Skip to main content
. 2021 Dec 14;10(12):1534. doi: 10.3390/antibiotics10121534

Table 8.

Physical modifications of lysozyme.

Physical Process Microorganisms Effect Refs.
Microwave held followed by oxidation M. lysodeikticus Dimer and trimer formation [364]
Microwave M. lysodeikticus Dimer and trimer formation and changes in surface hydrophobicity [365]
Fluorescens resonance energy transfer E. coli Variants formation [366]
Cationic surfactant (gemini) M. luteus Micelles formation [367]
High hydrostatic pressure Gram-negative: E. coli, P. fluorescens, S. entericas, S. sonnei, and S. flexneri Sensitization of bacteria [101]
High hydrostatic pressure E. coli Increased outer membrane permeability [368]
Atmospheric and high hydrostatic pressure Gram-positive
Gram-negative
Sensitization of bacteria [369]
Thermal treatment (t 80 °C) M. luteus
E. coli
Formation of dimer depending on pH and concentration [370]
Thermochemical treatment (60–70 °C + 10–20% H2O2) M. lysodeikticus
S. epidermidis
Formation of dimer [371]
Thermochemical treatment (denaturation with heat or with dithiothreitol) E. coli
S. carnosus
Oligomers formation [372]
Dry heating (80 °C, 7 days) E. coli Increased insertion capacity and ability to induce lipid packing modifications [373]
Heating of jenny milk B. megaterium
Clavibacter michiganensis
Clostridium tyrobutyricum
Xanthomonas campestris
E. coli
Antimicrobial activity like synthetic antibiotics against some Gram-positive and Gram-negative strains [18]
Bioengineered modifications:
Net charge inversion of a phage lysozyme S. pneumoniae Mutation of a Cpl-7 [374]
Charge engineered variant of hLys P. aeruginosa Redesigned electrostatic potential field [375,376,377]