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Abstract

Objective: The larger sample sizes available from multi-site publicly available neuroimaging 

data repositories makes machine-learning based diagnostic classification of mental disorders more 

feasible by alleviating the curse of dimensionality. However, since multi-site data are aggregated 

post-hoc, i.e. they were acquired from different scanners with different acquisition parameters, 
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non-neural inter-site variability may mask inter-group differences that are at least in part neural in 

origin. Hence, the advantages gained by the larger sample size in the context of machine-learning 

based diagnostic classification may not be realized.

Methods: We address this issue using harmonization of multi-site neuroimaging data using 

the ComBat technique, which is based on an empirical Bayes formulation to remove inter-site 

differences in data distributions, to improve diagnostic classification accuracy. Specifically, 

we demonstrate this using ABIDE (Autism Brain Imaging Data Exchange) multisite data 

for classifying individuals with Autism from healthy controls using resting state fMRI-based 

functional connectivity data.

Results: Our results show that higher classification accuracies across multiple classification 

models can be obtained (especially for models based on artificial neural networks) from multi-site 

data post harmonization with the ComBat technique as compared to without harmonization, 

outperforming earlier results from existing studies using ABIDE. Furthermore, our network 

ablation analysis facilitated important insights into autism spectrum disorder pathology and 

the connectivity in networks shown to be important for classification covaried with verbal 

communication impairments in Autism.

Conclusion: Multi-site data harmonization using ComBat improves neuroimaging-based 

diagnostic classification of mental disorders.

Significance: ComBat has the potential to make AI-based clinical decision-support systems 

more feasible in psychiatry.
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I. INTRODUCTION

Autism Spectrum Disorder (ASD) is a developmental non-focal brain disorder that is 

clinically characterized by impaired social communication, restricted interests and repetitive 

behaviors and can be diagnosed in early years of life [1]. The diagnosis of ASD is typically 

performed using observation of behavior as well as clinical interviews and questionnaires of 

the child and the parents [2]. These techniques however may create disparities in diagnosis 

and therefore it has become crucial to identify objective pathological biomarkers of ASD 

that can support clinical diagnosis, especially in ambiguity, as well as an aid in predicting 

the risk of ASD before the manifestation of behavioral symptoms [3]–[5].

Earlier neuroimaging-based research in ASD relied on univariate analysis techniques 

such as voxel-based morphometry, region-of-interest based analysis etc. These studies 

indicated widespread brain abnormalities that include gray matter, white matter volume 

differences and atrophy in frontal, parietal, temporal and limbic regions mainly based on 

structural and diffusion MRI [6]–[10]. Resting state functional magnetic resonance imaging 

(rs-fMRI) probes the dynamic alterations in ASD by mapping connectivity and deviations 

in the activation patterns [11], [12]. Existing work has illustrated altered connectivity and 

activation patterns in various brain regions within the frontal, parietal, temporal, limbic 
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and striatal regions using rs-fMRI. However, there is little agreement on the connectivity 

and activation patterns that could be attributed towards variability in populations, the pre-

processing and analytic techniques employed, MRI acquisition protocol etc. Moreover, 

these studies that relied on statistical group analysis, could not provide a patient specific 

prediction or a quantifiable score that could serve as a pathophysiological signature of 

autism.

Recent studies have therefore focused on multivariate analysis based on machine learning 

(ML) algorithms that can facilitate patient specific quantifiers of pathology. These classifier-

based techniques have illustrated reasonably high prediction accuracies using multiple 

imaging modalities that include structural MRI, diffusion MRI, magnetoencephalography 

and fMRI [13]–[19]. Furthermore, including the interactions between the brain regions via 

large scale structural and/or functional brain connectomes, ML has been able to additionally 

support in predicting ASD [20]–[22]. Connectomic multi-variate analysis methods have 

gained importance as these not only facilitate subject specific signatures but also offer a 

non-invasive means to understand the macroscopic regional interactions and anomalies that 

exist between these interactions. However, majority of these studies have been carried out on 

small locally scanned datasets and the reproducibility on other sites/scanners has not been 

evaluated thoroughly [14].

Autism Brain Imaging Data Exchange (ABIDE) is a large-scale imaging dataset (about 1000 

subjects) of MRI data pooled from multiple sites. It has provided a platform to gain a deeper 

understanding of the pathological mechanisms underlying autism. Moreover, the dataset 

facilitates as an open-access benchmarking instrument for novel ML based algorithms 

that are being developed to identify autism from neuroimaging. Earlier work on ABIDE 

employed standard machine learning algorithms on functional connectomes which includes 

general linear model, supervised methods such as support vector machines, random forest 

(RF), logistic regression, naïve Bayes classifier and linear discriminant analysis, as well 

as unsupervised methods [23]–[29]. Recent developments in identifying ASD have focused 

on employing novel deep learning algorithms, which takes the classification problem to a 

new level by allowing better predictions than standard ML algorithms [30], [31]. These 

algorithms use complex data representations and have the capability to auto-extract the most 

relevant features [32]. Convolutional neural net (CNN), a deep learning technique, has been 

applied to discriminate ASD patients with superior accuracies [33]. However, effectively 

using connectomic data for purposes of classification is more complicated when compared 

to other conventional data representations such as images or signals.

For example, CNNs inherently may not perform optimally on graphs as graphs do not 

possess a smoothly varying neighborhood like images making it complicated for the 

convolution kernel to match the underlying pattern. Accounting for this problem with CNNs, 

Parisot et al. proposed to employ graph based convolutional neural nets that represents 

populations as sparse graphs where the nodes represent the subjects and edge weights 

represent the pair-wise similarity features computed from auxiliary phenotypic data [34]. 

Although the technique combines imaging and non-imaging data, it expects the phenotypic 

information to be available for each subject. Moreover, the entire connectome is compressed 

into a single number (similarity) which may not be the best representation of the complete 
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connectome. Another deep learning technique applied to ABIDE that employs denoising 

autoencoders, has facilitated state-of-the-art accuracies. However, these do not exceed 70%, 

making these ML algorithms ineffective for clinical usage [35].

In general, prediction tasks on connectomes are non-trivial and require a cautious effort in 

engineering the most distinctive features. Moreover, with neuro-psychiatric disorders like 

autism, the differences are subtle and capturing these in a diverse population is challenging. 

Additionally, multi-center studies such as ABIDE are often afflicted with non-pathological 

variability emerging from scanner magnetic strength and vendor differences, inconsistencies 

in MR protocols and other intrinsic factors such as head motion etc. [36], [37].

Despite the promise that neuroimaging markers facilitate, translating these to the clinic 

is still infeasible. Multiple fMRI studies have reported systemic scanner differences [37]. 

However, these are not accounted for during post-processing and analysis, that in turn 

may perturb the multi-variate model. This is illustrated in a study by Lanka et al. where 

leave-site-out type of analysis was carried out using 18 different conventional machine 

learning classifiers (in ABIDE as well as other multi-site data such as ADHD-200) revealing 

a substantial drop in accuracy on test data [26], [27]. Although merging data from multiple 

sites may facilitate more generalizability to the multi-variate model, it is crucial to test the 

robustness and/or uncertainty about the adaptability to unseen datasets. Recent work in site-

harmonization, that statistically removes the scanner effects, has demonstrated exceptional 

results on diffusion imaging, structural imaging as well as on functional connectivity (FC) 

analysis [38], [39]. Applying such techniques on the 18-site ABIDE-I data may facilitate 

promising classification results as well as support in gaining insights into the discriminative 

connectivity patterns that emerge after harmonization. Our work harmonizes the ABIDE-I 

connectivity matrices using the state-of-the-art ComBat technique and employs a simple 

ANN-based architecture for classification of typically developing kids from autism [39]. Our 

sub-network-based ablation analysis on the harmonized data extracts the most significant 

sub-networks that are finally correlated with clinical markers in autism.

II. MATERIALS AND METHODS

A. Participants

The present study was carried out using the rs-fMRI data from the ABIDE-I dataset [40]. 

ABIDE is an open access, multisite image repository comprising structural and functional 

scans of ASD and matched typically developing (TD) controls [41]. We included 432 ASD 

and 556 TDs in our dataset. Note that ABIDE I data release contains 1112 subjects. We 

excluded some subjects based on the following criteria: (i) 36 PDD-NOS subjects since this 

disorder has been removed in DSM-V, (ii) 6 subjects with a diagnosis of “Asperger’s or 

PDD NOS”, (iii) 10 subjects from the UCLA (University of California, Los Angeles) site 

with partial data missing, and (iv) 72 subjects from Stanford and OHSU (Oregon Health and 

Science University) sites who did not have a DSM-IV diagnosis. This left us with a total of 

988 subjects for our analysis.
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B. Imaging

ABIDE-I encompasses rs-fMRI and T1 structural brain images that were acquired at 18 

sites. The image acquisition parameters and protocol information can be found at https://

fcon_1000.projects.nitrc.org/indi/abide.

C. Data Preprocessing

The ABIDE I fMRI dataset’s preprocessing followed a standard pipeline using Data 

Processing Assistant for Resting-State fMRI Toolbox (DPARSF) which is based on SPM 

(Statistical Parametric Mapping) [42], [43]. The pipeline consisted of first five volumes 

removal, slice time correction and motion correction. T1-weighted anatomical images were 

co-registered to the mean functional images, using which the fMRI images were spatially 

registered to a standard MNI152 template. Nuisance variables such as low-frequency 

drifts and motion parameters were regressed out. Unwanted physiological fluctuations 

(white-matter and cerebrospinal fluid signals) were removed using aCOMPCor (anatomical 

component-based noise correction). The fMRI time series from every voxel in the brain 

was deconvolved by estimating the voxel-specific hemodynamic response function (HRF) 

using a blind deconvolution procedure to obtain the latent neural signals [44], [45]. This 

is necessitated by the fact that HRF variability across brain regions and individuals has 

been shown to corrupt functional connectivity estimates [46], [47]. Further, HRFs have 

been shown to vary considerably in mental disorders including Autism [48]–[50]. Following 

deconvolution, fMRI data was then temporally band-pass filtered (0.01–0.1 Hz) using a 30th 

order finite impulse response filter.

D. Functional Connectivity computation

We used FC as the feature to classify the ASD group from the TD group. FC matrix is a 

weighted adjacency matrix, which indicates the level of co-activation between paired regions 

of interest in the brain during resting state. To construct the FC matrix, 200 homogeneous 

regions of interest (ROIs) were defined using the Craddock CC200 functional parcellation 

atlas [51]. The corresponding mean time series were extracted from these 200 regions for 

each subject. Each value in the FC matrix was calculated using the Pearson correlation 

coefficient of two corresponding time series. The range of each value in the FC matrix 

is from −1 to 1. The 200×200 correlation matrix across 988 subjects was vectorized by 

removing the upper triangle owing to the symmetric nature of the matrix. The diagonal 

elements which correspond to self-correlation were omitted. Thus, a column array of 19900 

values was obtained for analysis.

Further, the fMRI FC matrices were Fischer-Z transformed. Absolute values of the matrices 

were used. Twelve sub-networks namely sensory/somatomotor hand, sensory/somatomotor 

mouth, cingulo-opercular task control, auditory, default mode, cingulo-parietal, visual, 

fronto-parietal task control, salience, subcortical, ventral attention and dorsal attention 

were identified among the ROIs used. In addition, we extracted seven global graph 

theoretical measures for each sub-network. The graph measures obtained included 

density, modularity, transitivity, global efficiency, assortativity, characteristic path-length 

and clustering coefficient. Associations were assessed between global measures of each 

sub-network and symptom-severity/behavioral measures of the subjects’ ADIR-Social and 
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Verbal scores. Multiple comparisons were corrected using the false discovery rate (FDR) 

method.

E. ComBat Harmonization

To evaluate whether site-harmonization impacts the power of classification models in 

predicting diagnostic status using the ABIDE dataset, we employed ComBat named for 

‘combating batch effects when combining batches’ [52]. ComBat technique was initially 

developed for adjustment of batch effects in genomic microarray analysis and has since been 

applied to harmonization of diffusion tensor imaging data [39] and brain connectivity data 

[53]. ComBat is based on the empirical Bayes method; it assumes that the errors introduced 

in the imaging features can be standardized by adjusting the location (means) and scale 

(variances) across the batches. This location and scale (L/S) model is defined as:

yijv = αv + Xijβv + γiv + δivεijv (1)

Where, for every feature v, in our case, this is the connectivity between two given brain 

regions, yijv represents the actual value of the feature which in our case, it is the actual value 

of FC between the given brain regions for the scan j at site i. αv corresponds to the overall 

feature value for the feature v. X is a design matrix for the covariates of interest (e.g. age 

and gender). βv is the feature specific vector of regression coefficients corresponding to X. 

The terms γiv and δiv represent the additive and multiplicative site effects of site i for feature 

v respectively and εijv is the error term which is assumed to follow a normal distribution 

with mean zero and variance σv2. ComBat improves the variance of the parameter estimates 

γ iv and δ iv by estimating an empirical statistical distribution for each of those parameters. It 

assumes that all the features share the same common distribution, and site-effect parameters 

have the parametric prior distributions. The hyperparameters are estimated empirically from 

the data as described in [52]. The final ComBat-harmonized values are defined as:

yijv
ComBat =

yijv − αv − Xijβv − γiv*
δiv*

+ αv + Xijβv (2)

F. Classification

We employed three classification techniques that include an artificial neural network (ANN) 

architecture, random forest (RF) classification as well as state of art auto-encoders as 

proposed by Heinsfeld et al. on harmonized and non-harmonized connectivity matrices [24], 

[35], [54]. For all the methods, classification was implemented in leave-one-site-out (LOSO) 

manner. Of the 18 available scanner sites, the training set included subjects belonging to 17 

sites and the remaining site was used for testing.

1) ANN—The ANN approach comprised of a shallow set of dense layers for the 

classification task. The architecture for the ANN model included a dense layer at the 

input. This dense layer consisted of 19900 neurons corresponding to the vectorized array 

of input from the connectivity matrices. A hidden layer with 16 neurons was employed to 
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scale down the dimensionality and learn the classification encodings followed by a ReLU 

activation function. Batch normalization was used between layers and dropout of 0.5 was 

applied before the final layer [55]. The final output dense layer had 2 neurons corresponding 

to the autistic and typically developing class with a SoftMax activation function yielding 

probability values for every class. Training was performed with Adam optimizer using 

binary cross-entropy as the loss function. An illustration of the ANN architecture is provided 

in Fig. 1.

2) Autoencoders—This network architecture involved denoising autoencoders to scale 

down the dimensionality of data from 19900 features to 1000 features using a first 

autoencoder setup. Input features were corrupted by adding noise with data corruption of 

20% (binomial distribution: n=1, p=0.8). Dimensionality was further reduced from 1000 

features to 600 features using a second encoder-decoder model with corruption of 30% this 

time (binomial distribution: n=1, p=0.7). The classifier comprised a model which takes its 

shape based on the first two auto-encoders with 19900 neurons at the input dense layer 

followed by 1000 and 600 neurons in intermediate hidden layers. Finally, a SoftMax based 

dense layer with two neurons was employed for the two classes. The weights of the classifier 

were initialized with the weights of autoencoders used for dimensionality reduction to utilize 

the knowledge extracted from the autoencoders. For details, please refer to Heinsfeld et al. 

2019 [35]. An illustration of the auto-encoder architecture is provided in Fig. 1.

3) Random forests—The random forest (RF) classification involved an ensemble of 

classification trees for predictive modeling of the connectivity matrix [54], [56]. It uses 

‘bagging’ (bootstrap-aggregating) and feature randomness when building each individual 

tree to try to create an uncorrelated ‘forest’ of trees whose combined prediction is more 

accurate than that of any individual tree.

The number of estimators was set to 100 trees with minimum samples per leaf equal to 

1. The data samples were split based on the condition of minimum samples equal 100. 

Maximum of square root of the total features was chosen at a time for the input per 

estimator. Gini impurity which measures the likelihood of an incorrect classification of a 

new instance of a random variable was used as the loss function and bootstrapping was set to 

True to train the RF classifier. An illustration of the RF architecture is provided in Fig. 1.

G. Ablation analysis

Gaining deeper understanding about the discriminative connectivity sub-networks is crucial 

for clinical interpretability. To this end, we performed ablation analysis between 12 

well-defined sub-networks (please refer to Table S1 in the supplement for ROI names, 

MNI coordinates and corresponding sub-networks). The sub-networks included sensory/

somatomotor hand (15 ROIs), sensory/somatomotor mouth (3 ROIs), cingulo-opercular task 

control (12 ROIs), auditory (9 ROIs), default mode (41 ROIs), cingulo-parietal (3 ROIs), 

visual (20 ROIs), fronto-parietal task control (24 ROIs), salience (10 ROIs), subcortical (25 

ROIs), ventral attention (8 ROIs), dorsal attention sub-networks (13 ROIs) and uncertain 

(17 ROIs; regions that did not belong to any other defined network). One of these network 

assignments were made to each of the 200 ROIs (the number of ROIs in each network is 
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mentioned above). The networks, originally derived in Power et al. were adopted to the 

CC200 atlas by matching each CC200 ROI with an ROI from the Power264 atlas, and 

then assigning the network based on Power264’s network assignment [57]. The criteria for 

matching was the minimum Euclidean distance between the CC200 and Power264 ROIs. 

The assignments were further manually checked to ensure that the ROIs from the two atlases 

were visually and numerically close by.

For ablation analysis, the fMRI connectivity matrix was separated based on the sub-

networks assigned to every node. A zero-valued mask was generated for each sub-network. 

Each mask was multiplied with the input array of 19900 elements separately to obtain a 

vector consisting of feature values belonging to all other subgroups except the one to be 

ablated. The resultant output was fed as input to the ANN based classifier for inferencing. 

Ablated sub-network inferencing was performed by occluding each sub-network at the input 

by multiplying with a zero-valued mask corresponding to the ablated sub-network. The 

accuracy with the ablated region was calculated and compared for a drop or increase with 

the baseline accuracy without ablation. The train-test split was based on LOSO where one 

site was tested with a trained model on rest of the 17 scanner sites. In ablation analysis, 

the sub-networks were ranked based on the drop-in accuracy for every site. Maximum 

drop indicated most significant sub-network for the classification. Frequency for every 

sub-network being the most significant was calculated.

III. RESULTS

Table I shows the comparison of classification metrics obtained from harmonized and 

non-harmonized data for each of the methods employed for a 10-fold LOSO cross-validation 

procedure. While harmonization did not have much effect on accuracy obtained from RF, 

the accuracy improved with harmonized data for auto-encoders (~2.5%) and ANNs (4.5%). 

In fact, ANN with harmonized data provided highest accuracy of 71.35%. Fig. 2 illustrates 

the site-specific classification metrics obtained from harmonized and non-harmonized data 

for each of the methods employed. The general trend across sites replicates trends observed 

in the entire dataset shown in Table I, i.e. ANN and Heinsfeld methods perform better than 

RF and that performance metrics for harmonized data outperform those obtained from non-

harmonized data at almost every single site. The area under receiver operator characteristic 

curve (AUROC) over the complete harmonized dataset and non-harmonized dataset is shown 

in Fig. 3. For the RF classifier, AUROC of harmonized data was 0.665 whereas AUROC 

of non-harmonized data was 0.616. Substantial increase in AUROC was observed for the 

ANN classifier where AUROC for harmonized data was 0.798 compared to AUROC for 

non-harmonized that was 0.602. Heinsfeld’s approach of using denoising autoencoders gave 

an AUROC of 0.792 for harmonized data and an AUROC of 0.718 for non-harmonized data.

The brain regions representing the 12 sub-networks used in ablation analysis of harmonized 

data with the ANN classifier is shown in Fig. 4. The corresponding results are illustrated 

in Fig. 5, which shows the drop in accuracy when any of the given 12 sub-networks are 

occluded from the analysis. The drop in accuracy (indicated as positive values) is shown 

for individual sites in the LOSO framework. It can be seen that there is some variability 

across sites. Therefore, we assessed the frequency of drop in accuracy, i.e. the number of 
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sites where in a drop in accuracy is observed, for occlusion of each of the sub-networks 

in ablation analysis (Fig. 6). The percentage drop in accuracy (the median and range is 

shown) across all sites when each of the sub-networks are occluded in the ablation analysis 

is also shown in Fig. 6. Both in terms of frequency and absolute percentage drop in accuracy, 

sensory/somatomotor (drop in 10 sites), auditory (drop in 9 sites), cingulo-opercular task 

control (drop in 10 sites) and cingulo-parietal (drop in 11 sites) networks stand out.

Although the percentage drop in accuracy was not very high, the dorsal attention network 

showed a drop in 9 sites. T-test performed between baseline accuracies and accuracies 

obtained after ablation showed near-significant p-values for Cingulo-opercular task control 

sub-network (p = 0.07) and Cingulo-parietal network (p = 0.1).

Only the characteristic path-length of the auditory sub-network showed a significant positive 

correlation with ADIR verbal scores in the Autism group alone (n=234) as shown in Fig. 7 

(FDR-corrected q=0.04). Subsequently, sub-networks identified as important in the ablation 

analysis (sensory/somatomotor, auditory, cingulo-opercular task control and cingulo-parietal 

sub-networks) were combined and graph measures obtained from them and correlated 

with non-imaging measures controlling for gender and age in the Autism group. For this, 

Global Efficiency and ADIR-Verbal scores were found to have a negative correlation with 

a p-value of 0.01. However, this did not survive FDR correction for multiple comparisons 

(FDR-corrected q=0.08).

IV. DISCUSSION

With the advent of multi-site publicly available neuroimaging data repositories, there has 

been renewed interest in leveraging the larger sample size for predicting diagnostic status of 

subjects within a machine learning framework [58]. The larger sample size makes machine 

learning more feasible by alleviating the curse of dimensionality. However, many of these 

multi-site data are aggregated post-hoc, i.e. they were acquired from different scanners with 

different acquisition parameters. Consequently, inter-site variability may mask inter-group 

differences, and hence, the advantages gained by the larger sample size in the context of 

machine learning based diagnostic classification may not be realized. Our work focused 

on addressing this issue using harmonization of multi-site neuroimaging data to improve 

diagnostic classification accuracy. Specifically, we demonstrate this using ABIDE multi-site 

data for classifying individuals with Autism from healthy controls using resting state fMRI-

based functional connectivity data. We demonstrate that consistently higher classification 

accuracies across multiple classification models can be obtained from multi-site data 

post harmonization with the ComBat technique as compared to without harmonization, 

outperforming earlier results from existing studies using ABIDE. Furthermore, our sub-

network ablation analysis facilitated important insights into ASD pathology by determining 

the importance of each sub-network based on their drop in accuracy across all the sites.

Multi-scanner and multi-site studies such as ABIDE are significantly affected by inter-

scanner variability. These variations usually arise from scanner hardware and calibration, 

magnetic homogeneity, acquisition parameters and reconstruction algorithms. These inter-

site disparities can be detrimental to the study under consideration as these can limit 
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the power to detect statistical differences and sometimes may also lead to erroneous 

findings. For functional MRI, previous work has illustrated existence of site differences 

that cannot be removed completely via ICA based techniques [59]. It is therefore crucial to 

employ harmonization techniques to remove the unsolicited site variations while retaining 

the underlying biological variability. Nonetheless, no studies on ABIDE till now have 

considered data harmonization on fMRI connectivity across sites before analyzing and 

interpreting ASD pathology.

We employed ComBat harmonization on ABIDE data, which earlier has been shown to 

eliminate site differences in functional connectivity while retaining the biological variability 

[53], [54]. Post harmonization, we employed standard classification models such as random 

forests and ANNs as well as the top performing model from earlier work by Heinsfeld et 

al. [35]. In all the classification models we observed that the overall accuracy increased 

significantly after harmonization (Table I). Validation was performed using leave one site 

out type analysis, where again we demonstrated that harmonized data could preserve and 

add power to detect subtle biological variations (17/18 sites using ANN, 14/18 using RF 

illustrated higher accuracies) in the absence of site-variations resulting in superior and robust 

classification between ASD from TD subjects which was also reflected in the AU-ROC 

analysis. Also, for the technique from Heinsfeld et al. which relied on de-noising auto-

encoders for generalizability, harmonization was crucial for capturing sensitive variations 

(in 12 out of 18 sites (in 676 subjects)) and to boost the classification accuracy. Heinsfeld 

et al’s method used denoising auto-encoders which were able to eliminate noise from 

the connectivity matrices. The weight parameters used for denoising were further used to 

initialize the parameters for the classifier which resulted in better performance. The sites 

CALTECH and SBL match the sites where Heinsfeld et al. illustrated lower accuracies as 

well. The data acquired from these sites has high intra-site variability that is not present 

in data from other sites, a probable reason why harmonization did not help [35]. Novel 

AI-based data harmonization has illustrated superior results in general, however at the same 

time it is yet to be demonstrated in the context of neuroimaging-based classification (and 

specifically ABIDE) wherein we have high dimensionality and relatively small sample size 

[60].

To understand the neural patterns that were highly discriminative between ASD and TDs and 

contributed to the classification, we performed an ablation analysis where each sub-network 

was removed, and the ANN classifier was employed to find the drop in the accuracy. The 

results of this analysis (Figs 5 and 6) highlight the role of a few sub-networks namely 

sensory/somatomotor, auditory, cingulo-opercular task control and cingulo-parietal networks 

whose absolute drop in accuracy was generally higher than other networks. In addition, a 

drop in accuracy upon their ablation was found in 9–11 of the 18 sites. Thus, the most 

discerning brain regions which contributed to the classification were known. We could 

precisely quantify the contribution of every subnetwork based on the drop in accuracy.

Heightened sensitivity to sensory stimuli is a behavioral hallmark of Autism. Therefore, it 

is not surprising that neural abnormalities in sensory processing and alterations in sensory 

networks including somatomotor and auditory network has been observed before [61], [62]. 

Specifically, with respect to the auditory network, we found that Autistic subjects with 
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higher characteristic path length also had a higher ADIR-Verbal score (Fig. 7). A larger 

value of characteristic path length indicates lower efficiency in the network and hence it is 

not surprising that it is associated with greater impairment in verbal communication. This 

also lends credence to the notion that verbal communication difficulties in Autism may be 

linked to impairments in auditory processing of sensory stimuli [63].

Cingulo-opercular and cingulo-parietal networks are basically control networks that are 

involved in a variety of executive functions including attention, salience, social cognition 

and communication [64]–[66]. Autism involves deficits in these domains and therefore, it is 

not surprising that we found these networks to be important for discrimination. In fact, our 

results are supported by previous studies that also found alterations in resting state networks 

anchored in the cingulate to be critical for identifying subjects with Autism [67]–[71].

V. CONCLUSION

In summary, our work illustrates the importance of site-harmonization in analysis of 

benchmark datasets such as ABIDE. Our classification using simple neural network models 

facilitated superior accuracy on harmonized data compared complex models that have been 

previously proposed. Ablation analysis was crucial for delineating the most discriminative 

sub-networks that were directly linked to the clinical markers of Autism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A schematic diagram of all the classification methods used. An artificial neural network 

(ANN) based classifier was implemented along with a Random forest (RF) of classification 

trees. Architecture for classification involving denoising autoencoders based on Heinsfeld et. 

al. has been shown.
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Fig. 2. 
Bar chart showing the site-specific accuracy, sensitivity and specificity obtained from 

harmonized as well as non-harmonized data for the three methods (random forests, artificial 

neural networks and Heinsfeld’s auto-encoders) employed.
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Fig. 3. 
Comparison of Area under receiver-operating characteristic (AU-ROC) between harmonized 

and non-harmonized datasets for all the classification methods used.
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Fig. 4. 
Brain maps showing ROIs associated with each of the 12 sub-networks used in the ablation 

analysis. Table S1 in the supplement provides further information about each sub-network, 

such as ROIs in each sub-network, their names and MNI centroids.
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Fig. 5. 
Results from the ablation analysis of harmonized data with the ANN classifier. The drop in 

accuracy due to occluding every sub-network can be observed per test site (LOSO). Positive 

values indicate a drop in accuracy due to ablation.
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Fig. 6. 
The percentage drop in accuracy (the median and range is shown) across all sites when each 

of the sub-networks are occluded in the ablation analysis (top). The frequency of drop in 

accuracy, i.e. the number of sites where in a drop in accuracy is observed, for occlusion of 

each of the sub-networks in ablation analysis (bottom).

Ingalhalikar et al. Page 20

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Correlation between characteristic path length obtained from the FC matrices of the auditory 

network in Autism subjects with the ADIR verbal scores in those subjects.
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TABLE I

10-FOLD CROSS-VALIDATION PERFORMANCE OF RANDOM FOREST (RF), ARTIFICIAL NEURAL 

NETWORK (ANN) AND AUTO-ENCODER (FROM HEINSFELD ET AL.) USING HARMONIZED AND 

NON-HARMONIZED DATASETS

RF ANN Heinsfeld et al

Non-harmonized data

Accuracy (%) 60.93 65.99 67.61

Sensitivity 0.247 0.593 0.787

Specificity 0.890 0.712 0.532

Harmonized data

Accuracy (%) 60.63 71.35 69.93

Sensitivity 0.245 0.595 0.750

Specificity 0.886 0.806 0.634
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