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Purpose: Digital breast tomosynthesis (DBT) has been shown to somewhat alleviate the breast tissue
overlapping issues of two-dimensional (2D) mammography. However, the improvement in current
DBT systems over mammography is still limited. Statistical image reconstruction (SIR) methods have
the potential to reduce through-plane artifacts in DBT, and thus may be used to further reduce
anatomical clutter. The purpose of this work was to study the impact of SIR on anatomical clutter in
the reconstructed DBT image volumes.
Methods: An SIR with a slice-wise total variation (TV) regularizer was implemented to reconstruct
DBT images which were compared with the clinical reconstruction method (filtered backprojection). The
artifact spread function (ASF) was measured to quantify the reduction of the through-plane artifacts level
in phantom studies and microcalcifications in clinical cases. The anatomical clutter was quantified by the
anatomical noise power spectrum with a power law fitting model: NPSa( f) = a f�b. The b values were
measured from the reconstructed image slices when the two reconstruction methods were applied to a
cohort of clinical breast exams (N = 101) acquired using Hologic Selenia Dimensions DBT systems.
Results: The full width half maximum (FWHM) of the measured ASF was reduced from
8.7 � 0.1 mm for clinical reconstruction to 6.5 � 0.1 mm for SIR which yields a 25% reduction in
FWHM in phantom studies and the same amount of ASF reduction was also found in clinical mea-
surements from microcalcifications. The measured b values for the two reconstruction methods were
3.17 � 0.36 and 2.14 � 0.39 for the clinical reconstruction method and the SIR method, respec-
tively. This difference was statistically significant (P << 0.001). The dependence of b on slice loca-
tion using either method was negligible.
Conclusions: Statistical image reconstruction enabled a significant reduction of both the through-
plane artifacts level and anatomical clutter in the DBT reconstructions. The b value was found to be
b�2.14 with the SIR method. This value stays in the middle between the b�1.8 for cone beam CT
and b�3.2 for mammography. In contrast, the measured b value in the clinical reconstructions
(b�3.17) remains close to that of mammography. © 2018 American Association of Physicists in
Medicine [https://doi.org/10.1002/mp.12864]
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1. INTRODUCTION

Digital breast tomosynthesis (DBT) is an emerging breast
imaging modality that builds on existing equipment and tech-
niques used in mammography by incorporating three dimen-
sional (3D) information.1 Since becoming clinically available in
the United States2 in 2011, the clinical use of DBT has rapidly
expanded. Some of the major benefits of DBT are that it offers
in-plane spatial resolution comparable to that of mammography
while simultaneously alleviating two major problems inherent
to two-dimensional (2D) imaging modalities: (a) overlaying
structures obscuring important pathology (false negatives lead-
ing to decreased sensitivity) and (b) overlaying structures

simulating pathology when none is present (false positives
leading to decreased specificity).3–6 In order to generate this
additional spatial information, a series of cone-beam projection
images are acquired about the compressed breast over a limited
angular span (from 15∘ to 50∘ in current clinical systems).7

These projection data are then reconstructed in a pseudo-tomo-
graphic manner to generate a 3D image volume.

The primary objective in breast imaging (in breast cancer
screening in particular) is to determine whether or not a
malignancy is present. However, the normal anatomical back-
ground in images may significantly confound this task. The
impact of the anatomical clutter on detection performance
has been quantified using several techniques8–12 including a
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spatial frequency-dependent power spectrum, viz., the
anatomical background noise power spectrum.10–12 In the
presence of structural anatomical clutter, the overall
detectability for a specific imaging task is jointly impacted by
a generalized noise power spectrum that consists of two
major components: quantum noise and background anatomi-
cal clutter.10–12 The quantum noise depends on a variety of
physical factors of the imaging system (such as the quantum
detection efficiency of the detector), image acquisition
parameters (such as the overall radiation exposure level and
tube potential), and the breast itself (such as density, com-
pressed thickness, etc.). On the other hand, the variability in
the normal breast parenchymal structure results in an inherent
anatomical clutter of the breast. The final apparent anatomi-
cal clutter or noise will depend on this inherent anatomical
clutter as well as imaging conditions, imaging geometry
(compression, CC vs MLO planar view, etc.), modality,
reconstruction technique, and image postprocessing.13

It is well understood that the level of anatomical clutter has
a strong impact on lesion detection performance.12,14–17 There-
fore, quantitative assessment and prediction of diagnostic per-
formance for mammography should take into consideration
not only imaging system/acquisition parameters but also the
anatomical clutter. As an example, the concept of a generalized
NPS including the anatomical clutter has been developed and
incorporated into the model observer framework.18 With this
framework, a quantitative understanding of anatomical clutter
for a given imaging method may be used to help predict the
lesion detection performance for that method.

The anatomical clutter can be quantified using the concept
of power spectrum of anatomical background noise that was
empirically modeled as12:

NPSað f Þ � af�b (1)

where f is the spatial frequency, and a and b are two parameters
determined by fitting the measured and radially averaged
NPSa( f) to the model given in Eq. (1). The parameter b has
been measured for a variety of breast imaging modalities,
including mammography, digital breast tomosynthesis
(DBT)19, and dedicated breast cone-beam CT (BCT).13,16,20

For each modality, a range of published b values may be found.
Not only does b depend on the imaging modality but it also
varies with the x-ray beam energy,13 breast density,17 recon-
structed tomographic slice thickness,16,20 and even the imaging
plane (e.g., CC vs MLO for mammography and DBT).16

One way to compare b values across modalities is to use
the same patient cohort and measure b values for that cohort
using different imaging techniques. In one crossmodality
study,16 the b value was measured in a patient cohort for
mammography, DBT, and dedicated breast CT, finding values
of b = 3.235 � 0.090, b = 3.080 � 0.032, and b = 1.790 �
0.042 for mammography, DBT, and dedicated breast CT,
respectively. These results demonstrated that for the clinical
systems tested, moving from mammography to DBT, some-
what surprisingly, only results in a minimal reduction in
anatomical clutter. This result can be understood in large part

as a result of being limited by through-plane artifacts from
the adjacent slices in DBT reconstructions. However, the
measured b values are a result of specific DBT imaging sys-
tem with specific tube, detector, angular span of the acquired
cone beam projection angles, and image reconstruction
method. Even for a given DBT imaging system, when differ-
ent angular spans of the acquisition view angles and different
image reconstruction methods are used to reconstruct DBT
images, the b values may vary. Even if the angular span of
the acquisition view angles is fixed, as it is for most currently
available clinical DBT imaging systems, different image
reconstruction methods may result in different levels of
through-plane artifacts and thus, potentially result in different
b values.

Given the argument that a reduction in through-plane arti-
facts level would lead to a potential reduction in anatomical
clutter and previous results from other investigators21–23

demonstrated that a reduction of through-plane artifacts can
be achieved in DBT with some statistical image reconstruc-
tion (SIR) methods, one may wonder, if the use of SIR in
DBT would result in a more pronounced reduction in b val-
ues than b�3.1 from the current clinical reconstructions? If
the answer is yes, then what would be the quantitative b val-
ues for a specific SIR? The main purpose of this paper was to
address these questions.

2. IMAGE RECONSTRUCTION ALGORITHM

To study the impact of SIR on anatomical clutter, the
specific image reconstruction algorithm and numerical imple-
mentation details must be first specified. In this section, the
SIR algorithm used in this work and the associated recon-
struction parameters are presented.

2.A. Algorithm and numerical implementation
method

In this paper, a well-known edge-preserving regularizer,
that is, the total variation (TV) norm of an digital image is
chosen to regularize the iterative image reconstruction. For a
two-dimensional (2D) M 9 N vectorized image slice x, the
TV norm is defined as follows:

TVðxÞ ¼
XMN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1 � xiÞ2 þ ðxiþN � xiÞ2

q
: (2)

Given a system matrix A to model the forward projection of
an image volume and a diagonal matrix Q to model the statisti-
cal counts of the measured projection data, the log-processed
projection data vector y can be used to reconstruct the image
vector x by solving the following convex optimization problem:

x̂ ¼ Arg Min
x

1
2
kAx� yk2Q þ kTVðxÞ

� �
; (3)

where k is a parameter controlling regularization strength
to model the desired image features such as the noise
level and spatial resolution trade-off. Note that the TV
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norm and its variants have been studied in a constrained
optimization framework to address the reconstruction
problem with sparse view angles both in x-ray cone-beam
CT24 and in DBT.22 In these works, an implementation
method known as ASD-POCS22,24 was developed to itera-
tively solve the formulated constrained optimization prob-
lem. In this paper, rather than solving the constrained
optimization problem using ASD-POCS, we start with the
more conventional unconstrained optimization problem in
Eq. (3). There are many readily available numerical meth-
ods to solve the unconstrained optimization problem in
Eq. (3). The method used in this paper is the well-known
forward-backward proximal splitting method.25 In this
method, the solution, x̂, of the convex optimization prob-
lem in Eq. (3) is recast as the solution of the following
fixed point problem:

x̂ ¼ proxkPTV x̂� PATQðAx̂� yÞ� �
(4)

where the positive semi-definite matrix P is a binary mask to
define the compact support of the breast image volume and
the proximity operator25 proxkPTV(u) is defined as the solu-
tion of the following standard denoising problem:

proxkPTV ðuÞ ¼ Arg Min
x

1
2
kx� uk2P�1 þ kTVðxÞ

� �
; (5)

The fixed point x̂ in Eq. (4) can be iteratively solved using
the following alternating sequences:25

u ¼ xk � sPATQ Axk � y
� �

; (6)

xkþ1 ¼ proxkPTV ðuÞ: (7)

Eq. (6) represents a gradient descent update with a statisti-
cal penalty matrix Q, a binary mask matrix P, and a step
size s.

The denoising problem in Eq. (5) can be iteratively solved
using a 2D shrinkage operator Dnþ1

i ¼ ½Slðjex;ijÞ ex;i
kEik2 ;

Slðjey;ijÞ ey;i
kEik2�, where SlðxÞ ¼ xð1� l

jxjÞþ is the well-known

one-dimensional shrinkage operator. This iterative solver is
presented in lines 8–22 in the pseudocode of the entire
numerical implementation process shown in Algorithm 1.
The detailed derivation to obtain this solver using a variable
splitting technique26 and the corresponding ADMM was pre-
sented in the Appendix of the paper. Additionally, in the

numerical implementation, the ordered-subset method27 was
used with five subsets, each subset containing three view
angles of cone beam projections. Other empirically chosen
reconstruction parameters used in this paper to produce
images were listed in Table I.

Algorithm 1: Pseudocode for the numerical implementation of the SIR used
in this work with a 2D TV norm regularizer.

1: Number of iterations: NIter; Number of denoising steps: NDenoising

2: P Breast Mask; Q Projection counts

3: x0 FBP(y) ▹ Initialize volume as FBP reconstruction.

4: Procedure SIR (xk,y,Q,P,A,s,k,l)

5: k=0

6: While k<NIter do

7: u=xk�sPATQ(Axk�y)
8: ~x0 ¼ u

9: for Each voxel, i do

10: D0
i ¼ ½uiþ1 � ui; uiþN � ui�; B0

i ¼ ½0; 0�
11: n = 0;

12: While n < NDenoising do

13: for Each voxel, i do

14: �xi ¼ 1=4ð~xniþ1 þ ~xni�1 þ ~xniþN þ ~xni�NÞ
15: hi ¼ 1=4½ðdnx;i�1 � dnx;iÞ þ ðdny;i�N � dny;iÞ þ ðbnx;i�1 � bnx;iÞ

þðbny;i�N � bny;iÞ�
16: ~xnþ1i ¼ l=pi

l=piþ4k ui þ 4k
l=piþ4k ð�xi þ hiÞ

17: Ei ¼ ½bnx;i � ð~xnþ1iþ1 � ~xnþ1i Þ; bny;i � ð~xnþ1iþN � ~xnþ1i Þ�

18: kEik2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðex;iÞ2 þ ðey;iÞ2

q
19: Dnþ1

i ¼ ½Slðjex;ijÞ ex;i
kEik2 ; Slðjey;ijÞ

ey;i
kEik2�

20: Bnþ1
i ¼ Dnþ1

i þ Ei

21: n=n+1

22: xkþ1 ¼ ~xNDenoising

23: k=k+1

24: return xNIter

Note: Dn ¼ ½dnx ; dny �, Bn ¼ ½bnx ;bny �, and E=[ex,ey]

2.B. Statistical weight matrix Q

As described in Eq. (3), the matrix Q is a diagonal matrix
which models the statistical counts of the measured projec-
tion data and is used to penalize rays during the reconstruc-
tion according to their noise. In other words, a noisy ray with
very few photons arriving at the detector is given a smaller
weight than a ray where the photon number arriving at the
detector is high. Each diagonal element, Qi, of Q was deter-
mined using the measured detector counts and a correction
for electronic noise28,29 as follows:

Qi ¼ D2
i

Di þ r2E
; (8)

where Di is the measured detector counts at the detector
location, i, and r2E is introduced to account for the detector
readout electronics. In this work, the approximate electronic
noise variance was estimated by acquiring images with the
window of the x-ray tube being blocked with a lead blocker.
The variance in the resulting projection images was found to
be r2E � 50.

TABLE I. Reconstruction parameters.

Parameter Value

Number of iterations: NIter 50

Number of regularization
steps: NDenoising

5

Step size (s) 0.75

k 12.5

l 1.25

Q Generated as described in Eq. (8)

P Generated as described in Section 2.C.
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2.C. Binary diagonal image mask matrix P for
breast volume support

To mitigate truncation artifacts and speed up computation,
a 3D breast mask was used to constrain reconstruction.30,31

This mask approximates the breast support by identifying the
breast boundaries in the projection domain, backprojecting
the borders, and filling in to the chest wall as shown in Fig. 1.
The calculated breast mask was used as the image domain
weight, P in Eq. (6). To arrive at Eq. (4), we required that P
be positive semidefinite. In our definition here of P as a bin-
ary breast mask we meet those criteria since P is diagonal
with diagonal elements of either 0 or 1.

2.D. Forward- and back-projection

In numerical implementation, projection matrices of the
imaging system were used to perform both forward- and
back-projection.32 Projection matrices provide a calibrated
mapping from the image domain to the projection domain.
To be more specific, for a given view angle, i, there is a one-
to-one correspondence between a location denoted by (u,v)
on the detector plane and a voxel location denoted by (x,y,z)
in the image volume:

u� s
v� s
s

0
@

1
A ¼ Bi

x
y
z
1

0
BB@

1
CCA (9)

where s is a scalar, and Bi is a 3 9 4 matrix, where the sub-
script i indicates the current projection number. Although Bi

itself is not square, for a fixed slice location, z, one can invert
the matrix algebraically and use a similar formulation to per-
form the forward projection as follows:

x� s0

y� s0

s0

0
@

1
A ¼ FiðzÞ

u
v
1

0
@

1
A (10)

where s0 is another scalar and Fi(z) is a 3 9 3 z-dependent
matrix, where the subscript i indicates the current projection
number.

2.E. Computational facilities

The algorithm was coded in Visual C (Microsoft, Inc.,
Redmond, WA, USA) and CUDA (NVIDIA Corporation,
Santa Clara, CA, USA) and executed on a local workstation
with dual Xeon E5-2620 CPUs (Intel Corporation, Santa
Clara, CA, USA) and 64 GB of RAM and a GTX 1070 GPU
(NVIDIA, Santa Clara, CA, USA) GPU with 8 GB of RAM.
In the clinical cohort studied for this work, the average total
time needed to perform the SIR reconstructions was approxi-
mately 70 s.

3. EXPERIMENTAL METHODS AND MATERIALS

In this work, projection data from a patient cohort with
101 patients were retrospectively processed. This cohort
included breasts with and without pathology, however, cases
with metal, implants, or large calcifications were excluded.
The measurements were performed in volumes reconstructed
using two methods: the clinical reconstruction (FBP + stan-
dard postprocessing) and the SIR method described in Sec-
tion 2.A. Both the clinical and the SIR-reconstructed
volumes had 1 mm slice sampling and a variable in-plane
pixel pitch using a projective pixel grid where the pixel pitch
is determined by the detector element size and the system
magnification for a given slice location as shown in Fig. 2. In

FIG. 1. The workflow used to calculate the 3D breast mask volume.
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this method, voxels further from the detector (closer to the
focal spot) are smaller than those closer to the detector. In
this work, the voxel size was exactly matched between the
clinical reconstruction and the SIR reconstructions.

3.A. Data acquisition

All datasets used in this work were acquired using Hologic
Selenia Dimensions (Hologic, Inc. Bedford, MA, USA) DBT
imaging systems. A cohort of 101 clinical DBT exams was
acquired with IRB approval. This cohort included a mix of
both CC and MLO views (63 CC, 38 MLO) with an average
breast thickness of 6.7 � 1.6 cm and average patient age of
55 � 10 yr. The mean tube potential used was 34 � 4 kVp,
and the average glandular dose (AGD) in the cohort was
2.7 � 0.9 mGy. Three clinical cases from this cohort were
analyzed subjectively and are presented in this work for quali-
tative image quality assessment for different image recon-
struction methods.

3.B. Artifact spread function measurements

To quantify the potential reduction of through-plane arti-
facts in SIR compared with the clinical reconstruction, the

well-known artifact spread function (ASF)21,33–35 was mea-
sured to compare spatial blurring along the slice direction for
the two reconstruction methods. To measure the ASF, we
placed a 1 mm chrome steel ball (Fastenal Company,
Winona, MN, USA) at a height of 25 mm above the breast
support in the center of a custom breast-shaped solid water
phantom (Gammex, Middleton, WI, USA; see Figs. 3 and 4).
The phantom was imaged 25 times using typical imaging
parameters (32 kVp, 40 mAs, 1.0 mGy AGD). The ASF was
measured according to the following definition:35

ASFðzÞ ¼ IMaxðzÞ � �IbkgðzÞ
IMaxðz0Þ � �Ibkgðz0Þ ; (11)

where IMax denotes the maximum intensity value in the
region containing the highly attenuating bead, �Ibkg denotes
the mean value in an adjacent background region, z, denotes
the slice position, and z0 denotes the actual slice location of
the highly attenuating bead. The ASF width was quantified
using the measured full width half maximum (FWHM) of the
ASF in millimeter. To test whether the measured ASF reduc-
tion in phantom studies can be generalized to the clinical sce-
nario, we also identified a high-contrast calcification
(£ � 640 lm) in a clinical case (not part of the cohort used
to measure b) with a fairly homogeneous background (see
Fig. 3) and measured the ASF for that calcification in situ.
Note that since this clinical measurement was retrospective,
repeated scans were not possible, so a single ASF curve was
measured and the result is presented without the error bars.

3.C. Anatomical noise power measurement

The anatomical clutter parameter, b, was measured using
a previously published method36 in the central 25 slices of
each reconstructed volume. In this method, one hundred
256 9 256 ROIs were randomly placed in each reconstructed
slice. Each ROI was constrained to fall completely within the
breast parenchyma (ROIs straddling the skin line, pectoralis
muscle, etc., were rejected). Once a satisfactory ROI was
identified, the ROI was windowed using a radial Hanning
window to suppress spectral leakage and the power spectrum
was calculated. This process was repeated for 100 ROIs per
slice to determine an average power spectrum for that slice. A
least squares fitting was then performed to determine the
parameters a and b. The ROIs were allowed to overlap and
were chosen independently for each slice. The selected ROIs
were chosen once and then used in both the SIR and clinical
reconstruction. It should be pointed out, that since multiple
ROIs were chosen from the same subject, there is a possibil-
ity of correlations. In this work, any such possible correla-
tions were not taken into account.

Since the anatomical component of the NPS is only domi-
nant in a certain range of frequency values, the power-law fit-
ting of the NPS was performed over a limited frequency
range, [fmin,fmax]. This range was carefully chosen by avoiding
extremely low frequencies and extremely high frequencies. In
previously published work, the recommended frequency

FIG. 2. An illustration of the projective pixel grid used in this work. [Color
figure can be viewed at wileyonlinelibrary.com]
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ranges vary,12,15,16,20 with fmin≥0.1mm�1 and fmax≤0.5�1mm�1.
In a clinical cohort, there is always interexam variation in
both dose (increased/decreased quantum noise contribution)
and anatomical clutter. In order to be robust in practice, the
frequency range can be selected15,16 to maximize the

coefficient of correlation, r2. This range was found by
searching all possible frequency ranges (s.t. fmin < fmax) to
choose the b value that yielded the best fit with minimal
least squared error.

To validate that the selected range indeed corresponded to
a frequency range dominated by anatomical clutter, a custom
made anthropomorphic phantom (Gammex, Middleton, WI,
USA) (see Fig. 4) was imaged using typical imaging parame-
ters (32 kVp, 38 mAs, 1.0 mGy AGD). Using five repeated
scans of the phantom, both the quantum only and total noise
power spectra were calculated in the slices of the phantom
containing simulated anatomical variation and compared for
each reconstruction method. The total noise power spectra
were calculated directly in the five reconstructed volumes
and averaged; the quantum noise power spectrum was calcu-
lated by subtracting the ensemble average of the five recon-
structions from each reconstruction to generate five noise
only volumes.

3.D. Data analysis

The measured b values were compared in several ways.
The average b value for each reconstruction method was mea-
sured by averaging the measured b values from all the mea-
sured slices in each case to calculate a single b value per
breast. The average and standard deviation of those measure-
ments (one per case) was calculated.

To determine if any difference in the mean values was sig-
nificant, a two-sample t test (significance threshold:
a = 0.01) was performed in MATLAB (R2017a, The Math-
Works, Natick, MA, USA). The null hypothesis was that the

FIG. 3. Projection images of the phantom (a) and clinical cases (b) used for the ASF measurements are shown along with the corresponding reconstructions in
(c) and (d), respectively.

(a) (b)

FIG. 4. A photograph (a) and radiograph (b) of the custom anthropomorphic
phantom used to validate the fitting range used in the measurement of b.
[Color figure can be viewed at wileyonlinelibrary.com]
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means were equal, H0:l1 = l2, and thus the alternative
hypothesis is a difference in the mean measured value, H1:
l1 > l2. The measured values for each case were also com-
pared directly in a plot (bSIRvs.bClin), and a linear regression
was then performed to determine any correlation between the
two reconstruction method.

In addition to comparing the measured b values in the two
reconstruction methods, two tests were performed to deter-
mine if the two methods treated different breast views or slice
positions differently. To compare the two views, the average
values were calculated for the MLO and CC views for each
reconstruction method. In each case (clinical and SIR recon-
structions), the mean values were compared using a two-sam-
ple t test as previously described.

Finally, the measured b values were averaged for each
slice position (relative to the center of the volume) for each
method. This averaging resulted in 25 b measurements per
reconstruction method. To determine if b had any depen-
dence on slice position in either reconstruction method, a
one-way ANOVA was performed. This ANOVA test com-
pared the measured values at different slice locations with the
overall average to determine if the average value at any of the
slice locations was significantly different. The null hypothesis
was that the mean value at each slice position was equal to
the underlying mean across slices, H0:for alli:li = 〈lall〉; the
alternative hypothesis was that the mean value at any slice
position was different than the underlying mean across all
slices H1:for somei:li > 〈lall〉 or li < 〈lall〉.

4. RESULTS

4.A. Qualitative comparison of reconstructed
images

In the first case (Fig. 5), a cluster of calcifications in a
heterogeneously dense breast (BIRADS density: (c); R CC

view) from a 40-year-old woman is shown. This cluster of calci-
fications is well focused and conspicuous in the focal plane in
both reconstructions. However, in the clinical reconstruction, the
residual signal from the cluster is clearly visible and distracting
in the reconstructed slices 10 mm above and below the cluster.

In the second case (Fig. 6), a highly calcified dense mass
in a fatty breast (BIRADS density: (a); R CC view) of a 69-
year-old woman is shown. Subjectively, this is a very interest-
ing pathology with many different high-contrast features pre-
sent. However, the superposition of the high-contrast features
in the clinical reconstruction indicates substantial signal leak-
age from the nearby image planes and the superposition leads
to reduced image sharpness. Both the margins of the mass as
well as the calcified structures are difficult to distinguish,
and the different layers of the mass are not well separated. In
contrast, in the SIR reconstructions, the signal leakage is sub-
stantially reduced, and the individual layers of the mass may
be clearly differentiated.

In the third case (Fig. 7), a spiculated mass with calcifica-
tions in a breast with scattered fibroglandular tissue (BIR-
ADS density: (c); R CC view) of a 67-year-old woman is
shown. This case demonstrates some of the issues with FBP
at the boundaries of the breast, where the skin line was incor-
rectly reconstructed, and through-plane blurring obscured the
subcutaneous fat.

4.B. Artifact spread function measurements

The measured ASF curves for the phantom case are shown
in Fig. 8 (a). The mean and standard deviations of the
FWHM of the ASF measurements in the phantom case were
8.7 � 0.1 mm for the clinical reconstruction and
6.5 � 0.1 mm for the SIR method (approximately a 25%
improvement). The measured FWHM for the clinical recon-
struction is slightly less than the previously published val-
ues34,35 for this system (�10 mm). The measured ASF

FIG. 5. A cluster of calcifications in a clinical DBT exam reconstructed with the clinical reconstruction engine (top) and SIR (bottom) is shown in focus (middle
image column) and at locations above (left two image columns) and below (right two image columns) the focal plane in the z direction. All image shown with the
same W/L.

Medical Physics, 45 (5), May 2018

2015 Garrett et al.: Reduced anatomical clutter in DBT 2015



curves for the in vivo calcification are shown in Fig. 8(b).
The measured FWHM of the ASF was 7.0 and 5.3 mm for
the clinical and SIR methods, respectively (again, approxi-
mately a 25% improvement).

4.C. Anatomical noise power spectrum

4.C.1. Validation of the range of spatial frequencies
used in power-law model fitting

For this cohort, the frequency ranges used for the two
reconstruction methods are summarized in Table II. To validate
that these selected frequency ranges truly correspond to the fre-
quency range dominated by anatomical clutter, the total and
quantum only NPS for the anthropomorphic breast phantom

are shown in Fig. 9. In the frequency range used to perform
the least squares fitting, the total noise power spectrum is strik-
ingly different compared with the quantum only NPS, indicat-
ing that contribution to the total NPS in that frequency range is
indeed dominated by anatomical clutter. Using these ranges,
the correlation was very high in all cases. For the clinical
reconstructions, the median r2 value was r2 = 0.9975, the
interquartile range (IQR) was 0.0034, and the range was
0.0219. For the SIR method, the median r2 value was
r2 = 0.9969, the IQR was 0.0039, and the range was 0.0482.

4.C.2. Dependence on reconstruction method

The average measured NPS along with the corresponding
least-squares power-law fits are shown in Fig. 10. The

FIG. 6. A highly calcified dense mass in a clinical DBT exam reconstructed with the clinical reconstruction engine (top) and SIR (bottom) is shown at different z
locations. All images are shown with the same W/L.

FIG. 7. A boundary region in a clinical DBT exam reconstructed with the clinical reconstruction engine (top) and SIR (bottom) is shown at different z locations.
All image shown with the same W/L.
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average measured b values and the corresponding standard
deviations are shown in Table III. A reduction in b of approx-
imately 1 was seen in the SIR reconstructions compared with
the clinical reconstruction. This difference between the mean
b values of the two methods was statistically significant
(P << 0.001).

As one can observe from Fig. 10, the quantum noise power
is much higher for the SIR method at frequencies below
0.5mm�1. To understand this phenomenon, it is important to
note that, in this work, the regularization parameters were cho-
sen to achieve a similar noise variance (in terms of quantum
noise) to the current clinical reconstructions. For the anthropo-
morphic phantom NPS presented, the approximate noise stan-
dard deviation for the quantum noise only was 13 for the
clinical reconstructions and 9 for the SIR reconstructions (cal-
culated by integrating the measured quantum NPS to estimate
the noise variance). The TV regularization used in this work
may preferentially suppress high-frequency noise, and so even
though the noise variance is similar in the two reconstructions,
the quantum noise power spectrum for the SIR cases does have
higher power for low frequencies.

FIG. 8. The measured ASF curves for the two reconstruction methods in the phantom (a) and a clinical case (b).

TABLE II. The limits of the frequency range used to calculate b for the DBT
reconstructions and the corresponding standard deviations for the different
reconstruction methods.

Clinical SIR

fmin � rf(mm�1) 0.13 � 0.03 0.12 � 0.03

fmax � rf(mm�1) 0.62 � 0.12 0.63 � 0.12

FIG. 9. The total and quantum NPS in the anthropomorphic breast phantom using the clinical reconstruction method (a) and SIR (b). The average upper and
lower frequency limits used for the power-law fitting in the clinical cohort are shown in this figure. [Color figure can be viewed at wileyonlinelibrary.com]
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The measured b values using the SIR method are com-
pared with the measured values from the clinical reconstruc-
tion in Fig. 11. The least-squares regression of the measured
values was plotted as well; the corresponding relationship is
provided in the plot legend. The correlation was moderately
high (r2 = 0.700) and slope of this fit was found to be 0.91,
with a negative and nonzero offset of -0.73.

4.C.3. Dependence on the acquisition modes: CC
vs MLO

The distribution of measured b values in the different
views (CC and MLO) is shown in Fig. 12. For each recon-
struction method, the difference between the CC and
MLO views with each method was not significant
(P > 0.01).

4.C.4. Dependence on slice positions

Figure 13 shows the average b as a function of slice loca-
tion for the central 25 slices about the center of the volume.
These curves are relatively flat, indicating that, irrespective
of reconstruction method, the anatomical clutter in the central
slices about the center of the compressed breast is approxi-
mately the same. This was confirmed with the ANOVA com-
parison of the means, in which it was found that P > 0.05 for
both reconstruction methods, indicating no statistically signif-
icant difference was present between the mean b values at dif-
ferent slice locations in either reconstruction method.

5. DISCUSSION

In this work, the anatomical noise power spectra of DBT
volumes generated using two reconstruction methods were
measured and fitted to a power law model with two parame-
ters, a and b. Image volumes of the same cohort of cases
were reconstructed using each of the two methods and a
direct comparison of the measured exponent b values was
performed. Since the acquired data for the two reconstruction
cohorts was the same, other parameters such as system geom-
etry, acquisition parameters had no influence on the results.
Under these conditions, it was found that the use of an SIR
method reduced the through-plane artifacts levels and

FIG. 10. The averaged measured NPST for each reconstruction method. The
corresponding linear least squares fit is shown as a dashed line for each case.
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE III. The measured average values of b and the corresponding standard
deviations for the different reconstruction methods.

Clinical SIR

bmean � rb 3.17 � 0.36 2.14,pm 0.39

FIG. 11. The measured b values for the DOS-SPART DBT reconstructions
plotted against the clinical reconstruction. The linear least squares fit is
shown in the legend.

FIG. 12. The measured b values for the DBT reconstructions shown
separated by view. [Color figure can be viewed at wileyonlinelibrary.com]
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significantly reduced the anatomical clutter in DBT recon-
structions as quantified using a power-law fitting of the
anatomical noise power spectra. The measured b value is
around 2.14 for SIR and 3.17 for the clinical reconstruction
method. In addition, b had no significant dependence on
either slice position or view (MLO vs CC) with either recon-
struction method.

The measured b values in the clinical and SIR reconstruc-
tions were found to be moderately correlated (r2 = 0.72,
Fig. 11). This correlation indicates that a case with a small b
value in one reconstruction method roughly corresponds to a
small b value in the other. This result suggests that if measured
b values are correlated with breast density, etc., in one recon-
struction method, a similar correlation may be expected in the
other. However, in Fig. 11, there are several outliers which lie
closer to the line of slope unity than the other data points.
Inspecting the reconstructed images for these outliers demon-
strated that each of these four cases were fairly dense. In these
outliers, it is possible that the anatomical clutter in both the
clinical method and the SIR method are limited by the inherent
anatomy in each slice, rather than the reconstruction method.

As shown by other investigators16,19 and the result shown in
this paper, the b values measured from the current clinical
reconstruction is not significantly different from the b values
measured from 2D mammography. Despite this minimal
reduction in b, several large-scale clinical trials have shown
that the introduction of DBTcan help reduce recall rates, while
simultaneously increasing cancer detection rates.37,38 Given
that even a slight reduction in the anatomical clutter may offer
improved screening performance (recall our reference values
of b = 3.235 and b = 3.080 for mammography and DBT,
respectively), an immediate question to be answered in the
future studies is the clinical implications of a significant reduc-
tion of anatomical clutter in the final outcome of clinical diag-
noses. However, this question must be addressed in future
clinical trial studies using much larger patient cohorts, rather

than the relatively small cohort size used in this study. As a
specific example, it has previously been shown14 that if quan-
tum noise remains constant, but b is reduced, mass detection
for human observers improves significantly with the most dra-
matic improvements for larger masses. An interesting question
for future studies is to address what would be the impact of b
parameter reduction in SIR on the mass detection tasks. Note
that the use of SIR in DBT can result in a reduction of quan-
tum noise level as well. Therefore, in the future, the impact of
the SIR method on quantum noise should be explored and
human observer studies should be used to validate this poten-
tial improvement in diagnostic performance and quantify the
significance of any improvement.

Another potential significance of the reduced b values in
SIR reconstructed DBT images can be inferred by the follow-
ing consideration: with traditional mammography, it has been
shown that anatomical clutter has a more pronounced impact
on mass detection than quantum noise. As a result, the depen-
dence of the images on dose is minimal,39 unlike other well-
known quantum-limited tomographic imaging systems such
as computed tomography (CT).40,41 Given the significantly
reduced anatomical clutter in SIR-reconstructed DBT images,
an interesting question arises: if the low-frequency power of
the anatomical clutter is reduced, does the modality become
more dose dependent? It would be interesting to investigate
the potentially modified impact of radiation dose on diagnos-
tic performance in DBT imaging with SIR reconstruction
using model and human observer studies.

The SIR image reconstruction problem in Eq. (3) was
solved in this work using the backward-forward splitting
method together with variable splitting methods to convert
the 2D TV denoising problem into a denoising problem with
a generalized shrinkage operator as a solution. However, there
are many other ways to solve the same optimization prob-
lem42–49 including other strategies to leverage the elegance of
a variety of other variable splitting method and corresponding
ADMM update strategies42, 44,50–52 or to incorporate the ben-
efits of TV regularization.22,53–63

One potential limitation of this work is that we demon-
strated through-plane blurring artifacts in DBT images could
be reduced, resulting in a significant reduction in anatomical
clutter when a specific SIR implementation is used; yet we
have not demonstrated this can be achieved with other SIR
methods in general. However, work from many other
groups has previously shown that a reduction in through-
plane blurring artifacts can be achieved using other SIR
methods.21–23,58,64,65 Based upon our finding in this paper
that the reduced anatomical clutter is associated with the
reduction of through-plane blurring artifacts, it is anticipated
that other SIR methods might also be used to reduce anatomi-
cal clutter as long as the parameters in these alternative meth-
ods are optimized to achieve the goal of through-plane
artifacts reduction. Nevertheless, detailed studies in parame-
ter selection for these methods and clinical studies similar to
the one presented in this paper must be performed to answer
the question of whether these methods can reduce anatomical
clutter in the same way presented in this paper.
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FIG. 13. The average measured b value as a function of slice position for the
two reconstruction methods. [Color figure can be viewed at wileyonlinelibrar-
y.com]
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6. CONCLUSION

When SIR with proper reconstruction parameters was
used to reconstruct DBT images, the width of the ASF in
DBT was reduced by about 25% relative to that of the
clinical reconstructions. Anatomical clutter characterized
by the b values in anatomical noise power spectrum was
reduced from b�3.17 in clinical reconstruction to b�2.14
in SIR.
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APPENDIX

SOLVING THE DENOISING PROBLEMWITH 2D
TV-NORM AS REGULARIZER

In this appendix, we present the detailed derivation of the
used iterative solver of the denoising problem shown in
Eq. (7):

~̂x : ¼ Arg Min
~x

�
1
2
ð~x� uÞTP�1ð~x� uÞ

þ k
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~xiþ1 � ~xiÞ2 þ ð~xiþN � ~xiÞ2

q � (12)

The problem in Eq. (12) can be reformulated as the follow-
ing constrained optimization problem with auxiliary variables
di,x/y:

26

~̂x ¼ Arg Min
~x;di;x;di;y

(
1
2
ð~x� uÞTP�1ð~x� uÞ

þ k
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdi;xÞ2 þ ðdi;yÞ2

q )

s:t: di;x ¼ ~xiþ1 � ~xi; di;y ¼ ~xiþN � ~xi:

(13)

This constrained optimization problem can then be solved by
the minimization of augmented Lagrangian (AL) method via
the ADMM algorithm.66 Using the ADMM algorithm, the
above TV minimization denoising is decomposed as the fol-
lowing three alternating sub-problems:

• X-Problem: The image variables, ~xi, are updated at the
iteration n+1 by minimizing the Augmented Lagrangian

with the values of variables d and b at the iteration n as
the input:

~xnþ1i :¼ArgMin
~xi
f k
2pi
ð~xi�uiÞ2þ 1

2l
½ð~xniþ1�~xi�dni;x�bni;xÞ2

þð~xniþN�~xi�dni;y�bni;yÞ2�g:
(14)

• D-Problem: The introduced auxiliary variables di are
updated at the iteration n+1 by minimizing the Aug-
mented Lagrangian with input of variables ~xi at the iter-
ation n+1 and the input of variables b at the iteration n:

Dnþ1
i : ¼ Arg Min

di

X
i

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdi;xÞ2 þ ðdi;yÞ2

q

þ 1
2l
ðdi;x � ei;xÞ2 þ ðdi;y � ei;yÞ2
h i


:

(15)

where
ei;x ¼ bni;x � ð~xnþ1iþ1 � ~xnþ1i Þ (16)

ei;y ¼ bni;y � ð~xnþ1iþN � ~xnþ1i Þ (17)

• B-problem: In ADMM scheme, the scaled multipliers
bi are updated using the following scheme:

bnþ1i;x ¼ ½dnþ1i;x þ ei;x�; (18)

bnþ1i;y ¼ ½dnþ1i;y þ ei;y�: (19)

The subproblems X and D can be readily solved with the fol-
lowing closed-from solutions.
• Solution of the X-Problem:

~xnþ1i :¼ l=pi
l=pi þ 4k

ui þ 4k
l=pi þ 4k

ð�xi þ hiÞ

�xi :¼ 1
4
ð~xniþ1 þ ~xniþN þ ~xni�1 þ ~xni�NÞ;

hi :¼ 1
4
½ðdni�1;x � dni;xÞ þ ðdni�N;y � dni;yÞ

þ ðbni�1;x � bni;xÞ þ ðbni�N;y � bni;yÞ�:

(20)

These three formulae clearly dictate how the TV-denoising
procedure works. The denoising result comes from two
contributions: a weighted combination of the original
image ui and a denoised one, that is, �xi þ hi. The weight

for each component is l=pi
l=piþ4k and 4k

l=piþ4k, respectively. The
smaller the k values, the lower weight is assigned to the
denoised contribution and vice versa. Moreover, the
denoised image also consists of two terms: a low-pass fil-
tered contribution �xi from a two-dimensional mean filter
operation and a denoised edge contribution hi which can
be viewed as a high-pass operation.
• Solution of the D-Problem: the D-problem with two

variables, di,x and di,y, can be easily solved and the result
is written as follows using the well-known shrinkage
operator Sl(x):
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dnþ1i;x ¼ SlðjEijÞ ei;x
kEik ; dnþ1i;y ¼ SlðjEijÞ ei;y

kEik (21)

SlðxÞ ¼ x 1� l
jxj

� �
þ
¼ x 1� l

jxj
 �

; l
jxj 2 ð0; 1� ,

0

	
(22)

Namely, the two components of variable Di at each pixel are
the shrinkage of the corresponding components of Ei variable
with l as the threshold reference: when jEij\ l, both di,x
and di,y are set to zero. Otherwise, both di,x and di,y are gener-
ated from the corresponding ei,x and ei,y by a fraction of
ð1� l=jEijÞ.

a)Author to whom correspondence should be addressed. Electronic mail:
gchen7@wisc.edu

REFERENCES

1. Ren B, Ruth C, Stein J, Smith A, Shaw I, Zhenxue J. Design and perfor-
mance of the prototype full field breast tomosynthesis system with sele-
nium based flat panel detector. Proc SPIE. 2005;5745:550–61.

2. Warner E. Breast-cancer screening. N Engl J Med. 2011;365:1025–
1032.

3. Niklason LT, Christian BT, Niklason LE, et al. Digital tomosynthesis in
breast imaging. Radiology. 1997;205:399–406.

4. Niklason, LT, Kopans, DB, Hamberg, LM. Digital breast imaging:
tomosynthesis and digital subtraction mammography. Breast Disease.
1998;10:151–64.

5. Dobbins III JT, Godfrey DJ. Digital x-ray tomosynthesis: current state
of the art and clinical potential. Phys Med Biol. 2003;48:R65.

6. Skaane P, Bandos AI, Gullien R, et al. Comparison of digital mammog-
raphy alone and digital mammography plus tomosynthesis in a popula-
tionbased screening program. Radiology. 2013;267:47–56.

7. Sechopoulos I. A review of breast tomosynthesis. Part I. The image
acquisition process.Med Phys. 2013;40:014301.

8. Caldwell CB, Stapleton SJ, Holdsworth DW, et al. Characterisation of
mammographic parenchymal pattern by fractal dimension. Phys Med
Biol. 1990;35:235.

9. van der Schaaf A, van Hateren J. Modelling the power spectra of
natural images: Statistics and information. Vision Res. 1996;36:2759–2770.

10. Bochud FO, Verdun FR, Valley J-F, Hessler C, Moeckli R. Importance
of anatomical noise in mammography. Proc SPIE. 1997;3036:74–80.

11. Bochud FO, Valley J-F, Verdun FR, Hessler C, Schnyder P. Estimation
of the noisy component of anatomical backgrounds. Med Phys.
1999;26:1365–1370.

12. Burgess AE, Jacobson FL, Judy PF. Human observer detection experi-
ments with mammograms and power-law noise. Med Phys.
2001;28:419–437.

13. Vedantham S, Shi L, Glick SJ, Karellas A. Scaling-law for the energy
dependence of anatomic power spectrum in dedicated breast CT. Med
Phys. 2013;40:011901.

14. Burgess AE, Judy PF. Signal detection in power-law noise: effect of
spectrum exponents. J Opt Soc Am A. 2007;24:B52–B60.

15. Metheany KG, Abbey CK, Packard N, Boone JM. Characterizing anatom-
ical variability in breast CT images.Med Phys. 2008;35:4685–4694.

16. Chen L, Abbey CK, Nosratieh A, Lindfors KK, Boone JM. Anatomical
complexity in breast parenchyma and its implications for optimal breast
imaging strategies. Med Phys. 2012;39:1435–1441.

17. Chen L, Abbey CK, Boone JM. Association between power law coeffi-
cients of the anatomical noise power spectrum and lesion detectability in
breast imaging modalities. Phys Med Biol. 2013;58:1663.

18. Barrett HH, Yao J, Rolland JP, Myers KJ. Model observers for assess-
ment of image quality. PNAS. 1993;90:9758–9765.

19. Hu Y-H, Masiar M, Zhao W. Breast structural noise in digital breast
tomosynthesis and its dependence on reconstruction methods. In: Marti

J, Oliver A, Freixenet J, Marti R, eds. Digital Mammography, Lecture
Notes in Computer Science. Vol. 6136, Berlin Heidelberg: Springer;
2010:598–605.

20. Vedantham S, Shi L, Karellas A, O’Connell AM. Conover D. Dedicated
breast CT: anatomic power spectrum. Proc. of the Second International
Conference on Image Formation in X-Ray Computed Tomography
2012:70.

21. Wu T, Moore RH, Rafferty EA, Kopans DB, A comparison of recon-
struction algorithms for breast tomosynthesis. Med Phys. 2004;31:2636–
2647.

22. Sidky EY, Pan X, Reiser IS, Nishikawa RM. Moore RH, Kopans DB.
Enhanced imaging of microcalcifications in digital breast tomosynthesis
through improved image-reconstruction algorithms. Med Phys.
2009;36:4920–4932.

23. Xu S, Lu J, Zhou O, Chen Y. Statistical iterative reconstruction to
improve image quality for digital breast tomosynthesis. Med Phys.
2015;42:5377–5390.

24. Sidky E, Pan X. Image reconstruction in circular cone-beam computed
tomography by constrained, total-variation minimization. Phys Med
Biol. 2008;53:4777.

25. Combettes PL, and Wajs VR. Signal recovery by proximal forward-back-
ward splitting. SIAM Multiscale Model Simul. 2005;4:1168–1200.

26. Wang Y, Yang J, Yin W, Zhang Y. A new alternating minimization algo-
rithm for total variation image reconstruction. SIAM J Imag Sci.
2008;1:248–272.

27. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered
subsets of projection data. IEEE Trans Med Imag. 1994;13:601–609.

28. Thibault J-B, Bouman CA, Sauer KD, Hsieh J. A recursive filter for
noise reduction in statistical iterative tomographic imaging. Proc SPIE.
2006;6065:6065–6065–10.

29. Zhang R, Thibault JB, Bouman CA, Sauer KD, Hsieh J. Model-based
iterative reconstruction for dual-energy X-Ray CTusing a joint quadratic
likelihood model. IEEE Trans Med Imag. 2014;33:117–134.

30. Zhang Y, Chan H-P, Sahiner B, et al. Application of boundary detection
information in breast tomosynthesis reconstruction. Med Phys.
2007;34:3603–13.

31. Zhang Y, Chan H-P, Wu Y-T, et al. Truncation artifact and boundary arti-
fact reduction in breast tomosynthesis reconstruction. Proc SPIE.
2008;6913:69132Y.

32. Navab N, Bani-Hashemi A, Nadar MS, et al. 3D reconstruction from
projection matrices in a C-arm based 3Dangiography system. In: Wells
WM, Colchester A, Delp S, eds. MICCAI’98: First International Con-
ference Cambridge, MA, USA, October 11–13, 1998 Proceedings. Ber-
lin, Heidelberg: Springer; 1998;119–129.

33. Hu Y-H, Zhao B, Zhao W. Image artifacts in digital breast tomosynthesis:
investigation of the effects of system geometry and reconstruction parame-
ters using a linear system approach.Med Phys. 2008;35:5242–5252.

34. Strudley CJ, Young KC, Looney P, Gilbert FJ. Development and experi-
ence of quality control methods for digital breast tomosynthesis systems.
Br J Radiol. 2015;88:20150324, pMID: 26462598.

35. Rodr�ıguez-Ruiz A, Castillo M, Garayoa J, Chevalier M. Evaluation of
the technical performance of three different commercial digital breast
tomosynthesis systems in the clinical environment. Phys Med.
2016;32:767–777.

36. Garrett J, Ge Y , Li K, Chen G-H. Anatomical background noise power
spectrum in differential phase contrast and dark field contrast mammo-
grams.Med Phys. 2014;41:120701.

37. Rafferty EA, Durand MA, Conant EF, et al. Breast cancer screening
using tomosynthesis and digital mammography in dense and nondense
breasts. JAMA 2016;315:1784–1786.

38. Friedewald SM, Rafferty EA, Rose SL, et al. Breast cancer screening
using tomosynthesis in combination with digital mammography. JAMA
2014;311:2499–2507.

39. Ruschin M, Timberg P, B�ath M, et al. Dose dependence of mass and
microcalcification detection in digital mammography: free response
human observer studies. Med Phys. 2007;34:400–407.

40. Silverman JD, Paul NS, Siewerdsen JH. Investigation of lung nodule
detectability in low-dose 320-slice computed tomography. Med Phys.
2009;36:1700–1710.

41. Saiprasad G, Filliben J, Peskin A, et al. Evaluation of low-contrast
detectability of iterative reconstruction across multiple institutions, CT

Medical Physics, 45 (5), May 2018

2021 Garrett et al.: Reduced anatomical clutter in DBT 2021



scanner manufacturers, and radiation exposure levels. Radiology.
2015;277:124–133, pMID: 25989480.

42. Chun SY, Dewaraja YK, Fessler JA. Alternating direction method of
multiplier for tomography with nonlocal regularizers. IEEE Trans Med
Imag. 2014;33:1960–1968.

43. Zheng J, Fessler JA, Chan HP. Detector blur and correlated noise model-
ing for digital breast tomosynthesis reconstruction. IEEE Trans Med
Imag. 2017;37:116–127

44. Ramani S, Fessler JA. A splitting-based iterative algorithm for acceler-
ated statistical x-ray CT reconstruction. IEEE Trans Med Imag.
2012;31:677–688.

45. Zheng J, Fessler JA, Chan H-P. Segmented separable footprint projector
for digital breast tomosynthesis and its application for subpixel recon-
struction.Med Phys. 2017;44:986–1001.

46. Zheng J, Fessler JA, Chan H-P. Effects of detector blur and correlated
noise on digital breast tomosynthesis reconstruction. Proc SPIE.
2017;10132:10132–10137.

47. Zheng J, Fessler JA, Chan H-P. Digital breast tomosynthesis reconstruc-
tion using spatially weighted non-convex regularization. Proc SPIE.
2016;9783:7.

48. Lu Y, Chan H-P, Fessler JA, Hadjiiski L, Wei J, Goodsitt MM. Adaptive
diffusion regularization for enhancement of microcalcifications in digital
breast tomosynthesis (DBT) reconstruction. Proc SPIE. 2011;7961:9.

49. Lu Y, Chan H-P, Wei J, Hadjiiski LM. Selective-diffusion regularization
for enhancement of microcalcifications in digital breast tomosynthesis
reconstruction.Med Phys. 2010;37:6003–6014.

50. Nien H, Fessler JA. Fast x-ray CT image reconstruction using a lin-
earized augmented lagrangian method with ordered subsets. IEEE Trans
Med Imag. 2015;34:388–399.

51. McGaffin MG, Fessler JA. Alternating dual updates algorithm for x-ray
CT reconstruction on the GPU. IEEE Trans Comp Imag. 2015;1:186–
199.

52. Nien H, Fessler JA, Relaxed linearized algorithms for faster x-ray CT
image reconstruction. IEEE Trans Med Imag. 2016;35:1090–1098.

53. Sidky EY, Reiser I, Nishikawa RM, et al. Practical iterative image
reconstruction in digital breast tomosynthesis by non-convex TpV opti-
mization. Proc SPIE. 2008;6913:6.

54. Jang KE, Sung Y, Lee K, Lee J, Cho S. Statistical reconstruction using
dual formulation of subband-wise total variation regularization (SDST)

for limited angle tomography. 2011 IEEE International Symposium on
Biomedical Imaging: From Nano to Macro; 2011:1762–1765.

55. Jang KE, Sung Y, Lee K, Lee J, Cho S. Limited data tomographic image
reconstruction via dual formulation of total variation minimization. Proc
SPIE. 2011;79617961–7968

56. Sidky EY, Duchin Y, Reiser I, Ullberg C, Pan X. Optimizing algorithm
parameters based on a model observer detection task for image recon-
struction in digital breast tomosynthesis. In: 2011 IEEE Nuclear Science
Symposium Conference Record; 2011:4230–4232.

57. Ertas M, Yildirim I, Kamasak M, Akan A. Digital breast tomosynthesis
image reconstruction using 2D and 3D total variation minimization.
Biomed Eng Online. 2013;12:112.

58. Vengrinovich VL, Zolotarev SA, Linev VN. Experimental investigation
of iterative reconstruction techniques for high resolution mammography.
AIP Conference Proceedings. 2014;1581:1808–1815.

59. Mota AM, Matela N, Oliveira N, Almeida P. Total variation minimiza-
tion filter for DBT imaging.Med Phys. 2015;42:2827–2836.

60. Mota AM, Oliveira N, Almeida P, Matela N. 3D total variation mini-
mization filter for breast tomosynthesis imaging. In: Tingberg A, L�ang
KL, Timberg P, eds. Breast Imaging, Cham: Springer International
Publishing; 2016:501–509.

61. Kim K, Park Y, Cho H, et al. Improvement of image performance in
digital breast tomosynthesis (DBT) by incorporating a compressed-sen-
sing (CS)-based deblurring scheme. Radiat Phys Chem. 2016;127:147–
154.

62. Piccolomini EL, Morotti E. A fast total variation-based iterative algo-
rithm for digital breast tomosynthesis image reconstruction. J Algorithm
Comput Technol. 2016;10:277–289.

63. Zhang J, Hu Y, Nagy JG. A scaled gradient method for digital tomo-
graphic image reconstruction. Inverse Probl Imaging. 2017;12:239–259.

64. Rakowski JT, Dennis MJ. A comparison of reconstruction algorithms
for C-arm mammography tomosynthesis. Med Phys. 2006;33:3018–
3032.

65. Zhang Y, Chan H-P, Sahiner B, et al. A comparative study of limited-
angle cone-beam reconstruction methods for breast tomosynthesis. Med
Phys. 2006;33:3781–3795.

66. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimiza-
tion and statistical learning via the alternating direction method of multi-
pliers. Found Trends Mach Learn. 2011;3:128.

Medical Physics, 45 (5), May 2018

2022 Garrett et al.: Reduced anatomical clutter in DBT 2022


	1. Intro�duc�tion
	2. Image recon�struc�tion algo�rithm
	2.A. Algo�rithm and numer�i�cal imple�men�ta�tion method
	2.B. Sta�tis�ti�cal weight matrix Q
	tbl1
	2.C. Binary diag�o�nal image mask matrix P for breast vol�ume sup�port
	2.D. For�ward- and back-projection
	2.E. Com�pu�ta�tional facil�i�ties

	3. Exper�i�men�tal meth�ods and mate�ri�als
	fig1
	3.A. Data acqui�si�tion
	3.B. Arti�fact spread func�tion mea�sure�ments
	3.C. Anatom�i�cal noise power mea�sure�ment
	fig2
	3.D. Data anal�y�sis
	fig3
	fig4

	4. Results
	4.A. Qual�i�ta�tive com�par�ison of recon�structed images
	4.B. Arti�fact spread func�tion mea�sure�ments
	fig5
	4.C. Anatom�i�cal noise power spec�trum
	4.C.1. Val�i�da�tion of the range of spa�tial fre�quen�cies used in power-law model fit�ting
	4.C.2. Depen�dence on recon�struc�tion method

	fig6
	fig7
	fig8
	tbl2
	fig9
	4.C.3. Depen�dence on the acqui�si�tion modes: CC vs MLO
	4.C.4. Depen�dence on slice posi�tions


	5. Dis�cus�sion
	fig10
	tbl3
	fig11
	fig12
	fig13

	6. Con�clu�sion
	 Acknowl�edg�ments
	 Con�flict of inter�est
	$^var_corr1
	bib1
	bib2
	bib3
	bib4
	bib5
	bib6
	bib7
	bib8
	bib9
	bib10
	bib11
	bib12
	bib13
	bib14
	bib15
	bib16
	bib17
	bib18
	bib19
	bib20
	bib21
	bib22
	bib23
	bib24
	bib25
	bib26
	bib27
	bib28
	bib29
	bib30
	bib31
	bib32
	bib33
	bib34
	bib35
	bib36
	bib37
	bib38
	bib39
	bib40
	bib41
	bib42
	bib43
	bib44
	bib45
	bib46
	bib47
	bib48
	bib49
	bib50
	bib51
	bib52
	bib53
	bib54
	bib55
	bib56
	bib57
	bib58
	bib59
	bib60
	bib61
	bib62
	bib63
	bib64
	bib65
	bib66


