Skip to main content
. 2021 Dec 22;7(12):e31834. doi: 10.2196/31834

Table 2.

Negative binomial regression to explain the retweet count of COVID-19 tweets for authorities and experts (N=8251 tweets).

Variables Authoritiesa Expertsb

IRRc Z P value IRR Z P value
Model variable: constant 16.69 30.57 <.001 71.95 61.37 <.001
Structural variables

Hashtag 0.64 –6.92 <.001 1.11 1.56 .12

Images 1.06 1.32 .19 1.06 0.87 .38

URL 0.82 –4.81 <.001 0.76 –4.27 <.001

Mentions 0.81 –5.45 <.001 0.73 –5.27 <.001
Content variables

Severity 1.40 8.09 <.001 1.18 3.34 <.001

Susceptibility 1.02 0.46 .65 1.15 1.21 .23

Efficacy 1.34 8.63 <.001 1.10 1.71 .09

Technical information 1.45 4.23 <.001 1.00 0.06 .95

Social 1.24 4.05 <.001 1.27 2.69 .01

Political 0.71 –6.12 <.001 0.87 –1.12 .26
Style variables

First person 0.93 –1.80 .07 1.10 0.02 .99

Second person 1.88 6.96 <.001 1.03 0.23 .82
Other: followers count 1.00 28.74 <.001 1.00 25.99 <.001

aAuthorities: –2 log-likelihood=–44365.18; Akaike information criterion=44,395; null model logistic regression χ2=1854.8 (P<.001); McFadden pseudo R²=0.04.

bExperts: –2 log-likelihood=–33,752.49; Akaike information criterion=33,782; null model logistic regression χ2=956,66 (P<.001); McFadden pseudo =0.03.

cIRR: incidence rate ratio.