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Abstract

Most tissue samples are composed of different cell types. Differential expression analysis 

without accounting for cell type composition cannot separate the changes due to cell type 

composition or cell type-specific expression. We propose a computational framework to address 

these limitations: Cell Type Aware analysis of RNA-seq (CARseq). CARseq employs a negative 

binomial distribution that appropriately models the count data from RNA-seq experiments. 

Simulation studies show that CARseq has substantially higher power than a linear model-based 

approach and it also provides more accurate estimate of the rankings of differentially expressed 

genes. We have applied CARseq to compare gene expression of schizophrenia/autism subjects 

versus controls, and identified the cell types underlying the difference and similarities of these 

two neuron-developmental diseases. Our results are consistent with the results from differential 

expression analysis using single cell RNA-seq data.

Background

RNA-seq data are often collected from bulk tissue samples, most of which comprise a 

heterogeneous population of different cell types. Several recent studies have demonstrated 

that studying cell type-specific gene expression and cell type composition is crucial for 

many scientific and clinical questions; for example, identifying genes and cell types related 

to virus infection [1] or tumor [2]. Most methods for differential expression (DE) studies 
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[3–5] do not consider cell type compositions. A few exceptions include csSAM [6] and 

TOAST [7], which are designed for continuous gene expression data and do not fully utilize 

the count features of RNA-seq data. There are also a few methods with similar goals that 

were developed for DNA methylation data [8,9].

We develop a framework of cell type aware analysis of RNA-seq data (CARseq). We 

assume cell type compositions have been estimated by an existing method [10,11]. CARseq 

takes the input of bulk RNA-seq data and cell type fraction estimates and performs two 

tasks: comparison of cell type compositions and cell type-specific DE (CT-specific-DE). For 

CT-specific-DE, CARseq employs a negative binomial distribution to fully utilize the count 

features of RNA-seq data, which can substantially improve the statistical power. CARseq 

is a tribute to both the tradition that the gene expression of a mixture is the summation of 

non-negative expression of each cell type (i.e., deconvolution on a linear scale) [12], and 

that cell type-independent covariates are adjusted on a log scale. Our shrunken estimates of 

log fold change (LFC), currently unaddressed in other methods [6,7], produces a robust and 

interpretable quantification of CT-specific DE. We benchmark CARseq together with other 

methods under various simulation setups, illustrating CARseq can have substantially higher 

power while maintaining type I error control.

We apply CARseq to assess gene expression difference of schizophrenia (SCZ) or autism 

spectrum disorder (ASD) subjects versus healthy controls. SCZ and ASD are two severe 

neuropsychiatric disorders that are likely caused by disruption of brain development in early 

life (particularly in the prenatal and early postnatal period) due to environmental exposure 

combined with genetic predispositions [13]. The two diseases have shared vulnerability 

genes and overlapping symptoms [14]. For example, ASD is characterized by deficit 

social interaction and repetitive behaviors, which are similar to the negative symptoms 

(“negative” means taking away from normal state) of SCZ including social withdrawal 

and impaired motivation. There are also many differences, however, between the two 

diseases. For example, ASD is an early childhood disease (onset at 6 months to 3 years 

old) and most SCZ are diagnosed at young adulthood. Compared with ASD, SCZ has 

additional positive symptoms (“positive” means addition to the normal state) of delusions 

and hallucinations. The underlying biological mechanisms of the two diseases are not 

very well understood yet. Our results bring some insights on the molecular basis of these 

diseases. Specifically, we identified the relevant cell types underlying the difference and 

connection between the two diseases, for example, microglia for the connections of the two 

diseases through inflammation and oxidative stress [15]. We also reported an imbalance 

of excitation/inhibition neurons in SCZ but not ASD, which may explain the hallucination 

symptom in SCZ but not ASD [16].

Analyzing single cell RNA-seq (scRNA-seq) data is a promising solution for cell type-aware 

analysis. However, due to high cost and logistic difficulties (e.g., collection of high quality 

tissue samples, unbiased sampling of single cells), currently, it is very challenging, if not 

infeasible, to collect scRNA-seq data from large cohorts. In addition, scRNA-seq data may 

not capture the complete transcriptome. For example, 10x genomics platform measures gene 

expression at 5’ or 3’ of each transcript instead of the complete transcripts. If the massive 

amount of existing bulk RNA-seq data could be re-analyzed to study CT-specific expression 
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and cell type composition, it could bring paradigm-shifting changes to many fields. Our 

work is one step towards this goal.

Results

Introduction to cell type-aware analysis

To assess the associations between cell type fractions and the covariate of interest, one 

needs to pay attention to the compositional nature of the data, e.g., we cannot modify the 

proportion of one cell type without altering the proportion of at least one other cell type 

[17]. Therefore, following a commonly used practice for compositional data analysis, we 

transform the k cell type fractions to k − 1 log ratios: log of the fraction of each of k − 1 cell 

types vs. a reference cell type.

The more challenging part is to assess CT-specific-DE, while we only observe the gene 

expression in bulk samples where the variability can come from both CT-specific expression 

and cell type fractions. Our model is built around the assumption that the expression in bulk 

samples is the summation of CT-specific expression weighted by cell fractions in linear scale 

(Figure 1). The model also allows the inclusion of cell type-independent covariates, such as 

age, gender, batch etc. We defer the details of our methods to the Methods Section.

Benchmarking methods through simulations

Simulation setup—We use a simulation study to evaluate the power and type I error of 

CT-specific-DE by CARseq, csSAM [6] and TOAST [7]. csSAM assesses CT-specific-DE 

by a two-step approach: estimation of CT-specific expression followed by testing using 

permutations. It has lower power than TOAST [7] and it cannot account for covariates. Both 

TOAST and CARseq combine the estimation of CT-specific expression and CT-specific-DE 

testing in one likelihood framework that allows adjustment for covariates. The difference 

is that CARseq adopts a negative binomial distribution that models gene expression 

decomposition on a linear scale. In contrast, TOAST uses a linear model that is less 

desirable to model count data. An alternative is to use TPM (transcripts per million) to 

replace count, which is a linear transformation of counts after adjusting for gene length 

and read-depth. We evaluated the performance of TOAST using both counts and TPM and 

observed similar results. Here we reported the results of TOAST using TPM and left the 

results using counts in Supplementary Figures 4–7.

We simulated CT-specific expression data that mirror the gene expression data from single 

nucleus RNA-seq (snRNA-seq) of human brains [18]. We simulated the cell fractions of 

6 cell types to resemble our estimates (using ICeD-T [11] by default) from the Common 

Mind Consortium (CMC) bulk RNA-seq data [19] (Supplementary Figure 18). The major 

cell type, intended to imitate the excitatory neuron, taking the lion’s share of around 60% of 

the cells in each sample. The minor cell type and four other cell types, with much smaller 

fractions, were intended to represent inhibitory neurons and four non-neuron cell types, 

respectively. We also simulated a covariate in the mold of RNA integrity number (RIN) and 

specified its effect size based on estimates of RIN effect from the CMC data. We considered 

four series of simulation setups. In each series, one or two cell types are differentially 
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expressed with different magnitudes. When two cell types are differentially expressed, their 

effect sizes could be on the same direction or opposite directions. More details of the 

simulation procedure can be found in Section B.1 of the Supplementary Materials.

CARseq has higher power and more accurate ranking—The conclusions from all 

the simulation setups are similar. Here we focus on the setup where the major cell type is 

differentially expressed (Figure 2) and presented the results where the minor cell type is 

differentially expressed or both the major and minor cell types are differentially expressed 

in Supplementary Figures 1–7). The simulation results demonstrated that CARseq is more 

powerful than TOAST, which is more powerful than csSAM, and correct specification 

of covariates can improve power and ensure the control of FDR [20] (Figure 2(A), 

Supplementary Figures 1–7). It worth noting the power of CT-specific-DE can be low when 

the sample size is small (e.g., n = 50, 25 cases vs. 25 controls), due to the uncertainty 

to estimate CT-specific expression. This is also the situation where CARseq shows much 

higher power than TOAST, with two to four folds of improvement (Figure 2(A)). The power 

gain of CARseq is even higher to uncover DE genes when the gene expression is low 

(Supplementary Figure 8), though overall most discoveries are from the genes with higher 

expression. Additional simulations show that CARseq is robust to noise/bias in cell type 

fraction estimates (Supplementary Materials B.1.5).

We further checked whether the ranking by the p-values produced by CARseq or TOAST is 

a meaningful indicator of DE genes using precision-recall curve. CARseq has consistently 

higher AUC in all simulation setups (Supplementary Figure 9). For example, when there 

are 100 cases vs. 100 controls and the major cell type is differentially expressed with a 

fold change of 2, the precision-recall AUC is 0.57 and 0.30 for CARseq and TOAST. As a 

reference, when all the genes are ranked randomly, we expect a precision-recall AUC of 1/30 

because one out of every 30 tests corresponds to a true DE relation.

CARseq delivers accurate estimates of effect sizes—CARseq quantify the effect 

size of CT-specific-DE by log fold change or shrunken log fold change (see Method 

Section for more details). TOAST defines the effect size as β/(μ+β/2), where μ is base-line 

expression in one group, and β is the gene expression difference between two groups. To 

make the results more comparable between CARseq and TOAST, we amend the effect size 

definition in TOAST and propose to define LFC as log(|μ+β|) − log(|μ|). To examine the 

reproducibility of effect size estimation, we divided the samples in a simulation replicate 

into two subsets of equal sizes and then compare the effect size estimates in the two 

subsets. It is clear that CARseq’s shrunken log fold change is best reproduced between 

the two subsets (Figure 3). For example, when sample size is 25 cases vs. 25 controls for 

each subset (middle panel of Figure 3), the percentage of genes whose direction of DE is 

correctly estimated in both two replicates are 64.1%, 76.9%, 29.3%, and 29.3% for effect 

size qualified by CARseq LFC, CARseq shrunken LFC, TOAST effect size, and TOAST 

LFC, respectively.
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DE analysis between schizophrenia subjects and controls

We applied CARseq to study the gene expression of SCZ patients vs. controls using the bulk 

RNA-seq data of prefrontal cortex samples, generated by the CommonMind Consortium 

(CMC) [19], hereafter referred to as CMC-SCZ study. After filtering out the outlier samples 

reported by Fromer et al. [19], we had 250 SCZ subjects and 277 controls. In addition 

to the covariates used by Fromer et al. [19], we also included two surrogate variables 

to capture latent batch effects [21]. We found that the relative cellular abundance of the 

inhibitory neuron quantified by ICeD-T [11] is significantly higher in SCZ samples than 

control samples (p-value 1.5×10−5), and there is a similar trend for cell fraction estimates 

by CIBERSORT [22], though the difference is not significant (p-value 0.12). There is also a 

trend of relative depletion of oligodendrocyte, though it is not significant (p-values 0.32 for 

ICeD-T and 0.12 for CIBERSORT).

Gene set enrichment analysis (GSEA) recover that genes involved in unblocking or negative 

regulation of NMDA receptors are enriched among the DE genes in inhibitory neurons. 

The majority of the inhibitory-neuron-DE genes in NMDA pathways have lower expression 

levels in SCZ subjects than controls (Figure 4(C), Supplementary Figure 29), consistent with 

the hypofunction of NMDA. We found that the heat shock related genes are enriched in the 

DE genes in excitatory neurons, and they tend to have higher expression in SCZ subjects 

than controls (Figure 4(C), Supplementary Figure 29). This is consistent with previous 

findings that heat shock response plays a crucial role in the response of brain cells to 

prenatal environmental insults [23].

DE analysis between ASD subjects and controls

We analyzed the bulk RNA-seq data from ASD subjects and controls, published by a UCLA 

group [24,25], hereafter referred to as UCLA-ASD study. They reported findings on 251 

post-mortem samples of frontal and temporal cortex and cerebellum for 48 ASD subjects 

versus 49 controls and found significantly differentially expressed genes in cortex but not in 

cerebellum [24]. In this study, we focus on frontal cortex region based on positive findings 

of DE genes in this earlier study and that it matches the brain region of SCZ data analyzed 

in this paper. After filtering by brain regions, we ended up with 42 ASD subjects and 43 

control subjects (See Method section for details).

We performed similar CARseq analysis as for the CMC-SCZ data and presented the results 

in Supplementary Materials Section B.3. Here we briefly summarize the results. First, 

we found the relative abundance of astrocyte and microglia are higher in ASD subjects 

than controls, consistent with the previous studies that suggest neuroinflammation plays an 

important role in the etiology of ASD [26]. Second, CARseq recovered much more DE 

genes than TOAST and the known ASD risk genes [27] are significantly enriched among the 

DE genes found by CARseq. Third, gene set enrichment analysis suggest the relevance of 

AMPA activity in the pathophysiology of ASD.

Next we compare the results from CARseq and TOAST versus the cell type-specific DE 

results from a single nucleus RNA-seq (snRNA-seq) dataset [28]. This dataset includes 

snRNA-seq data of 62,166 nuclei from the prefrontal cortex of 13 ASD cases vs. 10 healthy 
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controls. We applied DESeq2 to assess cell type-specific DE between ASD and controls 

using the cell type-specific pseudo-bulk RNA-seq data, which is constructed by adding up 

the read counts across all the cells of the same cell type for each gene and each individual. 

Based on the p-value distribution for each cell type (whether there is enrichment of small 

p-values), we conclude that using this snRNA-seq data we can detect some DE signals in 

three cell types, Astro, Exc, and Inh, very limited DE signals in Oligo and OPC, and no DE 

signal in Microglia (Supplementary Figure 54). When comparing with our CARseq results, 

we found significant overlap in Astro, Exc, and Inh. Lack of overlap for Microglia, Oligo, 

and OPC could be partly due to the lack of DE signals in these cell types in snRNA-seq 

data. In contrast, there is no significant overlap for the results of TOAST or DESeq2 

(Supplementary Figure 55).

Concordant microglia-specific DE genes between SCZ and ASD

We found an interesting pattern that genome-wide microglia-specific-DE p-values show 

significant correlations between SCZ and ASD (Figure 5(A), Pearson and Spearman 

correlation are 0.14 and 0.23, respectively, and p-value < 2 × 10−16 for either correlation). In 

addition, the fold changes of microglia DE genes in different pathways also show consistent 

patterns between SCZ and ASD (Supplementary Figure 30(A) vs. 42(A)): up-regulation in 

innate immune system and cell cycle, and down-regulation in translation, slit-robo signaling 

pathway, and influenza infection. We further study the overlapping DE genes. Using a liberal 

p-value cutoff of 0.05, we identified 1,674 and 355 microglia-specific-DE genes in SCZ 

and ASD studies, respectively, with an overlap of 65 genes. This overlap is significantly 

larger than 33 overlaps expected by chance (p-value 9.6 × 10−9 by Chi-squared test). 

Several REACTOME pathways are over-represented by these 65 genes (by R package 

goseq, Figure 5(B), Supplementary Table 6). One interesting finding is “Selenoamino acid 

metabolism”. Since selenium-dependent enzymes prevent and reverse oxidative damage in 

brain, our findings support that selenium-dependent enzymes could mediate the relation 

between antioxidants and SCZ/ASD [29,30].

Comparing DE testing by CARseq versus DESeq2

DESeq2 [5] is a good representative of existing methods for DE analysis of bulk tissue 

samples. In our default analysis, DESeq2 does not take any cell type composition as 

covariates. After accounting for cell type compositions (by including log ratios of cell type 

compositions), DESeq2 identified more DE genes using the CMC-SCZ data (from 1,009 

to 1,888, with an intersection of 810 at q-value 0.1, Supplementary Table 1), but much 

less DE genes in UCLA-ASD study (from 1063 to 481, with an intersection of 185 at 

q-value 0.1, Supplementary Table 1). If a gene is associated with the case/control status 

before accounting for cell type compositions, but not so afterwards, its association with 

the case/control status is likely due to confounding effect of cell type composition. On 

the other hand, if a gene is not associated with the case/control status before accounting 

for cell type compositions, but the association becomes significant afterwards, it is likely 

because cell type composition explains part of the within group variance and thus increase 

the power of DE testing. In either case, as expected, the expression of these genes are more 

likely to be associated with cell type compositions (Supplementary Figures 48–49). In both 

SCZ and ASD analyses, most findings from DESeq2 were not identified as CT-specific-DE 
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genes by CARseq (Supplementary Figure 28 and 42). There can be multiple reasons. First, 

some DESeq2 DE genes may be associated with case/control status because of confounding 

with cell type composition. Second, those genes likely have CT-specific-DE patterns in a 

substantial proportion of cells (e.g., in the most abundant cell type or several cell types), and 

thus such DE patterns can be captured by bulk data. In contrast, CARseq may have lower 

power to detect such genes because CARseq needs to pay for the price of “CT-specific 

expression estimation uncertainty” that is incorporated in its likelihood framework. In 

addition, CARseq may have limited power if the proportion of the relevant cell type has 

small variance across individuals.

Discussion

A practical consideration of using CARseq is that it may have limited power when the 

sample size is small. This is the price that we have to pay for the uncertainty of estimating 

CT-specific expression from bulk RNA-seq data. As a rule of thumb, we do not recommend 

using CARseq when the sample size minus the number of covariates is smaller than 20. For 

large studies, e.g., with hundreds of samples, it may worth considering a study design to 

generate scRNA-seq data in a subset of samples, and generate bulk RNA-seq data from all 

the samples. The scRNA-seq data can be used to generate cell type-specific gene expression 

reference for cell type fraction estimation, which can be used for the CARseq analysis 

on bulk RNA-seq data. In addition, the scRNA-seq data can also be used to validate the 

results of CARseq. CARseq also requires the estimates of cell type fractions, which relies 

on reference of cell type-specific gene expression data. We expect with the development of 

human cell atlas [31], such resource in other tissues will be generated in the near future, and 

thus enable CARseq analysis in broader tissues and relevant diseases.

Although CARseq has higher higher power than TOAST, CARseq is computationally much 

more demanding than TOAST. For example, using 32 threads on a compute node of E5–

2680 v3 CPUs, CARseq took about 21 minutes to run the real data analysis for 250 

Schizophrenia patients vs. 277 Control with 20,788 genes while TOAST took less one 

minute.

We have applied both CARseq and TOST to perform cell type aware analysis of postmortem 

gene expression data from SCZ and ASD. The molecular mechanisms underlying SCZ 

and ASD can be divided into two categories: alterations in neurotransmitter systems and 

stress-associated signaling including immune/inflammatory-related processes and oxidative 

stress [13]. NMDA and AMPA are two types of receptors for neurotransmitter glutamate. 

We found evidence for hypofunction of NMDA in SCZ (particularly in inhibitory neurons) 

and dysregulation of AMPA in ASD. While excitation-inhibition (E-I) imbalance has been 

suggested as a common feature of SCZ and ASD, we found the E-I imbalance in SCZ 

but not in ASD. This is consistent with previous finding that the hypofunction of NMDA 

could cause E-I imbalance [32] and that E-I imbalance is the underlying mechanism for 

hallucination [16], which is a symptom of SCZ but not ASD. Thus our finding of E-I 

imbalance in SCZ but not in ASD may explain part of the symptom difference between the 

two diseases. A recent study also found no E-I difference between ASD and controls [33].
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Prenatal stress referred as maternal immune activation (regardless the cause such as infection 

by different pathogens or immune stimulation) can lead to SCZ or ASD [15], implying the 

role of immune system in disease pathology. Microglia is the tissue resident macrophages 

in brain and plays a central role in immune response in brain. We found microglia-specific 

DE genes have significant overlap between SCZ and ASD and they have higher expression 

in SCZ/ASD subjects than in controls, suggesting microglia are in more active states in 

SCZ/ASD than controls.

CARseq can certainly be applied to study other diseases or traits. As an example, we 

illustrate its usage to study melanoma cancer in Supplementary Materials Section B.7.

Methods

Likelihood function of CARseq model

Let Tji be the RNA-seq read count (or fragment count for paired-end reads) for gene j ∈ {1, 

… , J} and sample i ∈ {1, … , n}, where J is the total number of genes and n is the number 

of bulk samples. We denote the cell fraction for cell type h ∈ {1, … , H} in the i-th sample 

by ρℎi.

We assume Tji follows a negative binomial distribution: Tji ~ fNB(μji, ϕj), with mean value 

μji and dispersion parameter ϕj. Since deconvolution on a linear (non-log) scale yields better 

accuracy [12], we let:

μji = ∑
ℎ = 1

H
ρℎiμjiℎ,

where μjiℎ is the mean expression of the j-th gene in the h-th cell type of the i-th sample. 

The above deconvolution states that the expected total read count is the summation of 

expected CT-specific read count weighted by cell fractions across all cell types h ∈ {1, … , 

H}. In practice, cell fraction estimates ρℎi are used in place of ρhi.

We model the relation between μjiℎ and M0 CT-specific covariates through a 

log link function, which is commonly used for negative binomial regression: 

μjiℎ = di
βj0exp ∑m = 1

M0 γjℎmxiℎm , where di is the sequencing read depth of sample i, γjhm and 

xihm are the regression coefficient observed data for the m-th covariate. In all the analyses of 

this paper, we use 75 percentile of the expression across all the genes within a sample.

The effect sizes of many covariates may not vary across cell types. For example, since RNA 

integrity number (RIN) quantifies sample RNA quality, it would associate with observed 

gene expression in the same way regardless of the original cell type. By separating cell 

type-independent covariates from CT-specific covariates, we can construct a model with less 

degrees of freedom. Suppose M out of M0 parameters are CT-specific and the rest K = M0 − 

M parameters are cell type-independent, we have:
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μjiℎ = di
βj0exp ∑

k = 1

K
βjkwik exp ∑

m = 1

M
γjℎmxiℎm ,

where wik is the value of the k-th cell type-independent covariate in sample i.

The log-likelihood can be maximized using iteratively weighted least squares (IWLS) with 

some tweaks (Supplementary Materials Section A). After that, we can construct likelihood 

ratio statistics to conduct the CT-specific-DE tests. Although the likelihood-based testing 

framework can be generalized to accommodate a variety of tasks [7], e.g., test for a 

continuous variable or test for a linear combination of regression coefficients, our main 

focus in the article is CT-specific-DE tests among two or more groups.

We noted that CARseq reports large LFC estimates in some cell types, which probably 

reflect estimation uncertainty, particularly for the cell types with low proportion or when the 

sample size is small. To mitigate this problem, we developed a shrunken LFC estimation 

procedure, see Section A.5 in Supplementary Materials for details.

Comparison with other methods

There are a few alternatives to our methods, though they were indeed developed for different 

purposes and not best suited for RNA-seq data analysis. TOAST [7] is a method for 

CT-specific DE or differential methylation analysis. It uses a linear model that is more 

flexible than our negative binomial model to handle different types of data, though for 

RNA-seq count data with a very strong mean-variance relationship, a linear model that 

assumes homogeneous variance has to choose between variance stabilization (e.g., by log-

transformation of gene expression) or deconvolution in linear scale. See more discussions 

of our method and TOAST in Section A.6.1 in Supplementary Materials. All the analysis 

performed in real data has been done using both CARseq and TOAST and additional results 

for TOAST are available in Supplementary Figures.

Accounting for observed/unobserved confounding covariates is crucial for DE analysis, and 

the unobserved covariates can be estimated by surrogate variable analysis (SVA) [21]. In 

simulation data, we found that not accounting for relevant covariates can lead to inflated 

type I error. This limits the application of csSAM that cannot adjust for covariates in a lot of 

practical settings. For this reason, we did not apply csSAM in real data analysis.

Details of simulations

We generated simulate data in three steps. First simulated cell fractions using a Dirichlet 

distribution with parameters estimated from cell fractions estimated from CMC-SCZ data 

followed by cell size correction. Next simulated CT-specific gene expression and finally 

simulated bulk gene expression. Finally we used the simulated bulk and CT-specific data 

to estimate cell-type fractions by ICDeT and use the estimated cell type fractions, instead 

of simulated cell type fractions for our analysis. We benchmarked CARseq against csSAM 

1.2.4, TOAST 0.99.8, and DESeq2 1.24.0. Next we provide more details of simulations.
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We generated read count data of bulk tissue as a mixture of six cell types, with sample sizes 

50, 100. and 200, which was further divided equally into case and control groups. The total 

number of genes was 10,000, among which 2,000 genes had spiked-in cell type-specific 

differential expression between groups.

The read counts in mixture samples were generated from a negative binomial distribution:

tji NB μji, θj ,

with the mean structure being

μji = diexp ∑
k = 1

K
βjkwik ∑

ℎ = 1

H
ρℎiexp ∑

m = 1

M
γjℎmxiℎm ,

where H = 6 is the number of cell types, M = 2 corresponds to cell type-specific effects 

(case/control groups), K = 1 is cell type-independent batch effect (RIN), and ρℎi are cell type 

fractions simulated from a Dirichlet distribution with parameters (12.09, 53.01, 8.39, 1.88, 

5.54, 3.75).

The number of cell types H was 6, reflecting the reference matrix with 6 cell types 

constructed from MTG single cell data. This was achieved by combining more refined cell 

type definitions into six categories: excitatory neurons (Exc) and inhibitory neurons (Inh), 

astrocytes (Astro), microglia (Micro), oligodendrocyte (Oligo), Oligodendrocyte Progenitor 

Cell (OPC).

To set realistic parameters in data simulation, we used CARseq to fit a model of read 

counts with CMC data. For every gene, we fitted a baseline model without cell types 

composition effects: tji ~ NB(μji, θj) with the mean structure μji = di exp(βj1wi1)γj, where 

di is sample-level read depth, wi1 is the RIN per sample. Both di and wi1 are known when 

fitting the model using CMC data. We fitted a negative-binomial model using CARseq to 

obtain estimates of the triple (βj1, γj, θj), where θj is the over-dispersion parameter.

In the scatterplot of the triple (βj1, γj, θj) across 20,614 highly expressed genes in the 

log scale (no log transformation is needed for βj1, which is already parametrized in the 

log scale), we noticed that multivariate Gaussian distribution is a good approximation after 

we remove 31 genes with a much higher overdispersion than the others. We compute and 

base our simulation on the estimated covariance matrix of expression, batch effect, and 

overdispersion.

There is a large proportion of zeros in estimated cell type-specific expression because 

it is hard to accurately estimate cell type-specific expression when the variance of cell 

fractions was low. Therefore using estimates of CT-specific gene expression for simulation 

is challenging. To mitigate the problem, when generating the reference matrix, we assumed 

that the expected expression of every cell type γjh followed a log-normal distribution with 

the same mean and variance across cell types, and the mean and variance of mixture 

expression γj can be used as a substitute. However, we needed to add correlation between 
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cell types to make the expression pattern to be more realistic, as in a large number of 

genes, the gene expression would be similar across cell types, the most prominent examples 

being the housekeeping genes. We also noticed that gene expression and gene lengths are 

positively correlated. Gene lengths were needed to calculate TPM to generate the input data 

of csSAM.

To estimate the correlation between cell type-specific gene expression γjh, and the 

correlation between gene expression γjh and gene lengths ℓj, we used MTG single cell 

data to create an average cell expression for 6 cell types, and estimated the correlation 

structure between cell type-specific expression γjh, h ∈ {1, … , 6}, and gene lengths ℓj, all 

in log scale. We then took the median of all pairwise correlations of gene expression across 

cell types (or the median of all correlations between gene expression and gene length) and 

fill it into the correlation matrix to simulate data,. We assumed the correlation was zero 

between gene lengths and batch effect or overdispersion. This completed the specification 

of covariance matrix of three cell types, batch effect, overdispersion and, gene lengths. Thus 

we generated the tuple (γj1, γj2, γj3, βj1, θj, ℓj) under log scale except for βj1 using a 

multivariate Gaussian distribution:

logγj1
logγj2
logγj3

βj1
logθj
logℓj

N

−0.60
−0.60
−0.60
−0.09
2.40
7.98

,

3.39 2.58 2.58 −0.24 0.19 0.35
2.58 3.39 2.58 −0.24 0.19 0.35
2.58 2.58 3.39 −0.24 0.19 0.35

−0.24 −0.24 −0.24 0.05 0.07 0.00
0.19 0.19 0.19 0.07 0.64 0.00
0.35 0.35 0.35 0.00 0.00 0.83

.

The batch effect variable, RIN wi1, was generated using a normal distribution with mean and 

variance estimated from variables collected in CMC data: logwi1 ~ N(7.61, 0.89).

We generated read depths di using log-normal distribution with mean and variance estimated 

from mixture expression of CMC data: logdi ~ N(6.70, 0.27).

When estimating cell type fractions, we need a signature matrix. To select the signature 

genes, for each cell type, we collected the top 100 genes with the largest fold change of its 

gene expression compared to gene expression from all other cell types in the non-log scale. 

We also incorporated the batch effect from RIN to construct adjusted reference matrix for 

ICeD-T.

We specified the pattern of differential expression we would like to spike in as c = (c1, c2, 

c3) for major, minor and all other cell types. Among 10,000 genes, suppose 8,000 genes 

were not differentially expressed between case and control samples, 1,000 genes had higher 

expression in cases than controls, and 1,000 genes had higher expression in controls than 

cases. Then we calculated μji and generated the observed mixture read count matrix with 

each entry tji following a negative binomial distribution. Using the same approach, we 

implemented more complicated patterns of differential expression where more cell types 

were differentially expressed. The test we implemented in the simulation studies has the null 
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hypothesis γjh1 = γjh2 for any gene j and cell type h, which says the cell type-specific mean 

are the same across two groups when controlled for other covariates.

Estimation of cell type compositions

We use two reference-based methods to estimate cell type compositions of bulk tissue 

samples: CIBERSORT [22] and ICeD-T [11]. CIBERSORT is a popular method that use 

a support vector regression to estimate cell type proportions. ICeD-T is a likelihood-based 

method that model gene expression using log-normal distribution. It allows a subset of 

genes to be “aberrant” in the sense that the CT-specific gene expression of such genes are 

inconsistent between bulk tissue samples and external reference. Such aberrant genes are 

down-weighted in estimating cell type proportions. Unless specifically noted, the cell type 

composition of bulk tissue samples are estimated using ICeD-T by default.

We generated CT-specific gene expression reference using snRNA-seq data from the middle 

temporal gyrus (MTG) of the human brain [18]. This is not a perfect match for the bulk 

RNA-seq data that are from pre-frontal cortex (PFC). We have compared MTG with another 

snRNA-seq data generated from human PFC as well as other brain regions using DroNC 

technique. The CT-specific gene expression is similar between the two datasets, except 

for endothelial cells. We chose to use MTG data to generate reference since it has much 

higher depth and better coverage, making it more similar to bulk RNA-seq data. We 

exclude endothelial in our analysis since there are only 8 endothelial cells in MTG data 

and its expression has very weak similarity to the endothelial cells from DroNC data. See 

Supplementary Materials Section B.2.1 for more details.

A related question is that when estimating cell type fractions, an implicit assumption is 

that the signature genes’ cell type-specific expression level does not change in different 

conditions. Then it seems to be a contradiction when we assess its DE. A more rigorous 

approach is to assess DE only for non-signature genes. However, since cell fractions are 

estimated using hundreds of genes with robust models, removing any one signature gene 

will not lead to a noticeable change of cell type fraction estimates. Therefore, it is as if 

we assess DE of a signature gene without using it as part of the signature matrix. On the 

other hand, if too many genes within the signature gene set are detected to be differentially 

expressed, the accuracy of the cell type fraction estimates is questionable, and an alternative 

signature gene set should be selected.

CARseq analysis for SCZ

The gene expression data and sample characteristics data were downloaded from 

CommonMind Consortium (CMC) Knowledge Portal (see section URLs). We include the 

following covariates in our CARseq CT-specific DE analysis:

• log transformed read-depth (75 percentile of gene expression across all the genes 

within a sample),

• institution (a factor of three levels for the three institutes where the samples were 

collected),

• age, gender, and PMI (Post-mortem interval),
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• RIN (RNA integrity number) and its square transformation RIN2,

• a batch variable “Libclust”, which is clusters of library batches into 8 groups,

• two genotype PCs, and two surrogate variables.

The surrogate variables were calculated after accounting for cell type compositions. 

Specifically, we add the log ratios of cell type compositions (with excitatory neuron as 

baseline) as the covariates and then calculate surrogate variables using R function sva from 

R package sva [21].

The covariates selected in our model are mostly similar to those included in the original 

analysis [19] except two differences. One is that we included two instead of five genotype 

PCs in our analysis since other PCs are not associated with gene expression data 

(Supplementary Figure 1). Surrogate variables were computing using the R package “sva” 

[21]. Two surrogate variables are included because adding these two surrogate variables 

increased the variance explained (R2) in a linear model to fit log-scale mixture expression 

from 0.55 to 0.68, while more surrogate variables offered a comparably limited increase 

in R2. Prior to inclusion in the model, all the continuous covariates were scaled to ensure 

numerical stability [5].

CARseq analysis for ASD

The gene expression data (expected read counts derived from RSEM) were downloaded 

from Freeze1 of PsychENCODE Consortium (PEC) Capstone Collection, and the 

accompanying meta data and clinical data were downloaded from PsychENCODE 

Knowledge Portal, see Section URLs for the exact links. There are 341 samples from 100 

individuals. We kept the samples from BrodmannArea 9 (BA9), including 89 samples from 

85 individuals. Four individuals have duplicated samples and we chose the one with higher 

RIN. These 85 individuals include 42 ASD subjects and 43 controls, and they were from two 

brain banks: 53 from Autism Tissue Program (ATP) and 32 from NICHD, see Parikshak et 

al. [24] for more details of this dataset.

We examined the association between each potential covariates and genome-wide gene 

expression and found PMI and Sex are not associated with gene expression, as evidenced by 

a uniform distribution of p-values, therefore we removed these two covariates and used the 

following covariates in our analysis.

• log transformed read-depth (75 percentile of gene expression across all the genes 

within a sample),

• BrainBank (a factor of two levels),

• SequencingBatch (a factor of 3 levels),

• age, RIN (RNA integrity number),

• four sequencing surrogate variables (SeqSVs).

The SeqSVs, which are the notations used by Parikshak et al. [24] are PCs derived from 

sequencing QC metrics. We used 4 principal components because they explained 99% of 
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the variance of the sequencing metrics. Prior to inclusion in the model, all the continuous 

covariates were scaled to ensure numerical stability [5].

Gene set enrichment analysis

The gene set enrichment was done on REACTOME pathways 

downloaded from https://www.gsea-msigdb.org/gsea/msigdb/download_file.jsp?filePath=/

msigdb/release/7.1/c2.cp.reactome.v7.1.symbols.gmt. There are originally 1,532 pathways, 

of which 1,090 pathways have a size between 10 and 1,000 genes.

For each cell type, we used “fgseaMultilevel” function in “fgsea” R package to 

simultaneously calculate p-values and normalized enrichment scores (NES) across the 1,090 

pathways without any weights (fgseaMultilevel argument gseaParam = 0) in a gene list 

ranked by potentially CT-specific p-values from the DE analysis. The p-values across the 

1,090 pathways were then converted to q-values using “get_qvalues_one_inflated” in our 

CARseq package. Next, we collected in a table all the candidates of the pathway-cell type 

pairs satisfying NES > 0 (genes in the pathway tend to have smaller p-values), and sorted 

them by the rank of increasing q-values and decreasing NES within each cell type. We then 

deduplicated the pathways by only retaining the first appearance of each pathway in the 

table. The top N pathway-cell type pairs were subsequently chosen. For illustrative purposes, 

N was picked to be 3 in our paper.

In the Main Figures, the primary DE method was CARseq, and the top pathways were 

defined by GSEA results from genes ranked by CARseq CT-specific-DE p-values. In the 

Supplementary Figures, we also reported heatmaps featuring top pathways defined by GSEA 

results based on rankings by TOAST CT-specific-DE p-values.

FDR control procedure

We use q-value to control FDR [20]. The calculation of q-value requires an estimate of 

the overall proportion of null p-values π0. We use the following formula that specifically 

accommodates the situation where a proportion of p-values equal to 1, implemented in 

function get_qvalues_one_inflated of R package CARseq:

π0 = ( proportion of p value  = 1) + 2 × ( proportion of p value  > 0.5 and  < 1) .

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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snRNA-seq data for CT-specific expression reference were generated by Allen Brain 

Institute. File human_MTG_gene_expression_matrices_2018-06-14.zip was downloaded 

from http://celltypes.brain-map.org/api/v2/well_known_file_download/694416044.

The gene expression and clinical data of Schizophrenia patients and healthy controls were 

generated by CommonMind Consortium (CMC) and the relevant data were obtained from 

the following links. Data access is governed by the NIMH Repository and Genomics 

Resources.

CMC gene expression data:

https://www.synapse.org/#!Synapse:syn3346749

CMC gene expression meta data:

https://www.synapse.org/#!Synapse:syn18103174

CMC clinical data:

https://www.synapse.org/#!Synapse:syn3275213.

The gene expression and clinical data of Autism patients and healthy controls 

were part of The PsychENCODE (PEC) Capstone Collection https://www.synapse.org/#!

Synapse:syn12080241 and the relevant data were obtained from the following links. Data 

access is governed by the NIMH Repository and Genomics Resources.

UCLA-ASD gene expression data:

https://www.synapse.org/#!Synapse:syn8365527

UCLA-ASD gene expression meta data:

https://www.synapse.org/#!Synapse:syn5602933

UCLA-ASD clinical data:

https://www.synapse.org/#!Synapse:syn5602932

The list of SFARI ASD risk genes were downloaded from https://gene.sfari.org/database/

human-gene/

Source Data for Figures 2–5 are available with this manuscript.
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Figure 1: 
Illustration of CT-specific expression

Each grouped bar illustrates the total expression of a gene in a bulk sample (the volume of 

the grouped bar) that is the summation of gene expression from individual cell types (each 

bar for a cell type). The depth of each grouped bar is proportional to the covariate-adjusted 

read-depth. The width of each bar is proportional to its cell fraction, and the height of each 

bar is proportional to the CT-specific expression. The left/right three columns show three 

case/control samples, respectively. Our method estimates the mean value of CT-specific 

expression for case and control groups separately. In this toy example, cell type 1 (pink) has 

twice expression in cases than controls, while cell type 2 (green) and cell type 3 (blue) are 

not differentially expressed.
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Figure 2: 
Simulation results

The FDR vs. sensitivity of several methods testing for CT-specific DE, when (a) the 

covariate is provided to the method, and (b) when the covariate is not provided to the 

method. The ratio of TOAST’s sensitivity to CARseq’s when the covariate is provided 

is illustrated in the boxplot. In the simulation, the cell type fractions are estimated using 

ICeD-T, a method that estimates cell fractions from expression of a bulk tissue sample 

using a reference of expression of purified cells. There are 10 simulation replicates for 

each combination of sample size (columns) as the total number of case-control samples and 

patterns of DE (rows). For each replicate, there are 2,000 genes following the pre-specified 

pattern of DE and 8,000 genes with no DE in any of the six cell types. In the notation 

for the DE pattern, the three numbers separated by underscores each represent the fold 

change in the major cell type, the minor cell type, and four other cell types. For example, 

2_1_1 indicates that the major cell type is differentially expressed with fold change 2, the 

minor cell type and the other four cell type are not differentially expressed. The vertical line 

indicates the intended FDR level of 0.1. Note that csSAM does not support the inclusion of 

covariates; the scales of the x-axis in the two subfigures are different.
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Figure 3: 
Reproducibility of effect size estimation

The reproducibility of effect size estimation among 2,000 differentially expressed genes in 

the major cell type (fold change of 2 or log fold change of 0.7) when CARseq and TOAST 

are applied to a simulation dataset of a mixture of three cell types where only the major cell 

type is differentially expressed. The percentage of genes whose direction of DE is correctly 

estimated in both two replicates is added at the top right corner of each plot.
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Figure 4: 
CT-specific DE results for SCZ vs. controls

CARseq on gene expression data between schizophrenia (SCZ) and controls. (A) Estimated 

cell fractions by ICeD-T sorted by increasing fractions of excitatory neurons. (B) The effect 

size of case-control status on relative cell fractions against excitatory neurons (log ratio of 

the cell type of interest vs. excitatory neuron). The standard errors are denoted by bars. The 

confidence interval are calculated based on the linear model estimates for the case-control 

status effect, conditioning on other covariates. (C) CT-specific DE in excitatory neurons 

and inhibitory neurons in significantly enriched pathways. Only genes with a p-value less 

than 0.05 are shown. The color scheme is consistent with the color used in panel (A) 

and (D) for excitatory neurons and inhibitory neurons. (D) Gene set enrichment analysis 

(GSEA) results on REACTOME pathways. Three top pathways were shown for each cell 

type, ranked by −log10 q value with the sign of normalized enrichment score (NES). 

Positive NES indicates enrichment of genes with small p-values. The p-value of GSEA were 

calculated using R package “fgsea” [34]. We further converted the p-values to q-values using 

“get_qvalues_one_inflated” in our CARseq package. More details of GSEA are presented in 

the subsection of “Gene set enrichment analysis” in Method section.
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Figure 5: 
Microglia-specific-DE signals

(A) The Spearman correlation matrix of −log10(Microglia-specific-DE p-values by 

CARseq) (calculated by CARseq) between CMC-SCZ and UCLA-ASD studies. (B) The 

REACTOME pathways that are over-represented by the 65 genes with microglia-specific-

DE p-values smaller than 0.05 in both CMC-SCZ and UCLA-ASD studies. The q-values 

were calculated using R package “goseq” [35].
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