Skip to main content
. 2021 Dec 22;23(12):e34178. doi: 10.2196/34178

Table 2.

Assessment of the performance of the models.

Model Subset 1a, RMSEb Subset 2a, RMSE Subset 3a, RMSE Subset 4a, RMSE

Training set Test set Training set Test set Training set Test set Training set Test set
Predictions of new daily COVID-19 cases

GLM1c 62.22 66.92 53.04 32.70d 48.01 378.94 85.75 219.22

GLM2e 43.71 29.29d 36.80 569,037.92 48.19 495.88 120.76 429.51

GLM3f 982.42 587.65 329.49 8,247,155.77 184.59 543.20 330.15 4161.61

LR1g 58.57 60.17 50.90 44.92 48.20 373.58 85.09 216.22d

LR2h 56.88 79.57 49.41 78.32 48.00 366.19d 84.52 216.70

LR3i 56.51 69.13 50.90 44.92 48.20 373.58 84.42 217.81
Predictions of new daily COVID-19 deaths

GLM1 3.10 4.89 2.52 1.04 2.08 6.79 2.80 4.89

GLM2 3.24 5.52 2.71 0.47 2.23 7.65 2.82 5.26

GLM3 3.25 3.79d 2.72 0.19d 2.24 17.02 3.81 4.64d

LR1 3.05 4.95 2.62 1.71 2.16 5.21 2.75 5.23

LR2 3.04 4.50 2.61 0.70 2.19 4.82d 2.75 5.38

LR3 3.05 4.95 2.62 1.71 2.16 5.23 2.75 5.23

aSubsets 1 to 4: 3, 6, 12, and 18 months after the first case was reported in South Korea, respectively.

bRMSE: root mean square error.

cGLM1: generalized linear model with a normal distribution.

dThe lowest RMSE value in the test subset.

eGLM2: generalized linear model with a Poisson distribution.

fGLM3: generalized linear model with a negative binomial distribution.

gLR1: linear regression model with lasso regularization.

hLR2: linear regression model with adaptive lasso regularization.

iLR3: linear regression model with elastic net regularization.