hand, more robust
normalizations, such as scran and sctransform, require a large
amount of time and/or memory in big datasets.

Here, we propose PsiNorm, a new scRNA-seq scaling normaliza-
tion method, inspired by the Pareto power-law distribution. We
compare PsiNorm to state-of-the-art methods in terms of concord-
ance, scalability and computational efficiency, as well as in terms of
the accuracy of downstream clustering. We show that PsiNorm is
the most scalable normalization among those that show good accur-
acy, being highly efficient in terms of memory usage and computa-
tional time. In particular, PsiNorm leads to comparable and
sometimes better results in terms of clustering and cell markers
detections than state-of-the-art methods, such as scran and Linnorm,
that either take longer or need more RAM. Finally, the ability of
PsiNorm to work with out-of-memory data, such as HDFS files,
allows it to efficiently normalize datasets that may not even fit in
RAM memory.

2 Approach and rationale

scRNA-seq data structures substantially differ from bulk. Potential
gene dropouts and shallow sequencing make single-cell data highly
sparse. Moreover, the ‘large p, small 7’ paradigm (p being the num-
ber of genes, 7 the number of samples) that is typical of bulk data,
is quickly moving toward the opposite scenario (17> p) with recent
indexing-based experimental protocols. With the dramatic increase
in the number of cells, all the analyses steps, including normaliza-
tion, have become computationally intensive.

While some evidence showed a good fit of power-law distribu-
tions on bulk gene expression data, only few attempts have been
made to fit such distributions to single-cell data (Townes and
Irizarry, 2020). Motivated by these observations, here we investi-
gate if and how power-law distributions could resemble scRNA-
seq data empirical distributions with the goal of normalization in
mind.

In the following, (i) we investigate the goodness-of-fit of the
Pareto (type I) and Z (Zipf’s law) distributions on scRNA-seq data
and (ii) we propose a new method, called PsiNorm, to normalize
raw read counts based on this fit. Then, (iii) we compare our nor-
malization in terms of cluster identification, concordance and com-
putational resources required (time and memory usage) with other
methods, proposed for bulk RNA-seq, such as logCPM, TMM and

DESeq2, compositional data, such as the Centered Log Ratio
(CLR), and scRNA-seq, such as Linnorm, sctransform and scran.
The choice of these normalization methods represents a compre-
hensive set of methods that either have shown good performance in
benchmark studies (e.g. Tian et al. 2019) or are popular among
practitioners for the ease-of-use of their implementation. In add-
ition, they are representative of both global scaling approaches
(logCPM, TMM, DESeq2, scran and CLR) and non-linear
approaches (Linnorm and sctransform).

Finally, we present a case study to evaluate the top performing
methods, not only in terms of clustering but also in terms of differen-
tial expression and marker detection.

3 Materials and methods

3.1 The Pareto distribution

The Pareto (type I) distribution is a continuous power-law probabil-
ity distribution with support on the positive real axis. Its cumulative
distribution function (cdf) is:

Pr(ng):l—<%>,0<m<x,oc>0

where o is the shape parameter and  is the minimum value of X.
The Pareto’s density function can be expressed as a power-law

f(x) = om®x~ ),
Given a sample of 7 independent observations, the parameter o
can be estimated using the maximum likelihood method obtaining

n

g=— (1)
log (%)

M=
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One important problem of fitting such distribution to sequencing
data is that the Pareto distribution is defined only for 72 > 0, a condi-
tion not met since we always expect some genes with zero mapped
reads.

There are two possible solutions to this problem. The first one
(that we called Pareto0) estimates o on non-zero counts, while the se-
cond one (called Pareto+ 1) fits the model on pseudo-counts (raw
counts + 1). In this second approach, & can be seen as the inverse of
the log geometric mean of the pseudo-sample:

b= )
log (x; + 1)

M=

i=1

3.2 The Zipf's law and its relation to Pareto

The Zipf’s power-law distribution originates from the observation
that the frequencies of words in a text are inversely proportional to
their ranks (Powers, 1998). It is a discrete distribution based on
ranks and its probability mass function is given by:

1/ks
H(,s)’

flk;x,I) =

where I is the number of elements, k the vector of their ranks and s
the coefficient characterizing the distribution. H(I, s) is the general-
ized harmonic series. Both Pareto and Zipf distributions are simple
power laws with negative exponent and Zipf can be derived from
the Pareto distribution if X values are binned into I ranks (Arnold,
2015; Meintanis, 2009).

Given the relationship between the two distributions, we can de-
rive that o« = 1/s (see Supplementary Text for details) (Arnold, 2015;
Meintanis, 2009). However, while the maximum likelihood estima-
tor of the Pareto o parameter has a closed-form, Zipf’s distribution
parameter does not. Hence, numerical optimization methods are
required.
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3.3 The PsiNorm normalization

The Pareto parameter o is inversely proportional to the sequencing
depth, it is sample specific and its estimate can be obtained for each
cell independently. Denoting by X the I x | matrix of read counts,
with I genes and ] cells, then the vector of normalized counts of cell
J> Xj, is equal to:

— 6)
> log (xi + 1)

Given the inverse relationship between o and the sequencing
depth, here &; is used as a multiplicative normalization factor. We
note that this essentially reduces to dividing each count by the sum
of the log-counts of each cell, rescaled by a constant, a very similar
approach to the CPM normalization. Note that often (e.g. in cluster-
ing and dimensionality reduction) it is useful to work with log-
normalized counts. In the following, we will denote with log-
normalized counts the quantity log,(x; + 1).

In the following, PsiNorm is compared with seven state-of-the-
art methods (see Supplementary Text), in terms of clustering per-
formance, concordance and computational efficiency.

3.4 Evaluation criteria

3.4.1 Cluster analyses

To evaluate the ability of normalization to remove technical bias
and reveal the true cell similarity structure, we used both an un-
supervised and a supervised approach, since we know the labels of
the datasets used for the comparison (see Section 3.5 for details).

In the unsupervised approach, we applied principal component
analysis (PCA) on the log-normalized counts and, using the first 50
PCs, we identified clusters using a partitional method (clara in the
cluster R package) with k (number of groups) equal to the known
number of clusters. Then, we computed the Adjusted Rand Index
(ARI) to compare the known and the estimated partitions (Hubert
and Arabie, 1985).

In the supervised approach, we computed the silhouette index of
the known partition in the reduced dimensional space obtained by
PCA of the log-normalized counts. The rationale is that a normaliza-
tion that properly reduces technical noise should lead to compact
clusters with high cohesion and separation that correspond to the
known cell populations.

3.4.2 Concordance analyses

We estimated within-method concordance (replicability) by random-
ly splitting each dataset into two equally sized parts and evaluating
the Jaccard index between the two lists of the 500 most variable
genes (defined by the function FindVariableFeature of the Seurat
package with method wst) after normalization. The splitting is
repeated 10 times and the average within-method concordance is
reported. Between-dataset concordance (reproducibility) has been
evaluated using scRNA-seq data of the same samples obtained with
different experimental techniques. As a measure of concordance, we
used the Jaccard index between the two lists of the 500 most variable
genes after normalization across datasets.

3.5 Real datasets

We used two sets of data to compare methods: the scRNA-seq mixed
human cell lines experiments from Tian et al. (2019), which we refer
to as the mixology dataset, and the mouse primary motor cortex
datasets generated by the BRAIN Initiative Cell Census Network
(BICCN) (Yao et al., 2020), which we refer to as the BICCN
dataset.

In the mixology dataset, five human lung adenocarcinoma cell
lines were cultured separately, single cells from each cell line were
mixed in equal proportions, with libraries generated using three dif-
ferent protocols CEL-seq2, Drop-seq with Dolomite equipment and
10x Chromium (Tian et al., 2019).

In the BICCN dataset, over 600,000 cells were characterized via
single-cell and single-nucleus RNA-seq (using 10X and SMART-seq

protocols) to comprehensively identify all cell types in the adult
mouse primary motor cortex (Yao et al., 2020).

To compare the normalization approaches in terms of concord-
ance and clustering performance, we selected a random subset of
500 cells from both single-cell and single-nucleus samples for each
sequencing protocols 10X v2, 10X v3 and SMART-Seq. All datasets
were filtered to keep only those genes with more than 1 read in more
than 5 cells and discarding cells without labels. For further details
see Supplementary Table S1.

3.6 Case study

As a case study, we use the complete 10X v2 BICCN dataset. After
our filtering procedure, we obtained a matrix with 7171 genes and
124,330 cells. Cell labels were provided by Yao et al. (2020) with
three different degree of details: cluster (a fine-grained partition that
contains cell sub-populations), sub-class (which defines the major
cell types of the adult mouse motor cortex) and class (which parti-
tions the cells in broad classes, i.e. excitatory neurons, inhibitory
neurons and non-neuronal cells). We used the sub-class label as our
ground truth.

Clusters were identified as in Section 3.4.1. Then, we used the
ARI to compare the cluster identified after each normalization with
the known labels.

We selected two contrasts, Parvalbumin GABAergic neurons
(Pvalb) versus Somatostatin GABAergic neurons (Sst) and Astrocytes
(Astro) versus Oligodendrocytes (Oligo), to evaluate normalization
methods in terms of their ability to identify cell-type markers. These
contrasts were selected because of their biological interest, as they
are closely related cellular populations, yet distinct enough to be a
reliable test. Ample literature exists on validated marker genes for
these populations, specifically, we used the Sst and Pvalb genes for
the first contrast and Mbp, Rorb and Agp4 for the second (Huang
and Paul, 2019; Yao et al., 2021).

The lists of 100 most differentially expressed genes were
obtained using edgeR with normalization factors derived from the
global scaling methods evaluated in this study, including PsiNorm
(i.e. the estimated alpha parameters). We evaluated the degree of
overlap among methods and the rank of the known markers genes.
In principle, the lower the rank the better the result.

3.7 Simulated datasets

We used simulations to compare normalization methods in terms of
their computational efficiency (RAM usage and CPU time). To simu-
late data, we used the splatSimulateSingle function of the splatter R/
Bioconductor package (Zappia et al., 2017), with default parame-
ters. We set the number of genes equal to 10 000 with increasing
number of cells: 25,000, 50,000, 75,000 and 100,000 cells. RAM
usage and computational time were recorded for a single core usage.

3.8 Software and data availability

An implementation of PsiNorm is available in the scone
Bioconductor package available at https:/bioconductor.org/pack
ages/scone/. The code to generate the analysis and figures of this
manuscript is available at https:/github.com/MatteoBlla/PsiNorm-
plot.

The raw data of the mixology dataset are available in GEO with
accession code GSE118767. The processed data, used in this article,
are available at https:/github.com/LuyiTian/sc_mixology. The
BICCN dataset, generated by the Brain Initiative Cell Census
Network, is available at the NeMO archive with identifier dat-
chlngb7 and can be downloaded from https://assets.nemoarchive.
org/dat-ch1ngb7.

4 Results

4.1 Goodness-of-fit

To evaluate the goodness of fit of the Pareto and Zipf models on sin-
gle-cell data, we evaluated two distinct aspects: i) the power-law fit
and ii) the differences between expected and observed counts. We
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first visually inspected the log-log plot of the frequency of expression
versus rank (ordered from the lowest to the highest expression) to
check the approximation to a power law for three cells representa-
tive of the minimum, median and maximum sequencing depths and
for different technologies (Fig. 1A and Supplementary Fig. S1A).
Secondly, for each cell, we estimated the parameters of Pareto0,
Pareto+1 and Zipf distributions. Using these estimates, we com-
pared the log ratio between the theoretical and the empirical third
quartiles; the closer this ratio is to 0, the better the goodness of fit
(Fig. 1B and Supplementary Fig. S1B).

Single-cell data are well approximated by a power-law
(R? > 0.9) independently of the sequencing depths (Fig. 1A and
Supplementary Fig S1A and S2A). However, while Zipf’s law largely
overestimates counts, the Pareto distribution is more flexible and
better fits scRNA-seq data, as shown by the distribution of the log
ratios of the simulated versus empirical quartiles (Fig. 1B and
Supplementary Fig. S1B for the third quartile and Supplementary
Fig. S2 for the other quantiles). Indeed, while Zipf’s law uniformly
over-estimates distribution values, the log ratio between simulated
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and empirical quantiles obtained from Pareto distribution
approaches decrease with the increasing of the quantiles

(Supplementary Fig. S2). In particular, the use of the pseudo-counts
for parameter estimation (Pareto + 1) shows a better goodness-of-fit
than the removal of zero counts (Pareto0; Fig. 1B, Supplementary
Fig S1B and 2).

While, our analysis shows a reasonable goodness of fit of
power laws also for SMART-Seq data (Supplementary Fig. S3B),
confirming Pareto+1 as the most appropriate model, there are
some concerns on the fit for cells with large counts
(Supplementary Fig. S3A and C). This is reasonable, since tech-
nologies that do not include UMIs may exhibit very large counts,
leading to less skewed distributions for the most deeply sequenced
cells.

Taken together, our results indicate that the Pareto distribution
on pseudo-counts well resembles scRNA-seq data, especially those
from UMI-based platforms, independently of sequencing depths and
technology.

DropSeq

10.0

High Depth
Low Depth
* Med Depth

I:I Pareto 0

Absolute Frequencies

[:l Pareto+1
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Fig. 1. Goodness of fit. (A) Log-frequency versus log rank plot of three cells representative of the minimum, median and maximum depth for each technology. The rank is based
on the unique expression values ordered from the lowest to the highest. Each dot in the plot represents more than one gene, namely all the genes that share the same expression
value in that cell. Linear fit is reported along with least-squares estimates of the slopes and R? values of the linear fit. (B) Distribution of the log ratios between simulated and
empirical third quartiles per cell across different technologies. Supplementary Figure S2 shows the same quantity for other quantiles. The figure shows that the Zipf simulated
quantiles are far from the empirical ones, while the Pareto distribution (especially when applied to x + 1) provides a much better fit given that values are closer to zero
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4.2 PsiNorm leads to comparable distributions across

cells
Supplementary Figures S4A and S5A show the effect that PsiNorm
has on the expression distribution on three representative cells (with
low, moderate and high depths). After normalization, the distribu-
tions of the highly expressed genes (those with small ranks) are
aligned. The effect on the entire dataset can be appreciated in
Supplementary Figures S4B and S5B where the slope and intercept
distributions are reported for raw and normalized data. As expected,
after normalization the variability of both distributions is greatly
reduced.

These findings confirm that PsiNorm is able to effectively scale
the data making the distribution of highly expressed genes compar-
able across cells.

4.3 Impact of normalization on cell clustering

Organizing cells into groups is the first intermediate result of any
single-cell analysis. Here we wonder whether PsiNorm transforms
the data maintaining the similarity structure among cells, allowing a
downstream clustering algorithm to detect cell populations.

Figure 2A shows an example of principal component analysis
(PCA) obtained with different normalizations in the mixology data-
set with five groups (CELSeq2_5cl_p3). See Supplementary Figures
S6-S8 for the other datasets.

Apart from CLR that hardly recognizes the similarity structure
of some known groups, all the other methods are able to identify the
major differences among the cell lines (Fig. 2A). This is confirmed in
most of the other datasets. Interestingly, the first two components of
logCPM and sctransform normalized data did not separate well the
five classes of the 10X dataset (Supplementary Fig. S7B). However,
when looking at the full 50 components, these methods still per-
formed reasonably well in the 5 class 10X dataset (Supplementary
Fig. S9).

We computed the ARI of all partitions to compare the inferred
clusters and the real cell-line classification. Linnorm and sctransform
lead to the highest ARI, followed by PsiNorm and scran (Table 1).

Exploiting known cell labels, we used the silhouette width to
quantify the cohesion of the clusters and the separation of the cell
lines. Figure 2B and Supplementary Figure S9 show the average sil-
houette widths for each normalization-dataset combination. In gen-
eral, single-nucleus datasets show a lower average silhouette,
independently of the normalization (Fig. 2B). This is probably due to
the higher level of sparsity that characterize these data. Furthermore,
the average silhouette depends on the number of cells (the more cells
the higher the silhouette) and, perhaps unsurprisingly, on the com-
plexity of the dataset: the simple mix of cell lines from the mixology
dataset showed a higher silhouette than the complex BICCN data
(Fig. 2B). In terms of normalization performance, our analysis con-
firmed that no single method outperforms all others in all datasets:
for instance scran, which was among the top performers in the mix-
ology 10x datasets, did not perform as well in the BICCN 10x v2
datasets (both single-cell and single-nucleus). Overall, Linnorm,
sctransform, TMM and PsiNorm showed the most consistent per-
formance (Table 1).

When a normalization fails to reduce unwanted variation within
a dataset (due for instance to differences in sequencing depth), the
factors computed by the dimension reduction technique might cap-
ture technical noise rather than biological variability. To check
whether the first two PCs are capturing technical variance, we com-
puted the maximum correlation obtained between PC1 and PC2 and
cell sequencing depths (Fig. 2D and Supplementary Fig. S10). A
higher correlation indicates that the normalization was not able to
properly remove noise.

While we observed a general high correlation for CLR (and no
normalization), TMM shows high correlations only for some data-
sets confirming that these methods do not remove enough technical
variation (Fig. 2D and Supplementary Fig. $10). All other methods
performed similarly, with sctransform, DESeq2 and Linnorm as top
performers (Fig. 2D, Supplementary Fig. S10 and Table 1).

4.4 Concordance analyses

Replicability and reproducibility are two important aspects when
dealing with data transformations. Here, we defined replicability as
the ability to maintain the order of the most variable genes between
two random split of the same dataset (within-dataset concordance)
and reproducibility as the ability to maintain the order of the most
variable genes between two independent datasets measuring the
same samples (between-dataset concordance).

As expected, we observed a general higher concordance within
than between datasets (Fig. 2C). Indeed, the mean of the within-
dataset concordance was 0.59 for the mixology dataset and 0.49 for
the BICCN data. On the other hand, the average between-dataset
concordance was 0.41 for the mixology dataset and 0.24 for the
BICCN data. Single-nucleus datasets showed the lowest within-
dataset concordance while the 10x mixology dataset showed the
highest (Fig. 2C). We observed similar results for the between-
dataset concordance. As expected, between-dataset concordance
was higher for datasets from similar platform, e.g. 10x and Dropseq
showed a higher concordance than 10x and SMART-seq (Fig. 2C).
Interestingly, the concordance between single-cell 10x V2 and V3
was higher than that between single-cell 10x V2 and single-nucleus
10x V2 (and between single-cell 10x V3 and single-nucleus 10x
V3), suggesting that the 10x chemistry was less important than the
RNA provenance in determining concordance (Fig. 2C).

In terms of normalization performance, methods fell into two
main groups: raw counts and sctransform showed a high between-
dataset concordance; and PsiNorm, CLR, Linnorm, TMM, Scran,
DESeq2 and logCPM performed well both in term of within- and
between-dataset concordance (Fig. 2C and Table 1).

4.5 Computational performance

To complete our benchmark, we performed a comparative analysis
of computational performances in different simulated settings.
Figure 3A and Table 1 show the RAM usage and the elapsed time
for each method on single-core mode, except for scran, the only
method supporting multi-core parallel computing, for which we
tested the performance in the case of single- and 10-core mode. As
expected, logCPM, PsiNorm and DESeq2 are the most scalable
methods (Fig. 3B). Indeed these methods only need simple opera-
tions (such as averages and multiplications) to scale the data. While
CLR is as fast as the above-mentioned methods, it is much more
demanding in terms of memory usage. At the other end of the spec-
trum, scran and sctransform are not as scalable. sctransfrom requires
the highest amount of RAM among the tested methods, exceeding
40 GB for 100 000 cells (Fig. 3A). While scran is much more
memory-efficient, it is the slowest method, requiring at least 20 min
for 100 000 cells (Fig. 3A). Overall, PsiNorm is very scalable, being
only slightly slower than the simplest strategy (logCPM) (Fig. 3A
and B).

4.6 Case study

As a case study, we analyzed the full 10x V2 single-cell data from
the BICCN study (Yao et al., 2020). These data consists of 124 330
cells and 7171 genes.

We applied the four methods that showed the best performance
among those with a limited memory footprint, i.e. Linnorm, scran,
logCPM and PsiNorm. For scran, we used both the default setting
and the use of clustering before the normalization, an option sug-
gested in Lun et al. (2016a). Although sctransform performed well
in our benchmark, its memory usage prevents its use in very large
datasets.

Figure 4A shows the UMAP plot obtained using the first 50 Pcs
after each normalization. While all methods are able to separate the
major cell types, the comparison with the BICCN labels showed that
scran and PsiNorm lead to the best agreement in terms of ARI
(Fig. 4B).

Scran is confirmed to be the most time consuming method, tak-
ing more than 30 min to normalize the matrix. On the other hand,
PsiNorm is almost as fast as logCPM, completing the task in just
under 3 min.
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Fig. 2. (A) Principal component analysis (PC1 versus PC2) of the CELSeq dataset composed of S groups (highlighted with different colors, data ellipses were generated by using
multivariate t-distribution). See Supplementary Figures S6-S8 for PCA analyses of the other datasets. (B) Silhouette index across different datasets and different normalization
methods. Datasets are sorted by the silhouette index obtained with PsiNorm normalized data. The dot dimension is proportional to the dimension of the datasets in terms of
number of cells. See Supplementary Figure S9 for individual panels for each normalization methods. (C) The upper and the lower blocks of the heatmap show respectively the
degree of reproducibility and replicability in colour scale. The number within cells is the concordance (namely the average Jaccard index) between the top 500 variable genes
obtained in (i) random split of the same dataset (replicability) and in (ii) different datasets with the same samples but obtained with different technologies (reproducibility). (D)
The maximum correlation index between PC1 and PC2 and cell sequencing depths is reported for each dataset, see Supplementary Figure S10 for individual panels for each nor-

malization methods

Exploiting the information on the available cell types annota-
tions and the presence of known marker genes, we evaluated the
selected methods in terms of overlapping of differential expressed
gene lists and ranks of marker genes. We compared Pvalb versus Sst
neurons and Astrocytes versus Oligodendrocytes. We observed a
high agreement (81% of genes common among all methods) among
the top 100 ranked genes in Pvalb versus Sst, and a moderate agree-
ment (56% of common genes) in Astro versus Oligo. In the latter
contrast, PsiNorm’s performance is very similar to scran’s
(Supplementary Fig. S11).

To investigate the similarity between PsiNorm and scran, we
compared each method’s estimated size factors, which show a fairly
large correlation (Supplementary Fig. S12A). However, there is a
cell-type-specific effect, e.g. oligodendrocytes have consistently
lower size factor estimates in PsiNorm (Supplementary Fig. S12A).
The difference between the two size factors are more pronounced in
rare cell populations with low sequencing depths (Supplementary
Fig. S12 B and C).

Moreover, the rank of the known marker genes confirms that
scran and PsiNorm are the top performing methods, as they lead to
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Table 1. Normalization evaluation: each column reports the average values across all datasets (see Supplementary Table S2 for median

values)
Average Average Average Average Average computational RAM HDF5
ARI silhouette correlation within between costs (s) usage ready
PCA-depth  concordance  concordance (Gb)
sctransform 0.756 0.244 0.310 0.712 0.417 1154 43 No
Linnorm 0.767 0.241 0.323 0.641 0.424 446 23 No
PsiNorm 0.734 0.218 0.476 0.638 0.388 112 17 Yes
Scran 0.720 0.212 0.369 0.674 0.375 1838 16 Yes®
TMM 0.711 0.228 0.491 0.651 0.378 506 25 No
logCPM 0.696 0.180 0.450 0.676 0.368 64 12 Yes
DESeq2 0.695 0.204 0.329 0.692 0.414 192 20 No
CLR 0.626 0.191 0.714 0.661 0.270 122 40 No

Note: Computational costs and RAM usage are referred to the simulation matrix with 100 000 cells and single core mode. ‘HDF5 Ready’ means that the

method takes full advantage of the on-disk data representation and doesn’t merely work on HDFS input by loading the full matrix in memory.

*When used with clusters, loads entire cluster in memory.
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Fig. 3. Computational performance. (A) Comparative evaluation of RAM usage and computational time on simulated data with increasing number of cells using a single core.
scranl0 refers to scran with 10 cores. (B) Method scalability in terms of computational time versus number of cells

lower ranks for the known markers compared to the other methods
(Fig. 4C).

5 Discussion

In single-cell experiments, computational efficiency in terms of time
and memory usage is a key aspect. The massive number of cells,
combined with the large number of genes, make even simple scaling
normalization demanding. For instance, scran applied to a dataset of
1.3 million datasets take more than 5 h (Hicks et al., 2021).

Based on the Pareto distribution scale parameter estimate, &, we
derived a simple and scalable global between-sample normalization
method, called PsiNorm. PsiNorm is fast and memory efficient.
Moreover, through the integration with the Bioconductor
DelayedArray framework (Pages et al., 2019), it can be applied to

dense or sparse in-memory matrices as well as out-of-memory data
representations, such as data stored in HDFS5 files (The HDF Group,
1997), a feature that cannot be exploited by some of the best per-
forming methods (Table 1).

PsiNorm does not need a reference and is performed independ-
ently for each cell. This is useful for supervised classification settings,
in which it can be useful to apply normalization to new out-of-
sample data. The final goal of the transformation is to align the gene
expression distribution especially for those genes characterized by
high expression. Note that, similar to other global scaling methods,
our method does not remove batch effects, which can be dealt with
downstream tools (e.g. Butler et al., 2018; Haghverdi ez al., 2018;
Risso et al., 2014).

Globally, our results are summarized in Table 1, where the best
method for each task is reported in bold. We observed that, as
expected, normalizations specifically designed for scRNA-seq data
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Fig. 4. (A) UMAP plots based on the first 50 PCs of the 10x V2 single-cell data from the BICCN study (Yao et al., 2020) obtained with raw data and after the four best per-
forming normalizations. (B) ARI comparing the inferred versus known groups. See Section 3.6 for details on the preprocessing of the data. (C) Rank of known cell-type markers
for each normalization in the two considered contrasts. Differential expression analysis between Sst and Pvalb and between Oligo and Astro was performed with edgeR and the
rank of five canonical marker genes was computed. The lower the rank the better the normalization

are among the best performing. Among them, we found that
PsiNorm and scran show good performances in six features.

To conclude, normalization for the purpose of clustering and
cell type discovery seems less critical than normalization for dif-
ferential expression, and even very simple methods, such as
logCPM, work well in several cases. Hence, methods’ scalability
becomes an important aspect to consider in the choice of normal-
ization. Our proposed PsiNorm normalization showed a good
trade-off between accuracy and scalability, exhibiting better

performance than logCPM with only a small increase in computa-
tional time, making it a promising method for very large datasets.
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