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Abstract

Objective: Tryptophan can be catabolized to various metabolites through host kynurenine and 

microbial indole pathways. We aimed to examine relationships of host and microbial tryptophan 

metabolites with incident type 2 diabetes (T2D), host genetics, diet, and gut microbiota.

Method: We analyzed associations between circulating levels of 11 tryptophan metabolites and 

incident T2D in 9,180 participants of diverse racial/ethnic backgrounds from five cohorts. We 

examined host genome-wide variants, dietary intake, and gut microbiome associated with these 

metabolites.

Results: Tryptophan, four kynurenine-pathway metabolites (kynurenine, kynurenate, 

xanthurenate, and quinolinate) and indolelactate were positively associated with T2D risk, while 

indolepropionate was inversely associated with T2D risk. We identified multiple host genetic 

variants, dietary factors, gut bacteria and their potential interplay associated with these T2D-

relaetd metabolites. Intakes of fiber-rich foods, but not protein/tryptophan-rich foods, were the 

dietary factors most strongly associated with tryptophan metabolites. The fiber-indolepropionate 

association was partially explained by indolepropionate-associated gut bacteria, mostly fiber-

utilizing Firmicutes. We identified a novel association between a host functional LCT variant 

(determining lactase persistence) and serum indolepropionate, which might be related to a host 

gene-diet interaction on gut Bifidobacterium, a probiotic bacterium significantly associated with 

indolepropionate independent of other fiber-related bacteria. Higher milk intake was associated 

with higher levels of gut Bifidobacterium and serum indolepropionate only among genetically 

lactase non-persistent individuals.

Conclusion: Higher milk intake among lactase non-persistent individuals, and higher fiber 

intake were associated with a favorable profile of circulating tryptophan metabolites for T2D, 

potentially through the host-microbial cross-talk shifting tryptophan metabolism toward gut 

microbial indolepropionate production.

Introduction

Tryptophan is an essential amino acid that plays a critical role in human health and 

disease.[1] In addition to its role in serotonin and melatonin biosynthesis, tryptophan 

is the sole source for the kynurenine pathway (Figure S1),[1] in which tryptophan 

is first catabolized into kynurenine, mainly regulated by indoleamine 2,3-dioxygenase 

(IDO) and trypophan-2,3-dioxygenase (TDO), and then kynurenine is processed into 

several downstream metabolites, including kynurenate, xanthurenate, and quinolinate. The 

kynurenine pathway is involved in immune activation and inflammation regulation,[1] and 

has been associated with obesity and insulin resistance.[2, 3] In addition, tryptophan can be 

catabolized by gut microbiota, producing a variety of indole derivatives (e.g., indoleacetate, 

indolelactate, and indolepropionate) which have been shown to have beneficial effects on 

host metabolism.[4]

Emerging evidence from animal studies suggests a host-microbiota interaction on tryptophan 

metabolism which may affect host metabolic health.[5] In mice with genetic deficiency 

of IDO, tryptophan metabolism may shift from the host kynurenine pathway toward gut 

microbial indole derivative production, leading to an improvement in insulin sensitivity.
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[5] In human studies, metabolomics using a broad-spectrum of metabolites found that 

plasma levels of tryptophan[6] and two kynurenine-pathway metabolites (kynurenate and 

xanthurenate)[7] were associated with increased risk of type 2 diabetes (T2D), while a 

microbial metabolite of tryptophan, indolepropionate, was associated with decreased risk 

of T2D,[8] but relationships of other tryptophan metabolites with T2D remains unclear. 

Genome-wide association studies (GWAS) of the human blood metabolome identified 

genetic loci associated with some tryptophan metabolites and many of them might be 

involved in host tryptophan-kynurenine metabolism or metabolite transportation.[9, 10, 11] 

Dietary tryptophan is the only source of tryptophan and its catabolites for humans,[1] 

while several human studies found strong positive associations of fiber-rich food (e.g. 

fruits and vegetables) and fiber intake with circulating indolepropionate levels.[8, 12, 

13] The human gut microbiome might be involved in this relationship but underlying 

mechanisms remain unclear, since no evidence has shown that indolepropionate can be 

derived from microbial catabolism of phytochemical compounds or fiber fermentation. A 

recent study in women reported an association between gut microbiome composition and 

serum indolepropionate which appeared to be independent of host dietary fiber intake.[14] 

To the best of our knowledge, no studies have examined host and microbial tryptophan 

metabolism and T2D integrating data on host genome-wide variants, dietary intake, gut 

microbiome and circulating levels of both host and microbial tryptophan metabolites. There 

is a need to integrate different layers of data to identify more relevant associations, and 

more importantly, potential links among these association signals, which may help better 

understand host-microbial cross-talk in tryptophan metabolism and its implication in human 

metabolic health.

In this study, we hereby examined prospective associations between circulating levels of 11 

major host and microbial tryptophan metabolites and incident T2D in five epidemiological 

cohorts of multiple racial/ethnic groups, hypothesizing that kynurenine-pathway metabolites 

are associated with higher risk of T2D, while microbial indole derivatives are associated 

with lower risk of T2D. Furthermore, by integrating multi-omics data, we identified host 

genetic, dietary and gut microbial factors associated with these metabolites.

Methods

Study population

The main study population was the Hispanic Community Health Study/Study of Latinos 

(HCHS/SOL), with subsequent replication analyses conducted in four additional cohorts of 

multiple racial/ethnic groups: the Atherosclerosis Risk in Communities Study (ARIC), the 

Framingham Heart Study (FHS), the Women’s Health Initiative (WHI), and a case-cohort 

study nested in the Prevención con Dieta Mediterránea Study (PREDIMED) (Table S1). 

The HCHS/SOL is a population-based cohort that recruited 16,415 Hispanic/Latino adults 

aged 18–74 years living in 4 US metropolitan areas.[15] A comprehensive battery of 

interviews and a clinical assessment with fasting blood draw were conducted at in-person 

clinic visits during 2008–2011 (baseline) and 2014–2017 (Visit 2). Usual dietary intake was 

estimated using the National Cancer Institute methodology based on two 24-h dietary recalls 

administered at baseline.[16] The ARIC study enrolled mostly white and black participants 
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aged 45–64 years from four communities in the US in 1987–1989.[17] The FHS was 

initiated in 1971 and we included FHS participants aged 40 to 65 years who attended the 5th 

examination (1991–1995).[18] The WHI study was launched in 1993 enrolling US women 

aged 50–79 years.[19] We also used data from a case-cohort study nested in the PREDIMED 

study which is a multicenter trial initiated in 2008.[20, 21]

An expanded description of study populations, data collection, and statistical analyses is 

provided in Online Supplements. Study protocols were approved by the Institutional Review 

Boards at all participating institutions. All participants gave written informed consent.

Patient and Public Involvement

Patients or the public were not involved in the design, or conduct, or reporting, or 

dissemination plans of our research

Ascertainment of incident T2D

In all studies, participants free of diabetes at baseline who met at least one of the following 

criteria during follow-up visits or telephone interviews were defined as incident T2D cases: 

fasting time >8 hours and fasting glucose ≥7.0 mmol/L (126 mg/dL), fasting ≤8 hours 

and non-fasting glucose ≥11.1 mmol/L (200 mg/dL), post-OGTT glucose ≥11.1 mmol/L 

(200 mg/dL), HbA1C ≥6.5%, treatment with anti-diabetic medications, or self-reported 

physician-diagnosed diabetes.

Metabolomic profiling

In HCHS/SOL, serum metabolomic profiling was performed using the discoveryHD4 

platform at Metabolon Inc. (Durham, NC) in 3,972 participants randomly selected from 

the whole cohort at baseline.[22] Eleven tryptophan metabolites, including tryptophan, 

serotonin, five kynurenine-pathway metabolites (kynurenine, kynurenate, xanthurenate, 

quinolinate, and picolinate), and four indole derivatives (indoleacetate, indolelactate, 

indolepropionate and indoxyl sulfate) (Figure S1), were captured by an untargeted 

liquid chromatography-mass spectrometry (LC-MS) approach. In ARIC, seven tryptophan 

metabolites were available in the baseline serum metabolomics data measured by a similar 

LC-MS approach at Metabolon Inc.[17] In other studies, baseline plasma tryptophan 

metabolites (eight in FHS; five in PREDIMED; seven in WHI) were measured using LC-MS 

approaches at the Broad Institute (Cambridge, MA).[18, 19, 21] Metabolomic approaches 

at both Metabolon Inc. and the Broad Institute are semiquantitative. We performed inverse 

normal transformation on relative levels of metabolites and conducted analyses separately 

within each study.

Genome-wide genotyping and imputation

Genotyping was performed using a customized Illumina array (15041502 B3; llmina Omni 

2.5M array plus ~150K custom SNPs) in HCHS/SOL,[23] the Affymetrix 6.0 chip in 

ARIC,[24] and the Affymetrix 500K and a 50K Human Gene Focused Panel in FHS.[9] 

Genome-wide imputation was carried out based on the 1000 Genomes Project phase 3 

reference panel in HCHS/SOL and ARIC, and the HapMap CEU population reference panel 

in FHS.
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Metagenomic sequencing and taxonomic profiling

Metagenomics sequencing was performed on DNA extracted from fecal samples collected 

by FTA card from 3,035 HCHS/SOL participants enrolled in a gut microbiome ancillary 

study during the HCHS/SOL Visit 2,[25] by a novel shallow-coverage method of 

shotgun sequencing using Illumina platforms.[26] To account for variability in sequencing 

depth, centered log-ratio transformation was applied to taxonomic abundances using R/

microbiome. Ninety-two bacterial genera with average relative abundance≥0.01% were 

included in the current analyses.

Statistical analysis

Figure 1 shows a workflow of our analysis. In Stage I, we examined associations of 

circulating tryptophan metabolites with incident T2D, host genetics, dietary intake and 

gut microbiota using data from multiple studies (Table S1). Cox regression was used to 

estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of incident T2D per 

standard deviation (SD) increment in metabolites in each cohort separately, adjusting 

for demographic, social, behavioral, and health-related factors, and other study-specific 

covariates (Table S2). Results from each of the cohorts were combined using a fixed-effect 

meta-analysis. GWAS of standardized metabolite levels were conducted separately in 3,933 

HCHS/SOL participants, 1,509 ARIC white participants, and 1,772 ARIC black participants, 

controlling for age, sex, population stratification and other study-specific covariates. GWAS 

summary statistics for metabolites in 1,438 whites from FHS, were obtained from a previous 

publication.[9] Meta-analyses of GWAS summary statistics were conducted using METAL.

[27] Associations of serum metabolites with 10 food groups which capture commonly 

consumed foods, three macronutrients, and two nutrients of interest (fiber and tryptophan) 

were analyzed using multivariable linear regression in 3,938 HCHS/SOL participants. A 

medication analysis using multiple mediator models[28] was performed to examine the 

potential mediating effect of serum tryptophan metabolites on the association between the 

overall diet quality, measured by the Alternate Healthy Eating Index 2010 (AHEI-2010),

[29] and incident T2D in 2,821 HCHS/SOL participants. Associations of 92 gut bacterial 

genera with four indole derivatives were assessed by multivariable linear regression in 759 

HCHS/SOL participants.

Based on findings from Stage-I analyses, we performed multiple explanatory analyses in 

Stage II (Figure 1 and Table S3). We used linkage disequilibrium (LD) score regression[30] 

to estimate genetic heritability of metabolites and their genetic correlations with T2D. 

We applied the latent causal variable (LCV) model, which has been recommended to 

distinguish genetic correlation from causation, to test potential causal relationships between 

metabolites and T2D, as conventional Mendelian Randomization approaches might be 

confounded by genetic correlations reflecting shared etiology.[31] GWAS summary statistics 

for metabolites in this study (up to 9,290 participants) and those for T2D obtained 

from the Diabetes Genetics Replication and Meta-analysis (DIAGRAM) consortium 

(55,005 T2D cases and 400,308 controls),[32] were used in the genetic correlation 

analysis and the LCV models. In HCHS/SOL, we used multivariable linear regression 

to examine associations between fiber intake and indolepropionate-associated bacterial 

genera (n=2,759), and compared associations between fiber intake and indolepropionate 
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with and without adjustment for indolepropionate-associated bacterial genera (n=752). 

A mediation analysis using structural equation modelling[33] was conducted to examine 

whether indolepropionate-associated bacterial genera may partially explain the association 

between fiber intake and indolepropionate. In HCHS/SOL, we applied multivariable linear 

regression to examine associations of LCT-rs4988235 with milk intake (n=12,531), gut 

Bifidobacterium abundance (n=2,368), and serum indolepropionate (n=3,933). Multivariable 

linear regression was used to examine associations of milk intake with gut Bifidobacterium 
abundance and serum indolepropionate levels stratified by the LCT-rs4988235 genotype 

(lactase persistence AA/AG vs. lactase non-persistence GG), and the interaction between 

LCT-rs4988235 and milk intake was examined by introducing an interaction term. To 

validate the interaction between milk intake and LCT-rs4988235 on indolepropionate, a 

replication analysis was performed in ARIC (1,504 whites and 1,674 blacks).

Analyses were performed using R software unless otherwise stated. In GWAS, P<4.5×10−9 

(5.0×10−8/11 metabolites) was considered as genome-wide significant, and a false discovery 

rate (FDR)<0.05 was considered as statistically significant for other primary analyses.

Results

Tryptophan metabolites and incident T2D

Baseline characteristics of study participants are shown in Table S4. Among 2,821 US 

Hispanics/Latinos without diabetes at baseline from HCHS/SOL, 367 incident T2D cases 

were identified during a median of 5.7 years of follow-up. Among 6,359 participants, 

free of diabetes at baseline, with diverse racial/ethnic backgrounds from ARIC, FHS, 

WHI and PREDIMED, 1,665 incident T2D cases were identified during follow-up. Of 11 

metabolites, tryptophan, four kynurenine metabolites (kynurenine, kynurenate, xanthurenate 

and quinolinate) and indolelactate were positively associated with incident T2D, while 

indolepropionate was inversely associated with incident T2D after multivariable adjustment 

in combined analysis of all studies (all FDR<0.05; Figure 2, Model 1). Results were 

generally consistent across HCHS/SOL and the other four studies (Table S5). The observed 

associations were attenuated but remained significant after further adjusting for obesity 

measures including BMI and WHR, except for quinolinate (Figure 2, Model 2). Further 

adjustment for blood lipids, blood pressure, or physical activity and dietary quality did not 

materially change these associations (Table S5).

Among 2,821 HCHS/SOL participants without diabetes at baseline, metabolites that were 

positively associated with T2D (i.e., tryptophan, kynurenine, kynurenate, xanthurenate, 

quinolinate, and indolelactate) showed weak-to-moderate correlations with each other 

(Spearman’s r=0.11 to 0.63) (Figure S1), and positive correlations with multiple 

cardiometabolic traits, especially fasting insulin, HOMA-IR and BMI (Figure S1). 

Indolepropionate, the only metabolite inversely associated with T2D, was not correlated 

with other metabolites (Spearman’s r=−0.05 to 0.06), and showed significant, albeit weak, 

inverse correlations with BMI and a few other cardiometabolic traits.
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Host genetics and tryptophan metabolites

Our genome-wide meta-analyses (n=up to 9,290) identified 21 independent signals at 

13 loci associated with nine of 11 tryptophan metabolites (P<4.5×10−9) (Figure 3 and 

Table S6). Genetic variants at seven loci have not been previously associated with the 

corresponding metabolites, including those in or near SLC22A, IDO1-IDO2, AADAT, 

ACMSD, ACSM2B-ACSM1, CDK10, and LCT. We confirmed known genetic associations 

at six loci.[9, 10, 11] When the threshold of significance was relaxed to traditional genome-

wide significance (P<5.0×10−8), we found 16 additional loci associated with tryptophan 

metabolites (Table S6). Many newly identified and confirmed signals reside in genomic 

regions harboring genes involved in host kynurenine pathway metabolism (e.g. TDO2, 

IDO1-IDO2, KMO, AADAT and ACMSD) or transportation of tryptophan metabolites (e.g., 

SLC7A5, SLC22A1, and SLC16A10).

Based on GWAS summary statistics from our meta-analysis, genome-wide SNP-based 

heritability (h2) was estimated at 13.0% (SE=4.9%) for serotonin, 10.7% (5.8%) for 

indolepropionate, 7.4% (4.8%) for kynurenine, and 0–7.0% for other metabolites (Table 

S7). As expected, these genome-wide SNP-based heritability estimates were much lower 

than those estimated using the classical twin model and were generally higher than those 

estimated based on a few genome-wide significant variants in previous studies (Table S7).

[9, 10, 11] We then examined potential causal relationships between three metabolites 

(serotonin, indolepropionate and kynurenine), which had heritability estimates meeting the 

criteria for LCV models,[31] and T2D using GWAS summary statistics for metabolites in 

our study (n=up to 9,290) and those for T2D obtained in the DIAGRAM (55,005 T2D cases 

and 400,308 controls).[32] Indolepropionate showed a potential causal relationship with 

T2D (genetic causality proportion=76%, P=1.6×10−24) (Table S7).

Dietary intake and tryptophan metabolites

In 3,938 HCHS/SOL participants, we observed significant associations of higher intakes of 

vegetables, fruits, whole grains, nuts and legumes, and lower intakes of refined grains and 

red meat, with higher serum indolepropionate levels (Figure 4A). Intakes of some fiber-rich 

foods which were positively associated with indolepropionate showed inverse associations 

with other indole derivatives and most kynurenine-pathway metabolites. Mutual adjustment 

for other food groups did not materially change the results (Table S8). Consistently, 

higher fiber intake was associated with higher indolepropionate (P=7.3×10−60), and with 

lower levels of other indole derivatives and most kynurenine-pathway metabolites (Figure 

4B). These associations were independent of intakes of macronutrients and tryptophan 

(Table S9). Intakes of some protein-rich foods (e.g., red meat, poultry, and dairy) and 

tryptophan were positively associated with serum levels of tryptophan, most kynurenine-

pathway metabolites, and indoxylsulfate (Figure 4A, Table S8 and Table S9). Our mediation 

analysis in 2,821 HCHS/SOL participants without diabetes at baseline indicated a significant 

meditating effect of these tryptophan metabolites on the association between the overall diet 

quality (i.e., AHEI-2010) and incident T2D (proportion mediated=61.5%; P=0.01).

Qi et al. Page 8

Gut. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gut microbiota and indole derivatives

As indole pathway is carried out mostly by gut microbiota,[4] we examined associations 

between 92 gut microbial genera and serum levels of four indole derivatives in 759 

HCHS/SOL participants. We focused on indolepropionate and indolelactate as these 

two indole derivatives were significantly associated with incident T2D in our study, 

and identified 21 genera significantly associated with indolepropionate (FDR<0.05) but 

none associated with indolelactate (Table S10). In addition, five bacterial genera were 

significantly associated with indoleacetate and 11 were associated with indoxyl sulfate.

The 21 indolepropionate-associated genera span 3 phyla (Firmicutes, n=16; Actinobacteria, 

n=3; and Bacteroidetes, n=2) (Figure 5A). When we included all 21 genera in the 

linear regression model on indolepropionate simultaneously, associations for these genera 

(especially those in Firmicutes) were greatly attenuated or abolished, while the association 

between Bifidobacterium and indolepropionate did not change (Figure S1).

Fiber intake, gut microbiota, and indolepropionate

In 2,759 HCHS/SOL participants with diet and gut microbiome data, all indolepropionate-

associated bacterial genera were associated with fiber intake (15 genera showing 

FDR<0.05) with the same directions as those associations between bacterial genera and 

indolepropionate, except for Bifidobacterium (Figure 5B). In 752 HCHS/SOL participants 

with diet, metabolomics, and gut microbiome data, the association between fiber intake 

and indolepropionate was attenuated after further adjustment for the 20 indolepropionate-

associated bacterial genera excluding Bifidobacterium (Figure 5C). The attenuation was 

similar when including Bifidobacterium in the model. We also found a potential mediating 

effect of these 20 indolepropionate-associated bacterial genera on the association between 

fiber intake and indolepropionate (proportion mediated=22.3%; P=0.003). These results 

suggested that these 20 indolepropionate-associated bacterial genera may partially explain 

the association between fiber intake and indolepropionate, while Bifidobacterium may be 

involved in other pathways related to indolepropionate.

Host LCT, gut Bifidobacterium, and indolepropionate

We then focused on gut Bifidobacterium in association with indolepopionate, as gut 

Bifidobacterium abundance has been related to a host functional LCT variant (rs4988235)

[34, 35] and our GWAS also identified LCT as a novel locus for indolepropionate. LCT 
rs4988235 is a known variant which determines lactase persistence in adulthood (AA/AG 

is related to lactase persistence and GG is related to lactase non-persistence).[36] In line 

with previous evidence,[34, 35, 36] the rs4988235-G allele was associated with lower milk 

intake (P=1.1×10−40; n=12,531) (Figure 6A) and higher gut Bifidobacterium abundance 

(P=2.1×10−17; n=2,368) (Figure 6B) in HCHS/SOL. In our GWAS, rs4988235-G allele was 

associated with higher circulating indolepropionate levels (P=3.2×10−17 in meta-analysis, 

n=9,290; P for heterogeneity=0.51) (P=3.2×10−12 in HCHS/SOL, n=3,933; Figure 6C). 

When we included both LCT-rs4988235 and Bifidobacterium in the multivariable linear 

regression model on indolepropionate (n=752), Bifidobacterium, but not LCT-rs4988235, 

was significantly associated with indolepropionate.
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Consistent with prior evidence,[34, 35] we found that milk intake was positively associated 

with gut Bifidobacterium abundance only among lactase non-persistent participants 

(rs4988235 GG, P=1.5×10−7) but not among those with lactase persistence (rs4988235 

AG+GG; P=0.49) in HCHS/SOL (P-interaction=0.001; n=2,342) (Figure 6D). Paralleling 

the LCT-milk interaction on gut Bifidobacterium, we identified a novel interaction between 

milk intake and LCT genotype on serum indolepropionate (P-interaction=0.009; n=3,899). 

Milk intake was positively associated with serum indolepropionate levels only among lactase 

non-persistent individuals (P=6.3×10−5) but not in those with lactase persistence (P=0.92) 

(Figure 6E). This significant interaction was replicated in ARIC (P-interaction=0.001; 

n=3,178) (Figure 6F). LCT-rs4988235 did not show significant associations with intakes 

of dairy products low in lactose (e.g., yogurt, cheese) or significant interactions with other 

dairy products on gut Bifidobacterium abundance or serum indolepropionate levels (data not 

shown).

Discussion

In large-scale populations with diverse racial/ethnic backgrounds, our study demonstrated 

that circulating levels of kynurenine-pathway metabolites, a group of host tryptophan 

catabolites, including kynurenine, quinolinate, kynurenate and xanthurenate[7] were 

associated with increased risk of T2D. We also found that higher intakes of animal-based, 

protein-rich foods and lower intakes of plant-based, fiber-rich foods were associated with 

higher circulating levels of kynurenine-pathway metabolites, but the associations between 

kynurenine-pathway metabolites and T2D did not change after further adjustment for diet 

quality score. This suggests that these metabolites could be potential mediators linking 

unhealthy diets with increased risk of T2D rather than simple biomarkers reflecting adverse 

dietary effects. Moreover, these kynurenine-pathway metabolites were positively correlated 

with obesity measures and insulin resistance, and obesity may partially explain our observed 

associations between these metabolites and T2D. These findings are in line with previous 

evidence and support the notion that activation of the kynurenine pathway by obesity and 

related inflammation may affect insulin signaling and contribute to increased risk of T2D.[2, 

3, 7, 21]

Indole derivatives, a group of microbial tryptophan catabolites, are generally beneficial for 

human health.[4] Higher circulating indolepropionate has been associated with lower risk 

of T2D,[8, 12] but it was argued that this association might just reflect beneficial effects of 

dietary fiber intake on T2D.[14] Our study documented the beneficial association between 

indolepropionate and T2D and further suggested potential causality. This is consistent with 

the potential role of indolepropionate in anti-oxidation, anti-inflammation, and amelioration 

of glucose metabolism.[4]

As little evidence suggests that indolepropionate can be derived from fiber fermentation, 

the strong positive association between fiber intake and circulating indolepropionate is 

intriguing[8, 12, 14], but may be explained, in part, by a potential novel pathway suggested 

by our integrative analysis. Tryptophan is the sole source for indolepropionate production 

which is suggested as completely gut microbiota-dependent in mice,[37] involving bacterial 

species mostly in the Clostridium genus.[38] Consistently, a majority of identified gut 
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bacterial genera in our study, including Clostridium,[38] showed positive associations 

with indolepropionate. Most of these genera are members of Firmicutes, a phylum that 

includes many species use dietary fiber as main energy source.[39] Catabolism of aromatic 

amino acids including tryptophan has been demonstrated in Firmicutes but not in other 

phyla.[38] We also found several indolepropionate-bacterial genera in other phyla which 

might be related to fiber intake, although it is unknown whether they are involved in 

the indolepropionate production. For example, Cellulomonas, a genus in Actinobacteria, is 

known to degrade cellulose,[40] a type of fiber found in plant cell walls. These findings 

suggest that higher fiber intake may increase populations of fiber-utilizing bacteria,[39] 

some of which may have the capability to produce indolepropionate or its substrates from 

tryptophan,[4] thus shifting host tryptophan-to-kynurenine catabolism more towards gut 

microbial indolepropionate production. However, it should be noted that the association 

between fiber intake and indolepropionate was not fully explained by the identified bacteria 

in our study. Gut bacteria involved in this pathway might not be fully captured by our fecal 

metagenomics. A notable limitation of our study is that the assessments of diet and serum 

metabolites preceded fecal sample collection by a median of seven years. Although the 

human gut microbiome was found to be notably stable over a long period, [41] the 7-year 

time lag might attenuate the associations of the gut microbiota with diet and metabolites 

in this study. It is possible that we would observe stronger associations of gut microbiota 

with fiber intake and serum indolepropionate with concurrently collected data. Nevertheless, 

our findings suggest indolepropionate production, in addition to short-chain fatty acid 

production,[39] as a potential novel microbial metabolite pathway for beneficial effects of 

dietary fiber on human cardiometabolic health.

Another novel finding of this study is that a lactase persistence-determining variant at LCT 
was associated with circulating indolepropionate, through an apparent interaction with milk 

intake. This might be related to an indolepropionate-associated gut bacterium identified in 

this study, Bifidobacterium, which has been associated with host LCT and milk intake.[34, 

35] Compared to lactase persistent individuals, lactase non-persistent individuals cannot 

hydrolyze lactose after consuming milk and thus have more lactose in the gut as an 

energy source for Bifidobacterium growth,[34, 35] which may then contribute to higher 

indolepropionate production. Indeed, although it is unknown whether Bifidobacterium has 

the capability to produce indolepropionate, many strains in the Bifidobacterium genus have 

been found to produce indolelactate,[42, 43] a substrate for indolepropionate. Moreover, 

both human[44, 45, 46, 47] and animal studies[48] suggested a potential protective role 

of gut Bifidobacterium in T2D. Taken together, our observations extend the previously 

identified host gene-diet interaction on gut microbiota[34, 35] to microbiota-produced 

metabolites in host circulation, and suggest microbial indole derivative production as a 

potential mechanism through which gut Bifidobacterium is associated with T2D. Due to 

limitations of shallow shotgun sequencing data,[26] we did not examine Bifidobacterium 
species or strains, or functional features for indole derivative production which need to be 

clarified in future studies.

The other two indole derivatives, indoleacetate and indolelactate, have been shown to 

act through aryl hydrocarbon receptor activation,[4] which could reduce inflammation 

and insulin resistance.[5] However, we did not find beneficial associations of these two 
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metabolites with T2D. In contrast, indolelactate was associated with increased risk of T2D 

in our study, and inconsistent associations between indolelactate and insulin resistance were 

also reported in previous studies.[49, 50] Interestingly, we found that serum indolelactate 

was more closely correlated with kynurenine-pathway metabolites than other indole 

derivatives, and host factors (e.g., genetic variants in KYAT1,[10] a gene involved in host 

tryptophan-kynurenine metabolism) rather than gut microbial factors were associated with 

circulating indolelactate levels. Further studies are warranted to clarify the relationship 

between circulating and fecal indole derivatives and their associations with T2D.

In summary, circulating tryptophan, several kynurenine-pathway metabolites and 

indolelactate showed adverse associations with incident T2D, while indolepropionate 

showed a beneficial association with incident T2D. We identified multiple host genetic, 

dietary and gut microbial factors associated with these metabolites. In particular, higher 

fiber intake, and milk intake (only among genetically lactase non-persistent individuals) 

were associated with higher circulating levels of indolepropionate possibly through the host-

microbial cross-talk shifting tryptophan metabolism toward gut microbial indolepropionate 

production. It should be noted that our study is unable to make causal inference due to its 

observational nature, although our findings may have strong biological plausibility. These 

findings contribute to our understanding of the host-microbial cross-talk in tryptophan 

metabolism and its implications in human metabolic health and disease, and may help 

to identify high-risk individuals based on circulating metabolite profiles for targeted 

interventions through dietary intervention and gut microbiota modification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance of this study

What is already known on this subject?

• Tryptophan can be catabolized to various metabolites through host kynurenine 

and microbial indole pathways.

• Evidence from animal studies suggests a host-microbiota interaction on 

tryptophan metabolism which may affect host metabolic health.

• Circulating levels of some tryptophan metabolites have been associated with 

risk of type 2 diabetes in human studies.

• Genetic variants located on genes that are involved in the host tryptophan-

kynurenine pathway and dietary factors have been associated with circulating 

tryptophan metabolites, but the role of gut microbiome and its interplay with 

host genetics and diet in tryptophan metabolism remain unclear in humans.

What are the new findings?

• In large-scale populations with diverse racial/ethnic backgrounds, circulating 

levels of tryptophan and several kynurenine-pathway metabolites were 

positively associated with risk of type 2 diabetes, while a microbial indole 

derivative, indolepropionate, was inversely associated with risk of type 

2 diabetes. The indolepropionate-T2D association was suggested to be 

potentially causal by the latent causal variable model.

• Intakes of fiber-rich foods, but not protein/tryptophan-rich foods, were 

the dietary factors most strongly associated with circulating tryptophan 

metabolites. The fiber-indolepropionate association can be partially explained 

by indolepropionate-associated gut bacteria (mostly fiber-utilizing Firmicutes 
bacteria).

• We identified a novel genetic association between a host functional LCT 
variant (determining lactase persistence) and serum indolepropionate, which 

might be a result of host gene-diet interaction on gut Bifidobacterium. 

Higher milk intake was associated with higher levels of gut Bifidobacterium 
and serum indolepropionate only among genetically lactase non-persistent 

individuals.

How might it impact on clinical practice in the foreseeable future?

• These findings contribute to our understanding of the host-microbial cross-

talk in tryptophan metabolism and its implications in human metabolic 

health and disease, and may help to identify high-risk individuals based 

on circulating metabolite profiles for targeted interventions through dietary 

intervention and gut microbiota modification.
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Figure 1. Overview of the workflow integrating host genetics, diet, gut microbiota and 
circulating metabolites in relation to type 2 diabetes
Eleven tryptophan (TRP) metabolites included TRP, serotonin, five kynurenine-pathway 

metabolites (kynurenine, kynurenate, xanthurenate, quinolinate, and picolinate), and four 

indole derivatives (indoleacetate, indolelactate, indolepropionate [IPA] and indoxyl sulfate). 

T2D, type 2 diabetes; GWAS, genome-wide association study; HCHS/SOL, Hispanic 

Community Health Study/Study of Latinos; ARIC, Atherosclerosis Risk in Communities 

Study; DIAGRAM, Diabetes Genetics Replication and Meta-analysis Consortium; LCT-

rs498823, a function variant related to lactase persistence.
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Figure 2. Associations between circulating tryptophan metabolite levels and incident type 2 
diabetes
Data are Hazard ratios and 95% confidence intervals of incident type 2 diabetes 

per standard deviation increment in metabolite levels, adjusted for age, sex, smoking, 

alcohol consumption, education, family income, family history of diabetes, self-reported 

hypertension and/or antihypertensive medication use, self-reported dyslipidemia and/or 

lipid-lowering medication us, and other study-specific covariates (Model1); and further 

adjusted for body mass index and waist-to-hip ratio (Model 2). Results across 5 studies were 

combined by fixed-effect meta-analysis.
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Figure 3. Manhattan plot for GWAS of circulating tryptophan metabolite levels
Meta-analyses of GWAS in up to 9,290 individuals from HCHS/SOL, ARIC, and FHS 

identified 13 loci for 9 tryptophan metabolites (color indicated in inset). The significant 

P-value threshold is 4.5×10–9 (indicated by a dash line).
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Figure 4. Dietary intake and serum tryptophan metabolite levels
(A) Polar plot for associations of 10 major food groups with serum tryptophan metabolites 

in the HCHS/SOL. Red: positive associations (FDR<0.05); Blue, inverse associations 

(FDR<0.05). (B) Differences (95% CI) in serum tryptophan metabolite levels (inverse 

normal transformed) associated with 1g/1000Kcal per day of dietary fiber intake in the 

HCHS/SOL.
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Figure 5. Dietary fiber intake, gut microbiota and serum indolepropionate
(A) Phylogenetic tree of taxonomic features in association with host serum indolepropionate 

levels in the HCHS/SOL. A total of 21 gut microbial genera significantly associated 

with serum indolepropionate (FDR<0.05) are indicated by solid circles. Data showing in 

the outer ring are effect sizes (positive, red; inverse, blue) of gut microbiota genera on 

serum indolepropionate. (B) Associations of 21 indolepropionate-assocaited gut microbial 

genera with dietary fiber intake in the HCHS/SOL. To show comparable estimates for 

the associations of gut microbial genera with indolepropionate and fiber intake, data 

are presented as Z-scores (regression coefficients/standard errors). *FDR<0.05 for the 

associations between dietary fiber intake and gut microbial genera. (C) Associations 

between dietary fiber intake and serum indolepropionate levels with and without adjustment 
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for gut microbiota (20 indolepropionate-associated gut microbial genera) in the HCHS/

SOL. Bifidobacterium, which showed opposite associations with indolepropionate and fiber 

intake, was not included.
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Figure 6. Host LCT genotype, milk intake, gut Bifidobacterium and serum indolepropionate
(A) Adjusted means and 95% confidence intervals (CIs) of milk intake (servings/day) 

according to LCT-rs49883235 genotypes in the HCHS/SOL. (B) Adjusted means and 

95% CIs of gut Bifidobacterium abundance (center log-ratio transformed) according to 

LCT-rs49883235 genotypes in the HCHS/SOL. (C) Adjusted means and 95% CIs of 

serum indolepropnate levels (inverse normal transformed) according to LCT-rs49883235 

genotypes in the HCHS/SOL. (D) Adjusted means and 95% CIs of gut Bifidobacterium 

abundance (center log-ratio transformed) according to milk intake stratified by the LCT-

rs49883235 genotype in the HCHS/SOL. (E) Adjusted means and 95% CIs of serum 

indolepropnate levels (inverse normal transformed) according to milk intake stratified by 

the LCT-rs49883235 genotype in the HCHS/SOL. (F) Differences and 95% CIs in serum 

indolepropnate levels (inverse normal transformed) associated with one serving per day 

of milk intake according to the LCT-rs49883235 genotype in the HCHS/SOL and ARIC 

separately, and combined by meta-analysis.
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