Skip to main content
. 2021 Dec 9;13(24):6210. doi: 10.3390/cancers13246210

Table 3.

Summary of machine learning algorithms predictive performances (mean ± standard deviation, bold entries are maximum values).

Model Accuracy ROC AUC PPV NPV Sensitivity Specificity
Random Forest 0.68 ± 0.04 0.74 ± 0.03 0.70 ± 0.08 0.68 ± 0.06 0.58 ± 0.08 0.78 ± 0.06
Logistic Regression 0.67 ± 0.04 0.73 ± 0.03 0.69 ± 0.08 0.67 ± 0.06 0.57 ± 0.09 0.77 ± 0.07
Naive Bayes 0.67 ± 0.04 0.73 ± 0.03 0.72 ± 0.07 0.65 ± 0.06 0.49 ± 0.07 0.83 ± 0.05
Single Layer Neural Network 0.66 ± 0.03 0.72 ± 0.03 0.69 ± 0.09 0.66 ± 0.06 0.54 ± 0.09 0.78 ± 0.07
k-Nearest Neighbour 0.66 ± 0.04 0.69 ± 0.04 0.65 ± 0.07 0.66 ± 0.06 0.58 ± 0.07 0.73 ± 0.07
Linear SVM 0.58 ± 0.09 0.73 ± 0.03 0.72 ± 0.09 0.58 ± 0.10 0.19 ± 0.25 0.94 ± 0.09
Polynomial SVM 0.55 ± 0.08 0.73 ± 0.03 0.61 ± 0.13 0.58 ± 0.13 0.19 ± 0.29 0.89 ± 0.23
Radial basis SVM 0.55 ± 0.08 0.73 ± 0.03 0.67 ± 0.17 0.56 ± 0.06 0.20 ± 0.28 0.88 ± 0.25