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Simple Summary: Exportin-1 is a nuclear transport protein that is overexpressed in cancer cells and
associated with inferior outcomes across a range of malignancies. Selinexor is a novel FDA-approved
inhibitor of Exportin-1 (XPO1). Although significant research has focused on integration of selinexor
into the treatment regimens of adult cancers, it is increasingly recognized that XPO1-directed therapy
may be effective as part of management of childhood cancers. We therefore summarize the history of,
and latest knowledge about, the function and therapeutic inhibition of XPO1 as it relates to childhood
cancer pathogenesis and treatment.

Abstract: Overexpression of Exportin-1 (XPO1), a key regulator of nuclear-to-cytoplasmic transport,
is associated with inferior patient outcomes across a range of adult malignancies. Targeting XPO1
with selinexor has demonstrated promising results in clinical trials, leading to FDA approval of its
use for multiple relapsed/refractory cancers. However, XPO1 biology and selinexor sensitivity in
childhood cancer is only recently being explored. In this review, we will focus on the differential
biology of childhood and adult cancers as it relates to XPO1 and key cargo proteins. We will further
explore the current state of pre-clinical and clinical development of XPO1 inhibitors in childhood
cancers. Finally, we will outline potentially promising future therapeutic strategies for, as well as
potential challenges to, integrating XPO1 inhibition to improve outcomes for children with cancer.
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1. Introduction

Childhood cancer, affecting more than 15,000 children per year in the United States
and over 300,000 per year globally, is the result of tumor and host biology that is different
than adult cancers [1]. Childhood cancers tend to arise spontaneously, have varying
degrees of hereditary contribution, and are generally not the result of an accumulation
of genetic mutations over a lifetime [2]. Therapy for childhood cancer is often multi-
modal, including chemotherapy, surgery, radiotherapy, and/or immunotherapy. Five-year
overall survival for children with cancer currently exceeds 80% in many high-income
countries, yet a tremendous unmet need exists to improve survival and reduce long-
term sequelae of treatment. First, we must better identify subsets of patients who have
high-risk disease with inferior outcomes and develop improved therapeutic strategies
for their resistant disease [3–5]. Second, therapy de-intensification may be considered
for cancers with favorable clinical and biological features and a relatively high overall
survival rate, so that treatment-related morbidity can be minimized [6]. Third, identifying
therapeutically targetable oncogenic vulnerabilities may allow for personalized and more
effective approaches to care. Recent advances in the understanding of adult malignancies
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have demonstrated the relevance of Exportin-1 (XPO1) overexpression in highly aggressive
cancers and the potential for precise therapeutic targeting, yet the overall understanding of
this protein in childhood cancer is less well established. In this review, we will focus on
clinical implications of overexpression of XPO1, including pharmacologic targeting with
commercially available XPO1 inhibitors such as selinexor.

2. XPO1 Biological Function and Relevance

XPO1, historically referred to as CRM1 (Chromosomal Region Maintenance 1), was
initially characterized for its role in mitotic spindle activity and chromosome assembly [7,8].
During development, XPO1 is ubiquitously expressed, and Xenopus and Drosophila stud-
ies demonstrated the requirement for early expression that continues through development;
XPO1 is embryonic lethal if genetically knocked out [9]. Studies in yeast have demonstrated
that mutations in XPO1 lead to a reduction in cytoplasmic microtubules and improper
spindle formation [10,11]. Microdeletions of XPO1 in autism spectrum disorders have
also been identified and result in disruption of mitosis leading to apoptosis in neural
progenitors [12].

2.1. Regulation of Homeostasis by Exportins

Cellular homeostasis depends heavily on the balance of activity and localization of
proteins, as together they affect signaling pathways that can either promote cellular survival
or cell death. This balance is tightly regulated to maintain healthy cellular conditions, but
in cancer, changes to the activity and localization of proteins can promote survival, growth,
and metastasis [13,14]. The karyopherin protein family, which is comprised of importins,
transportins, and exportins, shuttles cargo (proteins, tRNA, and microRNA) between the
nucleus and cytoplasm through the nuclear pore complex [13,15–17]. These cargos, sized
30 kDa or greater, are not able to diffuse freely from one compartment to another. They rely
on the gradients of high RAN-GTP in the nuclear compartment and high RAN-GDP in the
cytoplasmic compartment to facilitate this energy-dependent translocation [18–22]. This
gradient, along with RCC1 and RanGAP to catalyze the exchange of nucleotides, creates a
cycling of RAN ensuring proper export and import of cargos [23].

XPO1 is one of seven exportins in humans that regulate the unidirectional export of
proteins, tRNAs, and microRNAs from the nucleus to the cytoplasm using the nuclear pore
complex [24]. Exportins recognize and bind to a leucine rich hydrophobic region, known
as a nuclear exportation signal (NES), on cargo (with RNA species using adapter proteins)
and, with RAN-GTP in a complex, translocate to the cytoplasm [25–27]. The hydrolysis
of RAN-GTP to RAN-GDP releases the complex, allowing the cargo to diffuse freely in
the cytoplasm, while the exportin returns to the nucleus through the nuclear pore [19].
While certain exportins recognize few proteins or microRNAs exclusively, XPO1 recog-
nizes the nuclear export signals of over 200 proteins and microRNAs. Characterization
of the numerous cargos with NES binding motifs was initially established through use
of leptomycin B, an antifungal agent that recognizes the NES site of XPO1 and blocks
cargos from forming the exportation complex, leading to nuclear accumulation of car-
gos [8,28]. Current approaches apply in silico modeling to identify and validate XPO1
cargos (http://prodata.swmed.edu/LRNes, accessed on 30 June 2021), many of which
function in signaling pathways and cellular regulation, with implications for understanding
the pathogenesis of childhood cancer and the effect of pharmacologic inhibition of XPO1
(Table 1). The promiscuity in cargo exportation by XPO1, which is universally expressed
across human cells, is consistent with its vital, non-redundant intermediary role in normal
homeostatic processes [27,29].

http://prodata.swmed.edu/LRNes
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Table 1. Select XPO1 cargos implicated in childhood cancer pathogenesis.

Cargo Normal Function Result of XPO1 Inhibition Citation

IkB NF-kB transcription
factor signaling

Inhibition of cell survival-promoting
NF-kB transcription factor activity [30]

Survivin (BIRC5) Inhibition of
apoptosis

Degraded to release inhibition of
apoptotic pathway [31]

CDKN1A (p21) Cell cycle kinase Halts cell cycle progression, leading
to cell cycle arrest [32]

CDKN1B (p27) Cell cycle inhibitor Halts cell cycle progression, leading
to cell cycle arrest [33]

p53 DNA damage
recognition TP53-dependent apoptosis proceeds [34]

pRB Cell cycle regulator Halts cell cycle progression, leading
to cell cycle arrest [35]

FOXO1 Transcription
factor-Differentiation

Promotes sensitivity to selinexor in
cisplatin-based combination [36]

pMAPK MAPK/Developmental
signaling processes

Promotes apoptosis by decreasing
pro-survival ERK pathways [37]

APC β-catenin signaling

Reduction of β-catenin levels by
binding and leading to destruction;

halts stemness-inducing
Wnt signaling

[38,39]

At centrosomes and kinetochores, XPO1 colocalizes with RAN-GTP and cargos with
NES that are important for normal cell division [40,41]. Recruitment of XPO1 to these
sites is via phosphorylation by the CDK1/Cyclin B complex at the serine 391 site of
XPO1, which is a different site than where it binds to various cargo NES [42,43]. One
cargo, Survivin, which is upregulated during cellular development and is a member of the
inhibitor of apoptosis family, complexes with XPO1 to facilitate normal cellular division
through assembly of the chromosome passenger complex during mitosis [44–46]. Increased
expression of Survivin is also associated with cancer cell survival; specifically, cytoplasmic
Survivin is more abundant when XPO1 is overexpressed and promotes chemoresistance
through inhibition of apoptosis [47–51]. While XPO1 and its role in regulating mitosis is
important, in the context of cancer targeting and treatment; the focus has been on its role
as a nuclear export protein and the disruption of downstream signaling pathways.

2.2. XPO1 Function in Human Disease

Across nearly all cancers, including those affecting children, adolescents, and young
adults, XPO1 is expressed (Figure 1) [52–58], and higher expression has been correlated
with inferior outcome. XPO1 is located on chromosome arm 2p, a region frequently
associated with somatic copy number changes in cancer (e.g., gastric cancer, CLL, lym-
phomas, neuroblastoma, and rhabdomyosarcoma), and a region that includes putative
proto-oncogenes N-MYC, REL, and BCL11A [7,59–62]. This region may be key to under-
standing how XPO1 regulation is coopted to promote oncogenesis and to distinguish
between sufficiency and necessity of overexpression to promote aggressive disease.

For example, N-MYC is amplified in approximately 20% of neuroblastomas, expressed
in other pediatric cancers, and associated with more aggressive disease [63–65]. It is
expressed primarily in neural tissues, in contrast to ubiquitously expressed C-MYC, sharing
redundant functions and cross regulation in normal development [66–68]. In adult cancers,
pharmacologic targeting of XPO1 decreases C-MYC levels [69]. Though there is not a clear
understanding of what drives XPO1 overexpression as a primary or secondary event in
tumor development, it has been shown that knockdown of the tumor suppressor TP53
results in increased XPO1 expression, while knockdown of the proto-oncogene C-MYC
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results in decreased XPO1 expression [70]. Dysregulation of TP53 and C-MYC could be an
initiating event that leads to overexpression of XPO1 [70–73].
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Figure 1. Comparative expression levels of XPO1 in childhood cancers (right panel, dashed box)
and select adult malignancies (left panel, solid box). XPO1 is expressed highly across malignancies,
including adult and pediatric cancers, reflecting the broad clinical implications of XPO1-focused
research. Data are from R2 database (http://r2.amc.nl, accessed on 30 June 2021), including foreskin
fibroblast (in the dotted box) as representative of baseline expression in normal tissue.

XPO1 mutations have been identified, particularly in patients with hematologic ma-
lignancies [74]. The prevalence ranges from 8% in chronic lymphocytic leukemia (CLL)
(primarily D624 mutation) to 25% in primary mediastinal B-cell lymphoma (PMBL) and
classical Hodgkin lymphoma (cHL) (primarily E571 mutations). XPO1 R749 mutations
have also been identified in solid tumors [75–77]. In limited studies of CLL, XPO1 mu-
tations correlate with inferior outcome and the need for early aggressive therapeutic
intervention [78–81]. It is unclear if this correlation is due to co-occurrence with TP53
mutations, or a direct effect of the mutation leading to pathologically increased cargo
binding affinity and depletion of regulatory cargos from the nucleus [76]. Leukemia and
lymphoma cells with E571K mutations have increased sensitivity to selinexor in vitro,
suggesting that upfront screening for mutations may have utility for precision medicine
approaches utilizing XPO1-based management strategies [75].

3. Development of Selective Inhibitors of Nuclear Export for Cancer Treatment

Selinexor was FDA approved in 2019 as part of combination therapy for relapsed
multiple myeloma, an exclusively adult malignancy [82]. It was approved in 2020 as a single
agent for adults with relapsed/refractory diffuse large B cell lymphoma (DLBCL) [83].
While adolescents can develop DLBCL, the currently approved indications for selinexor
do not directly translate to most pediatric tumors. However, parallel preclinical and early
clinical trial efforts have been ongoing, focused on tumor biology related to XPO1 and
safety of selinexor for children with cancer.

3.1. Preclinical Development of XPO1-Directed Therapeutics for Childhood Cancers
3.1.1. XPO1 Inhibitors as Single Agent Treatment

Many early pharmacologic compounds that inhibit XPO1, such as Ratjadone C
(myxobacterial metabolite), KOS-2464 (leptomycin B derivative), N-azolylacrylate analogs,
valtrate, and acetoxychavicol acetate have been identified in vitro to bind competitively to

http://r2.amc.nl
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the cystine 528 residue on XPO1, leading to nuclear retention of cargos such as TOPO2A
and the HIV Rev protein [84–86]. These agents were not tested in vivo and safety and
tolerability have not been established; therefore there are no data to encourage clinical
testing. Other compounds that inhibit XPO1, such as the antifungal agent leptomycin B
(elactocin), showed numerous irreversible off-target effects, including severe anorexia and
malaise, that limited its clinical advancement [87,88].

Four selective inhibitors of nuclear export (SINE) compounds that reversibly bind
XPO1, KPT-185, KPT-251, KPT-330 (selinexor), and SL-801 (felezonexor), have been ex-
plored across a range of malignancies. Preclinical evaluation of SINE compounds in
specific childhood cancers dates back to at least 2012 with agents demonstrating low single-
agent IC50 concentrations across various pediatric leukemia subtypes [89–92], high-grade
gliomas [92,93], atypical teratoid/rhabdoid tumor (ATRT) [92], malignant rhabdoid tumor
(MRT) [92], sarcoma [92,94], neuroblastoma [30,92], and Wilms tumor [92]. Patient-derived
xenograft (PDX) mouse models have shown encouraging anti-tumor activity and survival
advantages in treated animals [89–92]. A study by the Pediatric Preclinical Testing Consor-
tium utilizing pediatric xenografts, including gliomas, leukemias, and sarcomas showed
improvement in event-free survival for 29 out of 38 (76%) solid tumor models and 5 out of
8 (63%) leukemia models [92].

Similar to findings in adult malignancies, XPO1 inhibitors in pediatric cancers have
been found to induce a G1 cell cycle arrest, leading to a decrease in cells entering S/G2, in
leukemia, neuroblastoma, MRT, and ATRT [30,89–91,95]. Further, XPO1-directed therapy
has been shown to upregulate apoptosis in leukemia, high-grade glioma, ATRT, neuroblas-
toma, MRT, and sarcoma [30,89–91,93–95]. In acute leukemia, Etchin et al. demonstrated
the effect of KPT-185 on G1 cell cycle arrest and showed that the majority of apoptosis
is induced at G1 [89]. These results provide insight into potential combination strategies
that would promote a synergistic anti-cancer activity based on convergence of anti-cancer
mechanisms.

3.1.2. Selinexor-Based Combination Strategies with Mechanistic Rationale for Use
in Pediatrics

The success of the reversible SINE compounds as single agents prompted further in-
vestigation of combinatorial strategies to improve efficacy and offset potential dose-related
toxicity concerns through lower dosing. The results demonstrating that selinexor-induced
apoptosis occurs in the G1 phase of the cell cycle suggests potential for synergy when
combined with conventional cytotoxic chemotherapy. Many commonly used chemother-
apeutics have their largest effects in the cell cycle phases S, G2, and M. Thus, combining
SINE compounds with fludarabine and cytarabine (primarily S phase effects) for acute
myeloid leukemia (AML), anthracyclines (primarily S/G2 effects) for soft tissue sarcomas,
or topotecan (S/G2 effects) or paclitaxel (M phase effects) for solid tumors are rational
approaches for further study [96–102].

Selinexor has been combined with proteasome inhibition. The most well-studied
combination in adults is selinexor in combination with bortezomib and dexamethasone
for the treatment of multiple myeloma. Based on these data, the combination of selinexor
and proteasome inhibition is being explored in pediatric tumors, including neuroblastoma.
Researchers demonstrated synergistic anti-cancer activity and increases in total apoptosis
that were mediated by IkB nuclear localization induced by selinexor and diminished IkB
degradation with bortezomib; they also identified synergistic functional inhibition of NF-kB
transcriptional activity [30].

Combinations of decitabine, a DNA methyltransferase inhibitor, and selinexor have
also been investigated. In vitro studies in AML showed no benefit of concurrent treatment,
but pre-treatment with decitabine followed by selinexor showed synergy. The findings
were recapitulated in a PDX murine model, where pre-treating with decitabine followed by
sub-IC50 selinexor dosing, lead to a survival advantage over single agent selinexor [103].
Priming with decitabine may increase selinexor tolerability and effectiveness by 30–47% as
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increasing DNA methylation induces re-expression of tumor suppressor proteins, which
are later trafficked by XPO1 [104].

Selinexor for use in children with cancer is also being explored with other novel thera-
pies, including small molecules targeting CDK 4/6 (palbociclib) and Wee1 (AZD1775). In a
study focusing on a single pediatric patient-derived cell line from a rare undifferentiated
sarcoma, selinexor was effective alone, but combination with palbociclib demonstrated syn-
ergy [94]. Other combinations that have been studied include BCL-2 inhibitors [105–108],
PARP inhibitors [109,110], and CAR-T cells [111], with potential implications for many
pediatric cancer types, including AML, ALL, anaplastic large cell lymphomas, Ewing sar-
coma, neuroblastoma, osteosarcoma and glioblastoma. Immune targeting approaches with
pembrolizumab and rituximab, as well as targeting JAK/STAT and tyrosine kinase signal-
ing pathways may be of value. An additional treatment strategy involves the combination
of selinexor with radiotherapy, an essential component of pediatric high-grade glioma
management, where selinexor improves sensitivity to ionizing radiation and increases
anti-tumor activity in adult patients [93,112].

Selinexor has potential to be rationally combined with numerous established and
novel therapeutics agents to create critical synergy against pediatric malignancies. The
drug has been shown to offset resistance to conventional chemotherapeutics via numerous
pathways related to nuclear transport of key cargo, suggesting that patients with relapsed
and refractory cancers might benefit from incorporating XPO1 inhibitors into treatment
regimens [113–116]. Continued exploration of combination strategies and timing of drug
administration will provide opportunities to define optimal management approaches that
can be developed further as clinical trials across a range of cancers that affect children.

3.1.3. Therapeutic Resistance to Selinexor

Specific mechanisms that promote resistance to XPO1 inhibition have not yet been
fully elucidated. One group was able to create selinexor-resistant leukemia models through
a CRISPR-induced heterozygous mutation in the XPO1 cargo-binding pocket (C528S),
rendering XPO1 resistant to degradation in these cells [86]. The unique ability of C528S
to induce resistance has only been observed preclinically whereas a clinically described
E571K mutation in B-cell lymphoma cell lines has no effect on selinexor efficacy [75,106].
Other studies of resistance mechanisms have focused on possibilities outside of XPO1
mutations. As part of preclinical investigation in hematologic malignancies, one group
chronically treated cells with increasing concentrations of selinexor and was able to create
a resistant line with upregulated NF-kB activity [117,118]. They found that combination
with proteasome inhibitors re-sensitized cells to selinexor, indicating that resistance might
be overcome through drug combination regimens [119]. Ongoing work is focused on
identifying molecular pathways involved in resistance to XPO1 inhibition, such as increased
NF-kB signaling, TGF-β/SMAD pathway, and ESF1 transcription activity of G1/S cell
cycle [120–123].

3.1.4. Toxicity Challenges and Next Generation SINE Compounds

Experiments in PDX models [89,90] and clinical trials in adults and children have
identified mild and serious selinexor-induced adverse effects. In adults, the most common
noted side effects are nausea, emesis, decreased appetite/weight, confusion, neutropenia,
thrombocytopenia, anemia, fatigue, infections, hyponatremia and blurred vision [124,125].
The most common selinexor-related toxicities in children have been electrolyte abnor-
malities (hyponatremia and hypokalemia), elevated liver function enzymes, nausea, and
diarrhea [96,126]. Grade 4 tumor lysis syndrome after selinexor administration has also
been seen [126]. Dose-limiting toxicities (DLT) include pancreatitis, cognitive disturbance,
and reversible cerebellar toxicity [96,126].

A second-generation XPO1 inhibitor, KPT-8602, has been rationally designed to have
increased reversibility and limited blood-brain barrier penetration with the intention to
reduce toxicities. This toxicity reduction was clear in murine models using KPT-8602,
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where mice tolerated increased dosing of KPT-8602 without the anorexia and weight loss
that was seen with selinexor dosing [127]. This design would not be appropriate for CNS
malignancies [128]. Thus far, KPT-8602 therapeutic activity has been studied preclinically in
pediatric leukemias, where IC50s were found to be even lower than selinexor [127,129]. Sim-
ilar to selinexor, KPT-8602 leads to increased apoptosis and nuclear retention of TP53 [129],
while causing minimal toxicity to normal hematopoietic precursors [127]. In murine
PDX models of ALL and AML, KPT-8602 successfully reduced disease burden and ex-
tended survival, with evidence indicating that its anti-leukemic activity and elimination of
leukemia-inducing cells are superior to selinexor [127,129]. Similar to selinexor, KPT-8602
has demonstrated synergy with other chemotherapy agents. Dexamethasone and KPT-
8602 synergistically increase apoptosis in multiple ALL cell lines. In T-ALL and B-ALL
mouse models, combination treatment resulted in increased survival compared to single
agents [100]. In addition, some AML cell lines were found to be synergistically vulnerable
to KPT-8602 and venetoclax, a BCL2 inhibitor that promotes apoptosis. The combination
resulted in greater nuclear TP53, decreased MCL1, and increased apoptosis than with either
drug alone; this combination also resulted in greater reduction of leukemic cells in an AML
xenograft model [105].

3.2. Clinical Development of XPO1-Directed Therapeutics for Childhood Cancers

As has been the case for many agents in development, the early phase selinexor clinical
trials technically allowed for enrollment of older children, yet accrual goals have rarely
been achieved. In 2015, a clinical trial designed to assess the tolerability and efficacy of
selinexor in patients with AML was open to enrolling children, adults, and older adults, but
only enrolled patients 44 to 76 years old, with a median age of 61 [130]. In 2019, researchers
began a clinical trial to assess the adverse event rate, MTD, and ORR of selinexor and
ixazomib combination treatment in patients with sarcomas aged 14 years or older, but the
trial was discontinued after 9 months due to failure to enroll any participants [131].

Two studies on the use of selinexor in pediatric patients have been completed [96,126].
The first was a breakthrough phase 1 study of 19 patients examining the use of selinexor in
a combination with fludarabine and cytarabine in relapsed or refractory AML or mixed
phenotype acute leukemia (MPAL) [96]. Based on preclinical research and early clinical
studies in adults, researchers believed that the DLTs from selinexor were related to anorexia
and weight loss, so they chose to use a chemotherapeutic regimen known to have different
toxicity related to myelosuppression [96]. For the first two weeks of treatment, patients
received single agent selinexor to evaluate safety and efficacy, followed by fludarabine
and cytarabine on days 15–19 [96]. Following the treatment schedule prescribed, severe
nausea/vomiting and fatigue were uncommon [96].

The treatment responses were encouraging. On day 15, after only receiving single
agent selinexor, three (out of 15) patients experienced complete response with undetectable
MRD (<0.1% based upon flow cytometric analysis) [96]. After completing one cycle of com-
bination treatment, 7/15 patients (47%) reached complete response or complete response
with incomplete count recovery, with five of these patients MRD negative [96]. Six of those
seven patients were in remission at a median time of 9.5 months from enrollment [96].
One of these six patients with durable response had AML with t (6;9) translocation, which
has been shown to have a high risk of relapse and poor outcomes [96,132,133]. This
translocation forms a chimeric DEK-NUP214 gene, which creates an altered nucleoporin
fusion protein known to interact tightly with XPO1 [134]. There have been other studies
evaluating the response of known oncogenic mutations to XPO1 inhibition, but to our
knowledge, this is the first pediatric mutation that may predict therapeutic response to
selinexor [76,77,96,135].

Another clinical trial evaluated single agent selinexor in relapsed/refractory AML,
ALL, BC-CML, and MPAL [126]. This trial found that single agent selinexor was well
tolerated in children apart from two DLTs of pancreatitis and cognitive disturbance [126].
The outcomes of this trial included a ORR of 12.5%, with one patient experiencing com-
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plete remission with incomplete platelet recovery and 11/16 patients having a clinical
benefit defined by reduction in transfusions, clearance of peripheral blasts, and decreased
pain [126]. In addition to these two completed trials, there are five active clinical trials
using selinexor open to enrolling pediatric patients, with two in the process of recruiting
(Table 2, based on clinicaltrials.gov, accessed on 30 June 2021) [136]. Phase 1 study results
from the first trial of selinexor in recurrent pediatric brain and solid tumors (NCT02323880)
were recently presented [137]. Primary toxicities in this population were hematological and
gastrointestinal, with DLTs on a weekly treatment schedule of thrombocytopenia (2 sub-
jects) and seizure (1 CNS tumor patient). The recommended phase 2 dose was established
as 35 mg/m2/dose weekly. Treatment response results are still pending from this trial.

Table 2. Overview of clinical trials involving selinexor in childhood cancer.

Diseases Treatment(s) Status of
Study

Study
Phase Age Range # of Pts Outcome Measure NCT Number

Malignant Glioma,
Recurrent or

Refractory Solid
Tumors

Selinexor Recruiting I 12 mo to 21 yo 68

Frequency of DLT,
AE Rate,

Antitumor Effect of
Selinexor, 6-mo PFS

NCT02323880
https://clinicaltrials.gov/
ct2/show/NCT02323880?

term=selinexor&type=
Intr&age=0&draw=2&

rank=1, accessed on
30 June 2021

Relapsed or
Refractory Childhood

ALL, AML, Mixed
Lineage Leukemia,

Biphenotypic
Leukemia, CML in

Blast Crisis

Selinexor Active, not
recruiting I 12 mo to 21 yo 16 Toxicity Profile,

MTD, ORR

NCT02091245
https://clinicaltrials.gov/
ct2/show/NCT02091245?
term=selinexor&age=0&

draw=1&rank=2, accessed
on 30 June 2021

Dedifferentiated
Liposarcoma

Selinexor or
Placebo

(Double-Blinded
Study)

Active, not
recruiting II–III 12 yo and

older 342

PFS of patients
receiving 60mg of

Selinexor vs.
Placebo

NCT02606461
https://clinicaltrials.gov/
ct2/show/NCT02606461?
term=selinexor&age=0&

draw=1, accessed on
30 June 2021

AML, de Novo MDS,
MDS, Secondary
AML, Secondary

MDS

Selinexor after
allogeneic stem
cell transplant

Completed I Child, adult,
older adult 12

MTD, DLT, 2-yr
PFS, incidence of
GVHD, incidence

of AE, incidence of
non-relapse

mortality, assess
lymphoid and

myeloid chimerism,
Overall Survival

NCT02485535
https://clinicaltrials.gov/
ct2/show/NCT02485535?
term=selinexor&age=0&

draw=1, accessed on
30 June 2021

Malignant Glioma,
Glioblastoma, Diffuse

Midline Glioma/
Intrinsic Pontine

Glioma, Anaplastic
Astrocytoma

Selinexor and
Radiation
Therapy

Not Yet
Recruiting I–II 12 mo to 21 yo 36

MTD, ORR, Event
free survival,

Overall survival

NCT05099003
https://clinicaltrials.gov/
ct2/show/NCT05099003?
term=selinexor&age=0&

draw=2&rank=4, accessed
on 30 June 2021

Relapsed and
Refractory

Aggressive B-Cell
Lymphoma

Selinexor in
combination

with Rituximab,
Gemcitabine,

Dexamethasone,
and Cisplatin vs.

2 other
experimental

treatment arms
vs. active

comparator arm

Recruiting II 16 to 65 yo 320

ORR, AE Rate,
Transplantation
rate, Stem cell
collection rate,

Event free survival,
Survival

NCT02436707
https://clinicaltrials.gov/
ct2/show/NCT02436707?
term=selinexor&age=0&

draw=2, accessed on
30 June 2021

Relapsed or
Refractory AML,

Relapsed or
Refractory Acute

Leukemia of
Ambiguous Lineage

Selinexor and
Venetoclax with

and without
chemotherapy

Recruiting I–II Up to 30 yo 42

RP2D,
Hematologic and
Non-Hematologic
DLT, CR, Survival

NCT04898894
https://clinicaltrials.gov/
ct2/show/NCT04898894?

term=KPT330&age=0&
draw=2, accessed on

30 June 2021
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Table 2. Cont.

Diseases Treatment(s) Status of
Study

Study
Phase Age Range # of Pts Outcome Measure NCT Number

Refractory or
Relapsed AML

Selinexor in
combination

with
Fludarabine,

Cytarabine, and
Methotrex-

ate/Hydrocortisone
/Cytarabine

Terminated
(due to slow
enrollment)

I–II Up to 24 yo 37
ORR, CRR, CR

with Incomplete
Count Recovery

NCT03071276
https://clinicaltrials.gov/
ct2/show/NCT03071276?
term=selinexor&age=0&

draw=1, accessed on
30 June 2021

AML, ALL, MDS,
Mixed Phenotype
Acute Leukemia

Selinexor in
combination

with
Fludarabine,

Cytarabine, and
Methotrex-

ate/Hydrocortisone
/Cytarabine

Completed I–II Up to 24 yo 19

MTD, DLT,
Maximum Plasma

Concentration,
CRR, Overall

Response Rate,
AUC of Selinexor

NCT02212561
https://clinicaltrials.gov/
ct2/show/NCT02212561?
term=selinexor&age=0&

draw=1&rank=3, accessed
on 30 June 2021

Liposarcoma,
Malignant Peripheral
Nerve Sheath Tumors,

Alveolar Soft Part
Sarcoma, Ewing

Sarcoma, Sarcoma

Selinexor and
Ixazomib

combination
Withdrawn II 14 yo and

older 0 MTD, AE Rate,
ORR

NCT03880123
https://clinicaltrials.gov/
ct2/show/NCT03880123?
term=selinexor&age=0&

draw=1, accessed on
30 June 2021

mo = months old, yo = years old, RP2D = Recommended Phase 2 Dose, DLT = Dose-Limiting Toxicity, %DLT = % of patients experiencing a
dose-limiting toxicity at least possibly attributable to Selinexor, PFS = Progression Free Survival, ALL = Acute, Lymphoblastic Leukemia,
AML = Acute Myelogenous Leukemia, CML = Chronic Myelogenous Leukemia, MDS = Myelodysplastic Syndrome, ORR = Objective
Response Rate, CRR = Complete Response Rate, MTD = Maximum Tolerated Dose, AUC = Area Under the Curve, AE = Adverse Event,
GVHD = Graft vs. Host Disease.

4. Future Potential of XPO1 Inhibition in Pediatric Oncology
4.1. Precision Medicine Using XPO1 Inhibition

An ideal biomarker facilitates upfront risk stratification and accurate prediction of
which patients are most likely to benefit from a specific therapy. Overexpression of XPO1
portends a poor prognosis in some diseases, which implies XPO1 activity drives or is the
result of aggressive disease. This has been an attractive area of investigation in the search
for a predictive biomarker of selinexor effectiveness [53,55–57,80,117,138]. However, XPO1
transcript expression levels have not been generally predictive of response to targeted
inhibition. Specifically in neuroblastoma, XPO1 protein expression and RNA expression do
not correlate with sensitivity to selinexor [30]. However, recent efforts have explored XPO1
cargo localization and function, such as those listed in Table 1, as predictors of response
to XPO1 directed therapy [121,139]. For example, in gastric cancer, the presence of func-
tional TP53 in the nuclear compartment seems to be crucial to promoting TP53-dependent
apoptosis with XPO1/proteasome co-inhibition [140]. The anti-apoptotic protein Survivin
could be a reasonable biomarker of sensitivity to XPO1 inhibition. In pediatric cancers,
inferior outcome correlates with high levels of Survivin expression, as it functions as an
inhibitor of apoptotic signaling [141,142]. Nuclear accumulation of Survivin blocks STAT3
activation, leads to its own degradation, and therefore promotes apoptosis [49,143]. Ad-
ditional research is focused on therapeutic predictors by identifying molecular pathways
involved in resistance to XPO1 inhibition [120–123]. Development of biomarkers predictive
of selinexor response will be key to future application of selinexor in children with cancer.

4.2. New Translational Opportunities

Neuroblastoma, osteosarcoma, and high-grade gliomas (HGG) are particularly diffi-
cult to treat cancers that affect children, and integration of XPO1 inhibition into therapy
has potential to transform management. In neuroblastoma, multimodal therapy is highly
toxic and results in a cure rate for those with high-risk disease of approximately 50%, with
substantial treatment-associated morbidity in survivors. Numerous publicly available gene
expression datasets support the recently published findings from a proteomics screen in
neuroblastoma that XPO1 is most highly expressed in patients with inferior outcome [30].
The numerous cargos transported by XPO1, including many affected by combination
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https://clinicaltrials.gov/ct2/show/NCT02212561?term=selinexor&age=0&draw=1&rank=3
https://clinicaltrials.gov/ct2/show/NCT02212561?term=selinexor&age=0&draw=1&rank=3
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https://clinicaltrials.gov/ct2/show/NCT03880123?term=selinexor&age=0&draw=1
https://clinicaltrials.gov/ct2/show/NCT03880123?term=selinexor&age=0&draw=1
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treatment and implicated in augmenting selinexor activity, reinforces current understand
that no single agent or directed therapy can fully undermine the propensity of a cancer
cell to survive. Given its broad sensitivity across neuroblastoma cell lines, and its safety
when used in children, selinexor is a unique agent that may introduce novel oncogenic
vulnerabilities, in particular once there is an improved mechanistic understanding of the
role of XPO1 in cancer development and aggressiveness.

Similar to most malignant tissues, osteosarcoma shows increased XPO1 protein expres-
sion compared with normal tissues, and its expression is associated with worse prognosis,
unrelated to important clinical features such as presence of metastatic disease [58]. Selinexor
has shown activity in preclinical testing of osteosarcoma through different mechanisms.
XPO1 inhibition blocks nuclear export of CDKN1B, an oncoprotein, leading to growth
arrest in vitro [33]. Therefore a rational combination of selinexor with Wee1 inhibition
was studied and showed greater inhibition of cell proliferation than either drug alone,
with Wee1 inhibition of CDK2 activity and selinexor-induced stabilization of CDKN1B
in the nucleus promoting G2/M arrest [33]. In osteosarcoma cell lines, XPO1 inhibition
decreases hypoxia inducible factor, a key transcriptional regulator of tumor growth and
therapy (including radiotherapy) resistance, emphasizing the potential role of selinexor as
a radiation sensitizer [144]. In separate preclinical work in osteosarcoma, neuroblastoma,
and other malignancies, selinexor was shown to act partially through inhibition of NF-kB.
Resistance to selinexor through high NF-kB expression can be overcome with proteasome
inhibition, again pointing to this combination as a rational therapeutic approach similar to
what is used for multiple myeloma [119].

HGGs, which include multiple subtypes, such as diffuse midline gliomas, lack effective
treatment options and are nearly uniformly fatal [145]. These tumors have been of high
interest for XPO1 inhibition due to selinexor’s favorable blood-brain barrier penetrance
and preclinical activity in patient-derived models of adult and pediatric HGG [93]. A phase
2 trial of selinexor in recurrent adult HGG showed a promising six-cycle progression-free
survival rate and some objective responses [146]. As reviewed above, a phase 1 trial of
selinexor in recurrent pediatric brain and solid tumors, with a special focus on HGG,
has presented initial results and is ongoing. Clinical combination use with radiation and
proteasome inhibition is of interest as well, particularly given promising preclinical data
and the ability of both selinexor and proteasome inhibitors to target the NF-kB pathway,
which may be a key activating pathway in pediatric HGG. NF-κB targeting by selinexor
in pediatric HGG appears to be via inducing NGFR expression and increasing nuclear
presence of IkB-a [147].

One current approach to defining response prediction is genome-scale CRISPR-Cas9a-
mediated knock out screens, which was recently applied to assess genes and pathways
associated with HGG response and resistance to etoposide and temozolomide. This can be
readily applied as part of testing of selinexor combination strategies across all childhood
cancers [148]. A similar functional screening assay led to development of a cancer depen-
dency map in MYCN-amplified neuroblastoma that identified a novel protein, Nuclear
Transport Factor 2 Like Export Factor 1 (NXT1, p15), that is essential for mRNA nuclear
export and cellular integrity [149]. Targeting of NXT1, like XPO1, promotes cell lethality
and reinforces the importance of additional research focused on nuclear export machinery
in childhood cancer.

5. Conclusions

XPO1 overexpression is nearly universally associated with inferior outcome in cancer.
Development of XPO1-directed treatment strategies has been brisk, though pediatric-
focused studies have lagged. Our review of the current knowledge about XPO1 and
XPO1 inhibition in childhood cancer offers an enthusiastic outlook about the potential for
integrating XPO1-directed therapy as part of combination treatment to improve outcomes
for children with highly aggressive malignancies. Selinexor, the lead clinical-grade XPO1
inhibitor, holds promise to improve treatment efficacy while minimizing toxic effects of
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conventional therapy. Improved understanding of regulated cargos, functionally related
pathways, mechanistic implications, and biomarkers of efficacy will help guide optimal
clinical incorporation of XPO1 inhibition.
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