Table 2.
Negative binomial regression to explain the retweet count of COVID-19 tweets for authorities and experts (N=8251 tweets).
| Variables | Authoritiesa | Expertsb | |||||
|
|
IRRc | Z | P value | IRR | Z | P value | |
| Model variable: constant | 16.69 | 30.57 | <.001 | 71.95 | 61.37 | <.001 | |
| Structural variables | |||||||
|
|
Hashtag | 0.64 | –6.92 | <.001 | 1.11 | 1.56 | .12 |
|
|
Images | 1.06 | 1.32 | .19 | 1.06 | 0.87 | .38 |
|
|
URL | 0.82 | –4.81 | <.001 | 0.76 | –4.27 | <.001 |
|
|
Mentions | 0.81 | –5.45 | <.001 | 0.73 | –5.27 | <.001 |
| Content variables | |||||||
|
|
Severity | 1.40 | 8.09 | <.001 | 1.18 | 3.34 | <.001 |
|
|
Susceptibility | 1.02 | 0.46 | .65 | 1.15 | 1.21 | .23 |
|
|
Efficacy | 1.34 | 8.63 | <.001 | 1.10 | 1.71 | .09 |
|
|
Technical information | 1.45 | 4.23 | <.001 | 1.00 | 0.06 | .95 |
|
|
Social | 1.24 | 4.05 | <.001 | 1.27 | 2.69 | .01 |
|
|
Political | 0.71 | –6.12 | <.001 | 0.87 | –1.12 | .26 |
| Style variables | |||||||
|
|
First person | 0.93 | –1.80 | .07 | 1.10 | 0.02 | .99 |
|
|
Second person | 1.88 | 6.96 | <.001 | 1.03 | 0.23 | .82 |
| Other: followers count | 1.00 | 28.74 | <.001 | 1.00 | 25.99 | <.001 | |
aAuthorities: –2 log-likelihood=–44365.18; Akaike information criterion=44,395; null model logistic regression χ2=1854.8 (P<.001); McFadden pseudo R²=0.04.
bExperts: –2 log-likelihood=–33,752.49; Akaike information criterion=33,782; null model logistic regression χ2=956,66 (P<.001); McFadden pseudo R²=0.03.
cIRR: incidence rate ratio.