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Abstract

The aim of this study is to incorporate polarized hyperspectral imaging (PHSI) with machine 

learning for automatic detection of head and neck squamous cell carcinoma (SCC) on hematoxylin 

and eosin (H&E) stained tissue slides. A polarized hyperspectral imaging microscope had been 

developed in our group. In this paper, we imaged 20 H&E stained tissue slides from 10 patients 

with SCC of the larynx by the PHSI microscope. Several machine learning algorithms, including 

support vector machine (SVM), random forest, Gaussian naive Bayes, and logistic regression, 

were applied to the collected image data for the automatic detection of SCC on the H&E stained 

tissue slides. The performance of these methods was compared among the collected PHSI data, the 

pseudo-RGB images generated from the PHSI data, and the PHSI data after applying the principal 

component analysis (PCA) transformation. The results suggest that SVM is a superior classifier 

for the classification task based on the PHSI data cubes compared to the other three classifiers. 

The incorporate of four Stokes vector parameters improved the classification accuracy. Finally, 

the PCA transformed image data did not improve the accuracy as it might lose some important 

information from the original PHSI data. The preliminary results show that polarized hyperspectral 

imaging can have many potential applications in digital pathology.
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1. INTRODUCTION

Head and neck squamous cell carcinoma (SCC) is originated from the mucosal epithelium 

in the oral cavity, pharynx and larynx and is the major head and neck malignancies [1]. 

Computational pathology, also known as digital pathology, is an emerging technology 

that promises quantitative diagnosis of pathological samples, and traditional computational 

pathology relies on RGB digitized histology images [2]. Multidimensional optical imaging 

has grown rapidly in the recent years. Rather than measuring only the two-dimensional 

spatial distribution of light as in the conventional photography, multidimensional optical 

imaging captures unprecedented information about photons’ spatial coordinates, emittance 

angles, wavelength, time, and polarization [3].

Hyperspectral imaging (HSI) is an optical imaging method that was originally used in 

remote sensing, and it has been extended to the applications in several other promising 

fields including biomedical applications [4]. Hyperspectral imaging acquires the spectra 

of the pixels in a two-dimensional (2D) images and constructs a three-dimensional (3D) 

data cube, where rich spatial and spectral information can be obtained simultaneously. 

Hyperspectral imaging has been implemented on the detection of head and neck cancer. A 

hyperspectral endoscope was developed with a star-shaped filter to image larynx cancer in 
vivo, assisted by a classification algorithm for the identification of healthy and cancerous 

tissues, which took image registration, noise removal and specular reflectance detection into 

consideration [5, 6]. Yushkov et al [7] developed an acoustic-optic hyperspectral imaging 

system with an amplitude mask, which improved the contrast for phase visualization in 

the stained and unstained histological sections of human thyroid cancer. A pilot study was 

implemented to test the feasibility of a hyperspectral imaging system for in vivo delineating 

the preoperatively lateral margins of ill-defined BCCs on the head and neck region [8]. 

Our group has investigated several machine learning and deep learning algorithms for head 

and neck cancer detection based on hyperspectral imaging, including principal component 

analysis (PCA) [9], tensor-based computation and modeling [10], the incorporation of 

support vector machine (SVM) into a minimum spanning forest [11, 12], non-negative 

matrix factorization (NMF) [13], the combination of super pixels, PCA, and SVM [14], as 

well as convolutional neural networks (CNN) [15, 16, 17, 18, 19].

Polarized light imaging is an effective optical imaging technique to explore the structure 

and morphology of biological tissues through obtaining their polarization characteristics. 

It can acquire the 2D spatial polarization information of the tissue, which reflects various 

physical properties of the tissue, including surface texture, surface roughness, and surface 

morphology information [20, 21, 22, 23, 24]. The categories of polarized light imaging 

techniques, namely linear polarization imaging [25, 26, 27], Muller matrix imaging 

[28, 29], and Stokes vector imaging [30], have been applied on head and neck cancer 

detection. Orthogonal polarization spectral (OPS) imaging method, which is a type of 

linear polarization imaging method, was implemented for evaluation of anti-vascular tumor 

treatment and oral squamous cell carcinoma on tissue [25, 26]. A multispectral digital 

microscope (MDM) with an orthogonal polarized reflectance (OPR) imaging mode was 

developed for in vivo detection of oral neoplasia [27]. A 4×4 Muller matrix imaging and 

polar decomposition method were applied for diagnosis of oral precancer [29], and the 
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researchers adopted a 3×3 Muller Matrix imaging method for oral cancer detection [28]. 

In our previous study, we developed a novel polarized hyperspectral imaging microscope, 

which is able to distinguish squamous cell carcinoma from normal tissue on hematoxylin 

and eosin (H&E) stained slides from larynx based on the spectra of Stokes vector [30].

Polarized hyperspectral imaging (PHSI) is a combination of polarization measurement, 

hyperspectral analysis, and space imaging technology. It can obtain the polarization, 

spectral and morphological information of the object simultaneously [31, 32, 33]. In this 

paper, we are developing a novel dual-modality optical imaging microscope by combining 

hyperspectral imaging and polarized light imaging. The microscope is capable of acquiring 

polarization, spectral and spatial information of an object simultaneously, and provides 

more image information for digital pathology compared to RGB digitized histology 

images. We incorporated the polarized hyperspectral imaging microscope with machine 

learning algorithms for automatic detection of SCC on H&E stained tissue slides. We also 

investigated the ability of using machine learning algorithms to classify the data collected 

with the polarized hyperspectral imaging microscope. To the best of our knowledge, this is 

the first study to use polarized hyperspectral imaging for the detection of head and neck 

cancer based on full Stokes polarized hyperspectral imaging datasets.

2. METHODS

2.1 Polarized hyperspectral imaging system setup

The setup of our home-made polarized hyperspectral microscope has been described in [30]. 

The system is capable of full Stokes polarized light hyperspectral imaging, which acquires 

the images of four Stokes vector parameters (S0, S1, S2, S3) in the wavelength range from 

486 nm to 700 nm. The images were collected under 10× magnification with an image size 

of 1088 × 1088 pixels, and the field of view of the imaging system was 595 um × 595 um. 

The core components of the imaging system include an optical microscope, two polarizers, 

two liquid crystal variable retarders (LCVR), and a novel SnapScan hyperspectral camera, 

as shown in Figure 1. The LCVRs and polarizers in the system are for polarized light 

imaging. The SnapScan hyperspectral camera is able to acquire data through the translation 

of the imaging sensor inside of the camera. The polarized light imaging components and 

hyperspectral imaging components work together in the image acquisition progress to obtain 

the Stokes vector parameters in the visible wavelength range. In the polarized hyperspectral 

imaging dataset obtained by the system, each Stokes vector parameter corresponds to a 3D 

data cube with two spatial dimensions and one spectral dimension, as shown in Figure 2.

2.2 Stokes vector acquisition

Polarized light imaging is realized by the two polarizers and two LCVRs. Figure 3 

demonstrates the schematic of the imaging system with fast axis orientations of polarizers 

and LCVRs. Polarizer 1 was set at 45 degrees, and polarizer 2 was set at 0 degrees. LCVR 

1 was set at 0 degrees, and LCVR 2 was set at 45 degrees. The system is capable of 

full Stokes polarimetric imaging, which produces all four components of the Stokes vector. 

Thus, the system can completely define the polarization properties of transmitted light. The 
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way to calculate the four elements of Stokes vector (S0, S1, S2, and S3) is expressed in the 

following Equation (1):

S0 = Iℎ + Iv
S1 = Iℎ + Iv
S2 = Iℎ + Iv − I+45
S3 = Ilc + Irc

(1)

where Ih represent the light intensity measured with a horizontal linear analyzer, in which 

the retardations of LCVR 1 and LCVR 2 are both set at 0 rad; Iv represents the light 

intensity measured with a vertical linear analyzer, in which LCVR 1 is set at 0 rad 

retardation and LCVR 2 is set at π rad retardation; I+45 represents the light intensity 

measured with a +45 degrees oriented linear analyzer, in which LCVR 1 and LCVR 2 are 

both set at π/2 rad retardation; Ilc represents the light intensity measured with left circular 

analyzer, in which LCVR 1 is set at 0 rad retardation and LCVR 2 is set at π/2 rad 

retardation; Irc represents the light intensity measured with right circular analyzer, in which 

LCVR 1 is set at π rad retardation and LCVR 2 is set at π/2 rad retardation. The phase 

retardation of LCVR is determined by different values of voltage applied on it. In addition, 

the value of S0 is equal to the value of total light intensity.

2.3 Sample preparation and data acquisition

Fresh surgical tissue samples were obtained from patients who underwent surgical resection 

of head and neck cancer [34]. Of each patient, a sample of the primary tumor, a normal 

tissue sample, and a sample at the tumor-normal margin were collected. Fresh ex-vivo 
tissues were formalin fixed, paraffin embedded, sectioned, stained with hematoxylin and 

eosin, and digitized using whole-slide scanning. Then, a board-certified pathologist with 

expertise in head and neck pathology outlined the cancer margin on the digital slides using 

Aperio ImageScope (Leica Biosystems Inc, Buffalo Grove, IL, USA). The annotations were 

used as histology ground truth in this study.

In the image acquisition progress, we acquired images of Ih, Iv, I+45, Irc, and then calculated 

the Stokes vector parameters (S0, S1, S2, and S3). We collected the image data from 20 

H&E stained tissue slides of 10 patients with squamous cell carcinoma from the larynx. The 

slides of the normal tissue sample and tumor tissue sample of each patient were used. The 

selected areas to be imaged on normal tissue slides were from healthy stratified squamous 

epithelium, and the selected areas to be imaged on cancerous tissue slides were at or close to 

cancer nests. We cropped the original images with the image size of 1088 × 1088 pixels into 

image patches with a patch size of 40 × 40 pixels. The patches generated from the images 

of normal tissue slides were normal patches and labelled as 0, and the image patches of 

cancerous tissue slides were cancerous patches and labelled as 1.

2.4 Machine Learning

The implementation of machine learning algorithms is the main focus of this paper. In 

this project, we applied machine learning algorithms to our novel polarized hyperspectral 

imaging dataset. Four different machine learning methods, namely the support vector 

machine (SVM), random forest, Gaussian naive Bayes, and logistic regression, were 

Zhou et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2021 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



trained and tested using the collected image data of 10 patients. We conducted the image 

classification based on the full Stokes vector polarized hyperspectral data cube, the synthetic 

RGB images generated from the full data cube, and the synthetic images based on the first 

three principal components of the polarized hyperspectral data cube. The machine learning 

algorithms were implemented using scikit-learn.

SVM is a kernel-based machine learning classifier that is widely used in image 

classification, and it is effective in high-dimensional spaces. SVM classifiers can be trained 

on either the linear kernel or the nonlinear kernel. We trained the SVM classifier based on 

the linear kernel, applied L2 regularization, and set the inverse of regularization strength at 

1. Random forest is a type of ensemble machine learning method, which is operated based 

on an ensemble of decision trees. In the training process of random forest algorithm, we set 

the number of trees at 100, the maximum depth of the tree at 10, and used Gini function 

to measure the quality of a split. Naive Bayes classifiers are based on applying Bayes’ 

theorem with naïve independence assumptions among the features. In the Gaussian naive 

bayes classifier, a typical assumption is that the continuous values related to each class are 

distributed obeying a Gaussian distribution. In the training process of Gaussian naive bayes 

classifier, we set the value for the portion of the largest variance that is added to variances 

at 10−9 for calculation stability. Logistic regression is a machine learning classifier using a 

logistic function to model a binary dependent variable. In the training process of logistic 

regression classifier, we applied L2 regularization, and set the inverse of regularization 

strength at 1. These four machine learning algorithms applied were all supervised learning 

algorithms, which were trained on the labelled normal and cancerous image patches.

2.5 Data processing

We used 4500 image patches (40 × 40 pixels) generated from 20 images of 20 pathologic 

tissue slides of 10 patients. 2250 of them are normal image patches, while the other 2250 

patches are cancerous image patches. We took accuracy as the evaluation metric, which is 

defined as the ratio of the number of correctly classified image patches to the total number 

of image patches in the ground truth, as is expressed in equation (2):

Accuracy = TP + TN/(TP + TN + FP + FN) (2)

where true positive (TP) refers to the number of correctly classified cancerous image 

patches, true negative (TN) refers to the number of correctly classified normal image 

patches, false positive (FP) refers to the number of normal image patches classified into 

cancerous image patches, and false negative (FN) refers to the number of cancerous image 

patches classified into normal image patches.

Before training the machine learning classifiers, we divided the image patches into training 

and testing groups. We utilized three types of image datasets for training and testing, 

respectively: the polarized hyperspectral data cubes, the synthesized RGB images, and PCA 

transformed images. To begin with, we trained the machine learning classifiers based on the 

original polarized hyperspectral data cubes. For each image patch, we calculated the average 

value of all pixel on (S0, S1, S2, S3) across all the 66 wavelength bands within the range of 

486 nm and 700 nm, then represented each image patch with a feature matrix with the shape 
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of 4 × 66 (average value of 4 Stokes vector parameters across 66 wavelength bands). Next, 

we formed an overall feature matrix of all 4500 image patches, which was a 4500 × 4 × 

66 matrix. Then, leave-one-patient-out validation was carried out. Feature data in the overall 

feature matrix of one single patient were left out for validation in each fold, and the rest of 

the feature data in the matrix were used as the training data. So, we carried out 10 times of 

training in total. We calculated the validation accuracy for each fold as well as the average 

accuracy of all 10 folds.

Similar training processes were applied to the synthetic RGB images and the PCA 

transformed images. For synthetic RGB images, we adopted a transformation function 

similar to the spectral response of human eye and modified it for our data to generate the 

synthetic RGB images [35]. The transformation is shown in Figure 4. The formed feature 

matrix for a single RGB image patch had a shape of 4 × 3 (average value of 4 Stokes vector 

parameters under red, green, and blue bands), and the formed overall feature matrix had a 

shape of 4500 × 4 × 3. For the PCA transformed image data, we took the first, second, and 

third principal components to form a 4 × 3 feature matrix for each image patch, and the 

overall feature matrix was at the size of 4500 × 4 × 3.

3. RESULTS

3.1 Comparison of the different components (S0, S1, S2, S3)

In Figure 5, we demonstrates the synthetic RGB images of Stokes vector parameters (S0, S1, 

S2, and S3) from a normal image patch of the normal slide and a cancerous image patch of 

the tumor slide from the same patient.

We also tested these four types of machine learning methods on the PCA transformed image 

data of the original polarized hyperspectral image data cube. Figure 6 demonstrates the 

synthetic three-channel pseudo-color images based on the first, second, and third principal 

components of the Stokes vectors (S0, S1, S2, and S3) from a normal area on the normal 

slide and a cancerous area on the tumor slide of the same patient.

3.2 Performances of machine learning algorithms

Leave-one-patient-out cross validation was conducted on image patches from 10 patients 

using four different machine learning algorithms (SVM, Random Forest, Gaussian NB, 

Logistic Regression), and the average validation accuracy of the 10 folds using different 

classifiers are reported. Table 1 shows the accuracies of four classifiers utilizing the full 

wavelength range (486 nm to 700 nm) of four Stokes vector parameters. The highest 

accuracy of 93.5% is achieved by SVM on S3. Table 2 shows the accuracies of four types 

of classifiers utilizing synthetic RGB images of four Stokes vector parameters. The highest 

accuracy of 92.6% is achieved by SVM on S3. Table 3 shows the accuracies of four types 

of classifiers utilizing the first three principal components of four Stokes vector parameters. 

The highest accuracy of 93.3% is achieved by logistic regression on S3.
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4. CONCLUSIONS AND DISCUSSIONS

In this work, we developed a novel polarized hyperspectral imaging microscope, which is 

able to acquire the full Stokes vector polarized hyperspectral imaging data cube, and has the 

potential to distinguish normal and cancerous area on H&E stained tissue slides of head and 

neck cancer. We developed an image classification framework based on machine learning 

methods to classify the normal and cancerous image patches generated from our collected 

polarized hyperspectral data cube. To the best of our knowledge, this is the first study 

of head and neck cancer detection in pathologic slides based on polarized hyperspectral 

imaging and machine learning methods. According to the results, SVM classifier achieved 

the highest accuracies (93.5% on S3) for the original polarized hyperspectral imaging data 

cube and the synthetic RGB image data (92.6% on S3), and for the classification using 

PCA transformed image data, logistic regression achieved the highest accuracy (93.3% on 

S3). The results suggest that SVM is a superior classifier for classification tasks based on 

polarized hyperspectral image data compared to the other three types of classifiers (random 

forest, Gaussian NB, and logistic regression).

Furthermore, the incorporate of the four Stokes vector parameters can improve the overall 

classification accuracy of the light-intensity image data (S0). The accuracies were improved 

by using S1 and S3 as the classification parameters for all types of image data (polarized 

hyperspectral data cube, synthesized RGB image data, and PCA transformed image data). 

In addition, S3 achieved the best accuracy for all types of image data (93.5% for polarized 

hyperspectral data cube, 92.6% for RGB image data, and 93.3% for PCA transformed image 

data). The results suggest that S3 is a superior parameter for classification tasks based on 

polarized hyperspectral image data.

Finally, the PCA transformed image data did not improve the best accuracy from the 

polarized hyperspectral imaging data cube, as it might lose some important information from 

the original polarized hyperspectral imaging data cube, but it did improve the best accuracy 

when compared to the performance of synthetic RGB image data.

Two recent researches of applying Stokes vector in cancer detection has shown the potential 

of using circular polarized light related parameter S3 in cancer detection on tissue samples 

[36, 37], which is consistent with what we found in our results. More work need to be 

performed on the statistical analysis of Stokes vector parameters on a larger dataset with 

more patients. Furthermore, we plan to carry out image analysis on whole-slide images, and 

apply deep learning algorithms in the analysis for future work.
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Figure 1. 
The setup of the polarized hyperspectral imaging microscope. The polarized imaging 

components include two polarizers (one polarizer was placed at the bottom near the light 

source, the other polarizer was placed right before the hyperspectral camera), and two 

LCVRs placed between the objective lens and polarizer 2. The SnapScan hyperspectral 

camera was placed at the top of the system.
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Figure 2. 
Diagram of full-polarization hyperspectral imaging data cubes. The data cube of each Stokes 

parameter (S0, S1, S2, S3) has three dimensions including two spatial dimensions (x, y) and 

one spectral dimension (λ).
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Figure 3. 
Schematic of the polarized light imaging system. The fast axis orientation of polarizer 1 was 

set at 45 degrees, and polarizer 2 was set at 0 degrees. The fast axis orientation LCVR 1 was 

set at 0 degrees, and LCVR 2 was set at 45 degrees.
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Figure 4. 
Transformation function to synthesize pseudo-RGB images from the polarized hyperspectral 

data.
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Figure 5. 
The color image representation of S0, S1, S2, and S3 (left to right) from a normal area on 

the normal slide (top) and a cancerous area on the tumor slide (bottom) of the same patient.
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Figure 6. 
The representation of the synthetic three-channel images based on the first, second, and third 

principal components of the Stokes vectors (S0, S1, S2, S3 are from left to right) from a 

normal area on the normal slide (top) and a cancerous area on the tumor slide (bottom) of 

the same patient.
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Table 1.

Average validation accuracies of four types of classifiers utilizing the full wavelength range (486 nm to 700 

nm) of four Stokes vector parameters (S0, S1, S2, S3).

Accuracy S0 S1 S2 S3

SVM 92.0% 92.9% 80.3% 93.5%

Random Forest 77.1% 90.4% 76.3% 88.4%

Gaussian NB 89.2% 75.8% 77.2% 76.2%

Logistic Regression 77.5% 89.8% 83.7% 87.5%
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Table 2.

Average validation accuracies of four classifiers utilizing the pseudo-RGB patches of four Stokes vector 

parameters.

Accuracy S0 S1 S2 S3

SVM 90.2% 91.5% 78.8% 92.6%

Random Forest 80.8% 88.2% 77.1% 90.4%

Gaussian NB 83.7% 92.2% 74.0% 82.6%

Logistic Regression 86.3% 82.9% 81.2% 87.3%
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Table 3.

Average validation accuracies of four classifiers utilizing the three principal components of four Stokes vector 

parameters.

Accuracy S0 S1 S2 S3

SVM 86.9% 88.2% 76.7% 89.2%

Random Forest 77.4% 91.4% 80.2% 91.8%

Gaussian NB 81.6% 92.1% 78.9% 87.4%

Logistic Regression 83.2% 83.7% 86.1% 93.3%
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