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Abstract
Background: DNA methylation and gene expression are known to play impor-
tant roles in the etiology of human diseases such as prostate cancer (PCa). How-
ever, it has not yet been possible to incorporate information of DNAmethylation
and gene expression into polygenic risk scores (PRSs). Here, we aimed to develop
and validate an improved PRS for PCa risk by incorporating genetically predicted
gene expression and DNAmethylation, and other genomic information using an
integrative method.
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Methods: Using data from the PRACTICAL consortium, we derived multiple
sets of genetic scores, including those based on available single-nucleotide poly-
morphisms through widely used methods of pruning and thresholding, LDpred,
LDpred-funt, AnnoPred, and EBPRS, as well as PRS constructed using the genet-
ically predicted gene expression andDNAmethylation through a revised pruning
and thresholding strategy. In the tuning step, using the UK Biobank data (1458
prevalent cases and 1467 controls), we selected PRSs with the best performance.
Using an independent set of data from the UK Biobank, we developed an inte-
grative PRS combining information from individual scores. Furthermore, in the
testing step, we tested the performance of the integrative PRS in another inde-
pendent set of UK Biobank data of incident cases and controls.
Results: Our constructed PRS had improved performance (C statistics: 76.1%)
over PRSs constructed by individual benchmark methods (from 69.6% to 74.7%).
Furthermore, our new PRS had much higher risk assessment power than family
history. The overall net reclassification improvement was 69.0% by adding PRS
to the baseline model compared with 12.5% by adding family history.
Conclusions: We developed and validated a new PRS which may improve the
utility in predicting the risk of developing PCa. Our innovative method can also
be applied to other human diseases to improve risk prediction across multiple
outcomes.

KEYWORDS
risk prediction, polygenic risk scores, predicted gene expression, predicted DNA methylation,
integrative models, prostate cancer

1 BACKGROUND

Prostate cancer (PCa) is the most commonly diagnosed
type of cancer and the second leading cause of cancer
deaths for men in the United States [1]. Due to the huge
public health burden caused by this disease, stratifying
men based on their risk of PCa is critical to improving
screening strategies. The etiology of PCa is poorly under-
stood, with only a few established risk factors identified
such as age, race/ethnicity, and family history [2]. Epi-
demiological studies have suggested that genetic factors
play an essential role in the etiology of PCa [3]. Thus, com-
prehensive information derived from genetic factors may
contribute to PCa risk stratification.
Over the last decade, genome-wide association studies

(GWAS) have identified 269 PCa susceptibility variants

[4, 5]. As an approach to identify men of high risk from
the general population, previous studies have attempted to
construct polygenic risk scores (PRS) by leveraging known
PCa risk single-nucleotide polymorphisms (SNPs), which
showed promising performance [4, 5]. However, existing
PRSs remain unsatisfactory for providing a comprehensive
assessment of the potential of genomic information in
predicting PCa risk for the following reasons. First, GWAS-
identified susceptibility variants only explain less than
one-half of the familial PCa risk [4, 5]. Second, previous
studies did not apply comprehensive and state-of-the-art
statistical methods in developing disease prediction mod-
els [4, 5]. Instead, these studies have largely relied only on
relatively intuitive statistical methods (e.g., using GWAS-
identified risk variants to develop PRS) that may not fully
capture the predictive value of genomic information.
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Third, to date, most of the existing studies have largely
lacked testing via independent cohorts. Ideally, an inde-
pendent dataset is crucial for assessing the performance of
PRSs in an unbiased way.
It is expected that more informative PRSs incorporating

genetic factors beyond GWAS-identified risk variants
would improve the performance of a risk prediction
model. Studies suggest that methods such as pruning and
thresholding (P + T) [6] and the LDpred algorithm [7]
could facilitate the development of comprehensive PRSs
for common diseases. Using these methods, PRSs are
constructed by summing the cumulative effect of many (or
even all) genetic variants and could identify a substantially
larger fraction of the population than found by rare mono-
genic mutations at comparable disease risk [8]. However, a
more recent work testing performance in incident disease
cases reported that the addition of a PRS developed using
such methods could only modestly improve the predictive
accuracy in diseases such as coronary artery disease,
thus, limiting their clinical utility [9]. It remains largely
unknown whether these observations are indicative of the
limited clinical potential of PRS, or whether the current
observations are due to the fact that available modern PRS
methods such as P+ T and LDpredmay still be suboptimal
to capture the full potential of genetic factors. For example,
it remains largely unknown whether the information of
DNA methylation and gene expression, which are known
to be directly involved in the etiology of many diseases
including PCa, could improve PRS performance that are
not captured by existing methods. Recently, we conducted
novel transcriptome-wide association studies [10] and
methylome-wide association studies [11], and identified
multiple genes and DNA methylation biomarker candi-
dateswith genetically predicted levels to be associatedwith
PCa risk. Such strategies discovered novel PCa-associated
genes and methylation biomarkers, many of which are
distant from GWAS-identified risk variants. Importantly,
we identified that a proportion of such significant asso-
ciations tended to be independent of GWAS-identified
risk variants [10, 11]. These novel and independent signals
indicate that imputed gene expression and/or methylation
may provide additional and independent information
beyond genetic variants for disease prediction. Based
on the theory developed in causal inference [12], using
genetically imputed gene expression and methylation
can overcome unmeasured confounding factors (such as
environmental factors) and yield more accurate estima-
tions of the effects for each gene and CpG site, potentially
providing more robust and generalizable PRS. Thus, we
hypothesized that incorporating information of geneti-
cally imputed gene expression and DNA methylation may
significantly improve predictive performance. Further,
we hypothesized that an integrative PRS combining

information from multiple different PRS methods can
further improve disease prediction performance.
In the current study, we incorporated genetically

imputed gene expression and DNA methylation informa-
tion using a newly revised P + T method and combined
information from this new method and several existing
methods to build a comprehensive PCa risk prediction
model. We developed new prediction models for PCa risk
using the PRACTICAL/ELLIPSE consortia GWAS dataset
[4], a very large genetic dataset for PCa risk. We further
used independent datasets from theUKBiobank formodel
tuning and testing.

2 MATERIALS ANDMETHODS

2.1 Genetic prediction models for gene
expression of normal prostate and whole
blood tissues

The detailed information for normal prostate tissue and
blood gene expression prediction models were as previ-
ously described [13]. In brief, a joint-tissue imputation
approach that borrows information across different tis-
sues and leverages shared genetic regulatory effects was
used to develop these tissue-specific prediction models.
These predictionmodelswere developed by leveraging The
Genotype-Tissue Expression v8 data and downloaded from
Zenodo (https://doi.org/10.5281/zenodo.3842289).

2.2 Whole-blood DNAmethylation
genetic prediction models

Details for the whole-blood DNA methylation prediction
models were as previously described [14]. Briefly, the
genetic and blood DNA methylation data from the BIOS
Consortium (containing 4,008 samples; http://wiki.bbmri.
nl/wiki/BIOS_start-/) were used for the model building.
For each CpG site with a significant methylation quanti-
tative trait locus, a lasso was fit using glmnet with in-cis
SNPs closer than 250 kb as candidate predictors to predict
DNA methylation levels.

2.3 Associations of genetically predicted
gene expression and DNAmethylation
levels with PCa risk

We evaluated associations of genetically predicted gene
expression and DNA methylation levels with PCa risk by
using the S-PrediXcanmethod [15].We leveraged summary
statistics data for GWAS of 79,194 PCa cases and 61,112

https://doi.org/10.5281/zenodo.3842289
http://wiki.bbmri.nl/wiki/BIOS_start-/
http://wiki.bbmri.nl/wiki/BIOS_start-/
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controls in the consortia PRACTICAL, CRUK, CAPS,
BPC3, and PEGASUS [4]. The PCa risk GWAS summary
data were also used for risk prediction model deriva-
tion. Briefly, these included data from several GWAS: UK
stage 1 (1,854 cases/1,894 controls) and UK stage 2 (3,650
cases/3,940 controls), CaPS 1 (474 cases/482 controls) and
CaPS 2 (1,458 cases/512 controls), BPC3 (2,068 cases/2,993
controls), NCI PEGASUS (4,600 cases/2,941 controls),
iCOGS (20,219 cases/20,440 controls), and OncoArray
(46,939 cases and 27,910 controls). The genotype data were
imputed using the June 2014 release of the 1000 Genomes
Project data as a reference. Logistic regression summary
statistics were then meta-analyzed using an inverse vari-
ance fixed-effect approach.
The Z score for the associations between predicted gene

expression/DNAmethylation levels and PCa risk was esti-
mated based on the formula

𝑍𝑚 ≈
∑

𝑠∈Model𝑚

𝑤𝑠𝑚

𝜎̂𝑠
𝜎̂𝑚

𝛽𝑠

se(𝛽𝑠)
.

Here𝑤𝑠𝑚 represents the weight of the SNP 𝑠 on the expres-
sion/DNA methylation levels of the gene/CpG 𝑚. 𝛽𝑠 and
se(𝛽𝑠) refer to the GWAS-estimated effect size and stan-
dard error of the SNP 𝑠 on PCa risk, respectively. 𝜎̂𝑠 and 𝜎̂𝑚
are the estimated variances of the SNP 𝑠 and the predicted
expression/methylation level at the gene/CpG 𝑚, respec-
tively.

2.4 UK Biobank data

UK Biobank study is a large prospective cohort study
that covers a wide range of complex diseases and enrolls
individuals aged 40-69 years across the United Kingdom,
starting in 2006. Details of the UK Biobank study are
as previously described [16]. This study was approved by
the UK Biobank for using its data. Approval from UK
Biobank’s research ethics committee grants that approved
researchers donot need separate ethics approval. PCa cases
in the UK Biobank were selected by combining hospital
episode statistics (HES) data and self-reported data. Specif-
ically, cases were defined as hospital admission (data fields
41202, 41203, 41270, and 41271), type of cancer (data fields
40006 and 40013), cause of death (data fields 40001 and
40002) due to ICD-9 185.9 or ICD-10 C61, or cancer code,
self-reported (data field 20001). Non-PCa individuals were
defined as the control population. To reduce biological
misclassification, we excluded individuals from the con-
trols if they have secondary malignant neoplasm (ICD-
9 198.8 or ICD-10 C79.8) defined in hospital admission,
type of cancer, or cause of death data or if they have PCa-
related procedures (operation code 1208 or OPCS-4 M708,

M718, Y123, Y132, Y53, and Z422), leaving 2,925males in the
tuning dataset, 2,925 males in the combining dataset, and
147,701 males in the testing dataset. For the age of event,
we used the smaller value of self-reported age and calcu-
lated age based on the earliest hospital record for the event.
Prevalent casewas defined as the casewith the age of event
(i.e., having PCa) preceding the age at recruitment. Follow-
up time for each participant was calculated as the number
of years from assessment date until either event of interest
(having PCa), or competing event (other causes of death),
or censorship date (January 1, 2019).
We applied standard quality-control procedures to the

genotype data in the UK Biobank. Briefly, we downloaded
Version 3 of the Imputed Genotypes data from the UK
Biobank and restricted our analyses to autosomal genetic
variants. We kept variants with minor allele frequency
(MAF) > 1%, imputation information score > 0.3, geno-
type missing rate < 10%, and Hardy-Weinberg equilibrium
(HWE) P> 10–10. Genetic variants with ambiguous strands
(A/T or C/G) were removed. We followed the guideline
from the UK Biobank [17] and extracted the maximum
unrelated White British individuals, which were defined
as individuals with no relative 3rd degree or closer. We fur-
ther excluded outliers due to heterozygosity or genotype
missing rates (>2% missing rate) and individuals with
discordance for the reported versus genotypic inferred
sex or withdrawal of informed consent. We focused on
independent White British individuals to avoid potential
relatedness between the validation and testing datasets
[18]. Population stratification was controlled via adjusting
for the genetic principal components provided by the UK
Biobank [17].

2.5 PCa risk prediction model building,
validating, and testing

Ofnote, the validation, combining, and testing datasets can
be viewed as approximately independent datasets as we
only used the unrelated White British individuals.
Multiple sets of genetic scores were derived for each

individual, including 1) existing PRSs based on all available
SNPs, constructed by widely used methods P + T (PRSice-
2) [6], LDpred [7], LDpred-funt [19], AnnoPred [20], and
EBPRS [21], 2) Expression-PRSs constructed using the
genetically predicted gene expression levels in prostate
tissues and blood, and 3) Methylation-PRSs constructed
using genetically predicted DNA methylation levels in the
blood. For the existing PRSs using SNPs, the P+ T strategy
involves LD pruning and subsequently aggregating SNPs
that exceed a specified significance level in the GWAS,
while LDpred infers the expected regression coefficient
of SNP by considering LD among SNPs. LDpred-funt,
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AnnoPred, and EBPRS incorporate different types of
functional information when constructing the PRSs. We
followed a standard pipeline for constructing a set of
candidate PRSs using the P + T (by PRSice-2) and LDpred
strategies [8] and used default settings recommended in
LDpred-funt, AnnoPred, and EBPRS. Briefly, the PRSs
based on P+ Twere created over a range of P-value thresh-
old (1.0, 0.5, 0.05, 5 × 10−4, 5 × 10−6, and 5 × 10−8) and
r2 (0.2, 0.4, 0.6, and 0.8); the PRSs based on LDpred were
created over a range of 𝜌 values (the fraction of causal vari-
ants; 1.0, 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001); the LDpred-
funt was based on the hapmap3 subset; AnnoPred was
based on the three different tiers of functional information
(tier0, tier1, tier3; tier2 was not used due to convergence
problems) and two types of priors (h2, pT); EBPRS only
provided one PRS, with no need for tuning. For genetic
scores of predicted gene expression or DNA methylation
levels, we used the formula 𝑤𝐺𝑅𝑆 =

∑𝑝

𝑗=1
𝛽𝑗𝑆𝑁𝑃𝑗 ,

with 𝛽𝑗 representing the regression coefficient of the jth
SNP for the corresponding gene expression level/DNA
methylation level. Specifically, we proposed a revised P+T
strategy in which we calculated several scores by clumping
correlated predicted DNA methylation/gene expression
levels and aggregating the effects that exceed a specified
significance level. In other words, we replaced SNPs
with predicted gene expression/methylation levels in the
revised P + T strategy. In brief, predicted DNA methyla-
tion/gene expression levels were first clumped (P step)
so that only predicted DNA methylation/gene expression
levels that are weakly or not correlated with each other
were retained. Clumping was iteratively cycled through
all available genes/CpG sites, starting with those with the
smallest P value. Each clump contained all genes/CpG
sites in the same chromosome of the index gene/CpG site
that were correlated with the index gene/CpG site beyond
a particular correlation threshold (r2). Only the most
significant gene/CpG site in each linkage disequilibrium-
based clump across the genome were kept. Next, we
removed genes/CpG sites with a P value higher than a
particular threshold (T step). In the end, we built a PRS
as the weighted summation of the selected predicted gene
expression/DNA methylation levels with association esti-
mate betas as weights. PRSs were created over a range of P
values (5 × 10−8, 5 × 10−6, 5 × 10−4, 0.05, 0.5, and 1) and
r2 thresholds (0.2, 0.4, 0.6, and 0.8). We used the same tun-
ing parameters used in other studies [8, 9] for the standard
P + T method.
In the discovery step, we used the PCa GWAS sum-

mary statistics to calculate PRSs by the methods described
above. We divided the case-control sample of 2,925 preva-
lent PCa cases and 2,925 randomly selected controls in the
UKBiobank into two almost equal-sized subsets for tuning
scores and combining scores. In the tuning step, we used a

case-control sample of 1,458 prevalent PCa cases and 1,467
controls as tuning data to select the PRSs with the best per-
formance, defined as the maximal area under the receiver
operator characteristic curve (AUC). Specifically, for each
of the tested methods (when there were more than one
candidate score), we selected the best score with the maxi-
mal AUC in a logistic regression model, in which PCa sta-
tus was the outcome and baseline variables [including age,
first ten genetic principal components (PCs), and genotype
array] and constructed PRS were covariates. Considering
that differentmethodsmay capture different types of infor-
mation, to fully capture the potential of the PRS, we used
another independent case-control sample of 1,467 preva-
lent PCa cases and 1,458 controls to develop an integrative
PRS combining information from individual scores using
logistic regression. Briefly, we regressed the PCa status on
the 8 PRSs constructed by different methods and base-
line covariates. We then constructed the combined PRS by
𝐺𝑅𝑆 =

∑𝑞

𝑗=1
𝛽𝑗𝑃𝑅𝑆𝑗, where 𝛽𝑗 is the estimated coefficient

of 𝑃𝑅𝑆𝑗 in the logistic regression.
In the testing step, we tested the performance of the inte-

grative PRS in an independent UK Biobank data of 4,832
incident cases and 142,869 controls. Of note, we used this
design to maximize available incident cases in the testing
step. We also assessed the performance of individual PRSs
in this testing dataset for comparison with our integra-
tive PRS. Primarily, the discrimination of each model was
assessed usingHarrell’s C statistic. The C statistic is a rank-
order statistic for predictions against true outcomes, with
values ranging from 0.5 (no discrimination) to 1.0 (perfect
discrimination). To achieve unbiased evaluations, several
additional criteria includingAUC,Nagelkerke’s pseudo-R2
metric, and area under the precision-recall curve (AUPRC)
were used.
Cox proportional hazards model was used to estimate

hazard ratios (HRs) and to calculate 10-year or 5-year
PCa event probabilities. The proportionality assumption
was graphically inspected by scaled Schoenfeld residuals.
We graphically assessed the calibration of the original
models and their subsequent recalibration by plotting
the mean predicted cumulative incidence against the
observed cumulative incidence within tenths of the
predicted cumulative incidence. The calibration slope and
the Greenwood-Nam-D’Agostino test [22] were used to
quantitatively assess the calibration of models. For recali-
bration, we estimated the baseline survival function in the
cohort (through the basehaz function in R) and combined
this with the predicted HRs from the validation dataset as
a covariate in a Cox model to obtain recalibrated predicted
probabilities. For discrimination, we examined the differ-
ence in C statistics when the PRSwas added to the baseline
model and evaluated the significance of the difference of C
statistic by a one-shot nonparametric approach [23]. The
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Association statistics from association analyses 
using data of the PRACTICAL consortium

Reference panel from the UK Biobank
Phase I dataset (n = 45,216)

Derive candidate polygenic scores:
1. Pruning and thresholding of genetic variants (24 scores)
2. LDpred algorithm (8 scores)
3. AnnoPred (6 scores)
4. LDpredfun (1 score)
5. EBPRS (1 score)
6. Revised “P + T” of predicted gene expression (55 scores for blood and 55 scores 

for prostate tissue) and DNA methylation (55 scores for blood)

For each category with more than 1 score, choose the best polygenic score based on 
maximal area under the curve in the UK Biobank tuning dataset (1,458 cases/1,467 controls)

Test performance of the final model in the UK Biobank testing dataset 
(4,832 cases/142,869 controls)

Develop an integrative model combining information from individual scores 
(1,467 cases/1,458 controls) 
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F IGURE 1 Study design and workflow. Multiple sets of genome-wide polygenic risk scores (PRSs) were derived by combining summary
association statistics from association studies using data of the PRACTICAL consortium and a reference panel of 45,216 males in the UK
Biobank Phase I dataset. Candidate PRSs were derived using six strategies: 1) pruning and thresholding (P + T)– aggregation of independent
polymorphisms that exceed a specified level of significance in the discovery genome-wide association study (GWAS) (24 candidates); 2)
LDpred computational algorithm, a Bayesian approach to calculate a posterior mean effect for all variants based on a prior (effect size in the
prior GWAS) and subsequent shrinkage based on linkage disequilibrium (8 candidates); 3) AnnoPred (6 candidates); 4) LDpredfun (1 score);
5) EBPRS (1 score); and 6) revised P + T approach incorporating predicted gene expression (55 candidates for blood and 55 scores for prostate
tissue) and DNAmethylation (55 candidates for blood). For each of the above categories, the optimal PRS was chosen based on the area under
the receiver-operator curve (AUC) in the UK Biobank tuning dataset (1,458 prevalent cases and 1,467 controls). We then derived the
integrative model combining information from constructed scores (1,467 prevalent cases and 1,458 controls). We subsequently tested the
model performance in an independent UK Biobank testing dataset (4,832 incident cases and 142,869 controls)

net reclassification improvement (NRI) was applied to
assess the correct reassignment among risk categories [24].
Following previous works [8, 25], individuals were then
binned into 100 groupings based on the percentile of PRS,
and the absolute risk of PCa within each bin was deter-
mined. All statistical analyses were conducted using the R
software (The Comprehensive RArchive Network, version
3.6.0, https://cran.r-project.org).

3 RESULTS

3.1 PRS derivation, tuning, and
combining

The overall study design is shown in Figure 1. In the tuning
step, using the UK Biobank tuning dataset of 1,458 preva-
lent cases and 1,467 controls, the AUC of each of the scores
were estimated (Supplementary Table S1). For each cate-
gory containing more than one candidate score, we chose

the best score showing the highest AUC. In another UK
Biobank dataset of 1,467 prevalent cases and 1,458 controls,
we developed an integrative PRS combining information
from each score derived from the six testedmethods. Based
on checking potential collinearity issues in this step, the
PRS constructed by different tested methods tended not to
be highly correlated (Supplementary Figure S1).

3.2 Testing of the integrative PRS

To achieve unbiased and robust results, we used an inde-
pendent testing dataset (n = 147,701) for the downstream
analyses. This dataset comprises 4,832 incident PCa cases
and 142,869 non-PCa individuals. The mean age was 57.0
years, and the median follow-up time for PCa cases was
4.7 years (interquartile range, 3.9 years). We examined the
association of PRSs with incident PCa cases.
Our novel integrative strategy achieved an unparal-

leled C statistic of 0.761 [95% confidence interval (CI),

https://cran.r-project.org
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F IGURE 2 Polygenic risk score assessment with incident cases. (A) Receiver operator characteristic curves and C statistics for different
models in the independent testing dataset of 147,701 participants with 4,832 incident prostate cancer events. (B) The cumulative absolute risk
of developing prostate cancer by quantiles of the overall polygenic score. The absolute risk was calculated based on UK incidence and
mortality data and using the PRS relative risks estimated as described in the Material and Methods. The shaded part is 95% confidence
interval. (C) The absolute risk of prostate cancer according to 100 groups of the testing cohort binned according to the percentile of the
integrative polygenic risk score

0.755-0.767], significantly higher than that of the base-
line model which included age, genotype array, and pop-
ulation stratification (C statistic, 0.696; 95% CI, 0.690-
0.702) (Figure 2A and Supplementary Table S2). In other
words, the addition of our integrative PRS to the baseline
model showed a significant improvement in discrimina-
tion, with an associated change of 0.065 for C statistic (P <
0.001). Furthermore, by integrating information from dif-
ferent PRS methods, our final synthesized PRS performed
much better than the scores derived using each individ-
ual benchmark method (P + T [26], LDpred [7], LDpred-
funt [19], AnnoPred [20], and EBPRS [21]). This was also
true for several other widely used criteria for evaluating
model performance, including AUC, pseudo-R2 metric,
and AUPRC (Supplementary Table S2). Our novel strat-
egy demonstrated superior performance thanPRSs derived
using benchmarkmethods.As a result, for the downstream
analyses, we focused on the PRS constructed by our novel
integrative strategy.

3.3 PRS recalibration

When the observed andpredicted cumulative incidences of
PCa events were compared across each tenth of predicted
risk, PRS plus baselinemodel overestimated risk across the
ranges of predicted probabilities. To remedy this, following
others’ works [9, 27], we recalibrated the model by fitting
the predicted log-HRs as covariates in the model, which
substantially improved themodel calibration (Supplemen-
tary Figure S2).

3.4 Evaluation of the integrative PRS
for risk assessment of PCa

Next, we investigated the potential role of our developed
PRS in the risk assessment of PCa. We first evaluated the
HR in a Cox regression. The PRS had an adjusted HR of
2.01 (95% CI: 1.95-2.07) per standard deviation increase of
PRS (P < 0.001). Individuals in different quintiles of the
PRS had significantly different risks (Figure 2B). For exam-
ple, individuals in the top quintile of the PRS were at 5.91-
fold (95% CI: 5.27- to 6.62-fold) risk of PCa than those in the
bottom quintile (Figure 2B). Furthermore, themedian per-
centile of the PRS for PCa cases and non-PCa controls were
73 and 50, respectively. The absolute risk of PCa increased
sharply in the right tail of polygenic score distribution,
from 0.8% in the lowest percentile to 12.1% in the highest
percentile (Figure 2C).

3.5 Comparison of the PRS and family
history in risk assessment of PCa

In the end, we compared the risk assessment power
between our developed PRS and family history. We first
divided the participants in the test cohort into tertiles based
on the predicted 10-year risk from the baselinemodel: 7.9%
of participants were reclassified to a higher risk group, and
25.5% of participants were reclassified to a lower risk group
after adding PRS to the baseline model; in contrast, only
2.7% of participantswere reclassified to a higher risk group,
and 5.1% of participants were reclassified to a lower risk
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TABLE 1 Net reclassification improvement (NRI) of the developed polygenic risk score and family history in predicting the risk of PCa

Population
No. of
subjects

Five-year risk Ten-year risk
NRI for PRS
(95% CI)

NRI for family history
(95% CI)

NRI for PRS
(95% CI)

NRI for family history
(95% CI)

PCa cases 4,832 0.294 (0.283 to 0.324) −0.711 (−0.731 to −0.686) 0.266 (0.234 to 0.277) −0.717 (−0.731 to −0.659)
Non-cases 142,869 0.419 (0.411 to 0.435) 0.84 (0.837 to 0.841) 0.423 (0.400 to 0.434) 0.842 (0.824 to 0.844)
Full population 147,701 0.713 (0.697 to 0.756) 0.129 (0.109 to 0.151) 0.690 (0.649 to 0.705) 0.125 (0.113 to 0.165)

The NRI (in continuous case) of 5- and 10-year risk was calculated by adding the PRS or family history to the baseline model.
PCa, prostate cancer; CI, confidence interval.

group after adding family history to the baseline model.
Further, defining NRI in the continuous case, when the
PRS for PCawas added to the baselinemodel, the predicted
10-year risk changed by more than 1% for 44.5% of partici-
pants and changed by 5% or more for 6.4% of participants
(Supplementary Figure S3). The overall NRI was 69.0%
(95%CI, 64.9%–70.5%) (Table 1). In comparison, when fam-
ily history was added to the baseline model, the predicted
10-year risk changed by more than 1% for 5.3% of partici-
pants and changed by 5% ormore of 0.15% participants. The
increase in risk difference between cases and non-cases
(overall NRI) was 12.5% (95% CI, 11.3%–16.5%) (Table 1).
When defining NRI in the categorical case, similar find-
ingwas observed for 5-year risk prediction (Supplementary
Table S3). These suggest that the PRS developed using our
novel integrative strategy hadmuchhigher risk assessment
power than family history.

4 DISCUSSION

We developed a revised P + T method to incorporate
genetically imputed gene expression and DNA methyla-
tion into PRS. Our integrative PRS achieved an unparal-
leled C statistic of 0.761 in an independent testing dataset
of PCa cases. The PRS developed using our novel integra-
tive strategy showed much higher risk assessment power
than family history.
In recent years, there have been increasing interests

in applying PRS for risk prediction of multiple human
diseases [8, 28]. Despite the successes of earlier studies
evaluating PRS performance in datasets including both
prevalent and incident disease cases, some subsequent
studies raised concerns for the clinical utility of such PRSs
[9, 27, 29]. Indeed, when evaluating the performance of
such PRSs focusing on incident cases only, there was
limited evidence supporting the potential clinical utility
of such newly developed PRS, such as in coronary artery
disease [9, 27, 29]. It remains unknown whether the
current observations of the less encouraging utility of
PRS in disease risk prediction are due to the disadvan-

tages of currently available PRS methods which largely
miss potentially additional functional information, such as
genetically predicted intermediatemolecular levels. In this
current work, we developed a newmethod to capture such
information of genetically predicted gene expression and
DNA methylation levels. The current work suggests that
the integrative PRS incorporating such information and
information captured from other PRS methods could sub-
stantially improve prediction accuracy to a greater extent
than PRSs developed using individual existing methods
and that with family history information. The newly pro-
posed method is computationally efficient. For one chro-
mosome and a tuning parameter, the analysis of predicted
gene expression takes ∼33 s to 3.14 min (in a single core) to
run when the memory ranges from 2.4 GB to 13.4 GB. For
PCa, the disease aggressiveness, a more clinically relevant
outcome, needs to be studied for evaluating the clinical
utility of such efforts. Beyond PCa, PRSs developed using
sophisticated methods like ours could potentially have
clinical utility for other disease prediction, and high-
lights the importance of more work in this area with the
aim of decreasing disease public health burden.
It is well known that the incorporation of family his-

tory could substantially improve model performance for
risk prediction of PCa [30–34]. Interestingly, in our study,
we observed that our newly developed PRS showed signif-
icantly higher risk assessment power than family history.
The overallNRIwas 69.0%when adding the developedPRS
to the baseline model compared with 12.5% by adding fam-
ily history. This encouraging result highlights the potential
of incorporating the developed PRS for the risk assessment
of PCa.
Our developed PRS could potentially bring opportuni-

ties for reducing the public health burden of PCa, though
further studies are needed to independently assess the
clinical utility of such PRS and evaluate more clinically
relevant outcomes of aggressive PCa. The more accurate
prediction of subjects at high risks before the development
of PCa may better guide screening strategies than current
practice for identifying aggressive PCa. Importantly,
there exists a striking difference in the absolute risk of
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developing PCa between subjects with high PRSs and
those with low PRSs. For males with a PRS within the
bottom 50% range, their absolute risk was lower than 1.7%.
In contrast, males with a PRS within the top 5% range had
an absolute risk of 9.5%. These findings are very encourag-
ing for developing screening strategies for targeting such
high-risk subjects. They could also facilitate the design of
more efficient studies for identifying effective biomarkers
for aggressive PCa early detection. Individuals who stay
healthy despite a high PRS-estimated risk or develop PCa
despite a low PRS-estimated risk may be of particular
interest. Investigations on the discordance between PRS-
estimated risk andPCa status in these individualsmay gain
additional insights into the biological mechanisms of PCa,
such as identifying rare variants with large effects missed
by the PRS or gene-environmental interactions in conven-
tional study settings. Our innovative approach, including
the revised P+ Tmethod for handling genetically imputed
transcriptome and methylome information, and the novel
integrative design to capture information from multiple
methods can also be used to develop improved PRS for
other complex diseases, beyond the scope of PCa. The
calculation of risks of other diseases for each individual
would have substantial utility in better guiding prevention
or screening strategies, posing substantial public health
implications to reduce disease burdens.
There are several limitations of the current study. First,

theUKBiobank is not a representative sample of thewhole
UK population, and participants in the UK Biobank study
are generally healthier than the general UK population.
For example, compared with the general population, UK
Biobank study participants were less likely to be obese and
had fewer self-reported health conditions [35, 36]. There-
fore, our study may have underestimated the population-
level lifetime PCa risk. However, this may be alleviated by
recalibration. Second, in this study, we focused on a Euro-
pean population. The developed PRS may not necessarily
be generalizable to other ethnic groups. Future studies
focusing on other non-European ethnic groups would
be needed to better serve underrepresented populations.
Third, integrating genetic information related to other can-
cers [37] or other functional regulatory information [20]
may further improve the prediction accuracy, which war-
rants further investigation. Fourth, in the current study, we
investigated PRS that incorporate information of geneti-
cally predicted gene expression in prostate tissue and blood
and DNA methylation levels in the blood. Future work
incorporating information of genetically predicted DNA
methylation levels in prostate tissue may further improve
the model performance, particularly as it could potentially
capture more information of prostate tissue-specific
signals.

5 CONCLUSIONS

In conclusion, we developed and validated a new PRS,
which may have improved utility in predicting the risk of
developing PCa in European males.
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