Table 5.
Support | Tested Microorganisms |
Reagent or Immobilization Technique | Applications/Claimed Uses | Refs. |
---|---|---|---|---|
Vitreous surface | E. coli | Water decontamination | [259] | |
Wool fabric | S. aureus | Glutaraldehyde | Antibacterial functionalization for textile goods | [260] |
Wool fabric | E. coli | Tris(hydroxymethyl)phosphine | Antibacterial functionalization for textile goods | [261] |
Cotton fabric | M. lysodeikticus | Glycine esterified | Medical hygiene | [262] |
Silk textiles |
S. aureus
E. coli |
Physically adsorbed | Functional wound dressing | [263] |
Polyacrylonitrile membranes | S. aureus | Glutaraldehyde | Water treatment and food manufacturing |
[264] |
Polyacrylonitrile membrane hydrolyzed |
E. coli
S. aureus |
Layer-by-layer self-assembly | Antibacterial thin film composite membranes for aqueous molecular separation |
[265] |
Polystyrene/poly (styrene-10-maleic anhydride) | S. aureus | CLEA | Antimicrobial process in biomedical and engineering industries | [266] |
Polyethylene glycol |
L. ivanovii
M. luteus |
Reductive amination on pretreated stainless steel surface | Antifouling agents | [125] |
Poly(3,4-ethylenedioxythiophene) (PEDOT) | S. epidermidis | Incorporations in films | Regeneration of tissues | [267] |
Cellulose acetate | S. aureus | Electrostatic adsorption, electrospraying | Food packaging and antimicrobial wound dressing |
[268] |
Gelatin/sodium carboxymethylcellulose |
S. aureus
P. aeruginosa E. coli |
Inclusion in a polymeric matrix | Mucoadhesive form of lysozyme | [269] |
Alginate, iron cations | M. luteus | Entrapment | Food packaging materials | [270] |
Chitosan |
S. aureus
B. subtilis S. flexneri P. aeruginosa |
CLEA | Repeated uses as antimicrobial material | [271] |
Chitosan/alginate |
E. coli
S. aureus |
Hydrogel | Food industry | [272] |
Calcium phosphate on chitosan | M. lysodeikticus | Incorporation | Bone tissue engineering | [273] |
Xanthan | M. luteus | Hydrogel | Wound dressing | [274] |
Agarose, free amino acids | Gram-positive Gram-negative |
Reductive amination | Blood plasma and whole blood purification by extracorporeal therapy procedures | [275] |
Agarose, sericin |
E. coli
S. aureus |
Gel | Wound dressing | [276] |
Polysaccharides particles or liposome |
B. subtilis
M. luteus E. coli S. marcescens |
Encapsulation with herbal extracts | Food preservation and wound healing | [277] |
Exopolysaccharides | E. coli | Incorporation into films | Biodegradable coatings for fruits and vegetables | [278] |
Graphene oxide | E. coli | Electrostatic interactions | Antibacterial membranes | [279] |
Graphene oxide, polydopamine | E. coli | Electrostatic and hydrogen bond interactions | Medical treatments and food safety fields | [280] |
Capsid | M. luteus | Encapsulation | Nanoreactor at physiological conditions | [281] |
Balsa |
E. coli
S. aureus |
Encapsulation | Wound healing | [282,283] |
Calcium carbonate | M. lysodeikticus | Encapsulation | Catalysis, disease treatment, and tissue engineering | [284] |
Layered double hydroxide |
E. coli
S. aureus |
Van der Waals forces | Wound healing | [285] |
Silica |
E. coli
S. aureus |
Entrapment | Coating containers used to store chirurgical devices, catheters, implants, artificial prosthetics, and other materials to reduce hospital infections |
[286] |
Laser sintered titanium |
S. gordonii
S. sanguis |
Layer-by-layer self-assembly | Biofilm inhibition | [132] |
Niclosamide | MRSA MERS-COV SARS-CoV-2 |
Embedded in h-Lys for inhalation route | Delivery to the upper and lower respiratory tracts | [287] |
Lactic acid |
B. cereus
E. coli S. typhimurium |
Gelled egg white powder | Food industry | [288] |
Microbubbles, immobilized gold NPs | M. lysodeikticus | Pressurized gyration | Biosensor for the detection of analytes in aqueous solutions | [289] |
Microbubbles, immobilized gold NPs, and polyvinyl alcohol | E. coli | Pressurized gyration | Diagnostic tools and environmental bioassays | [290] |