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Abstract: Lysyl oxidase-like 2 (LOXL2) has emerged as a promising therapeutic target against
metastatic/invasive tumors and organ and tissue fibrosis. LOXL2 catalyzes the oxidative deamination
of lysine and hydroxylysine residues in extracellular matrix (ECM) proteins to promote crosslinking
of these proteins, and thereby plays a major role in ECM remodeling. LOXL2 secretes as 100-kDa full-
length protein (fl-LOXL2) and then undergoes proteolytic cleavage of the first two scavenger receptor
cysteine-rich (SRCR) domains to yield 60-kDa protein (∆1-2SRCR-LOXL2). This processing does not
affect the amine oxidase activity of LOXL2 in vitro. However, the physiological importance of this
cleavage still remains elusive. In this study, we focused on characterization of biophysical properties
of fl- and ∆1-2SRCR-LOXL2s (e.g., oligomeric states, molecular weights, and hydrodynamic radii in
solution) to gain insight into the structural role of the first two SRCR domains. Our study reveals that
fl-LOXL2 exists predominantly as monomer but also dimer to the lesser extent when its concentration
is <~1 mM. The hydrodynamic radius (Rh) determined by multi-angle light scattering coupled with
size exclusion chromatography (SEC-MALS) indicates that fl-LOXL2 is a moderately asymmetric
protein. In contrast, ∆1-2SRCR-LOXL2 exists solely as monomer and its Rh is in good agreement
with the predicted value. The Rh values calculated from a 3D modeled structure of fl-LOXL2 and the
crystal structure of the precursor ∆1-2SRCR-LOXL2 are within a reasonable margin of error of the
values determined by SEC-MALS for fl- and ∆1-2SRCR-LOXL2s in mature forms in this study. Based
on superimposition of the 3D model and the crystal structure of ∆1-2SRCR-LOXL2 (PDB:5ZE3), we
propose a configuration of fl-LOXL2 that explains the difference observed in Rh between fl- and
∆1-2SRCR-LOXL2s in solution.

Keywords: lysyl oxidase-like 2; scavenger receptor cysteine-rich; extracellular matrix; hydrodynamic
radius; analytical ultracentrifugation; isoelectric points

1. Introduction

Lysyl oxidase-like 2 (LOXL2) is a member of the LOX-family of proteins that are lysine
tyrosylquinone (LTQ)- and copper (II)- dependent amine oxidases. The LTQ cofactor is
post-translationally derived from the conserved Tyr and Lys residues in the active site [1,2].
LOXL2 oxidatively deaminates lysine and hydroxylysine residues in extracellular matrix
(ECM) proteins such as tropoelastin and collagen type IV to initiate their crosslinking and
promote ECM remodeling [3–5]. In addition to the traditional ECM substrates, platelet
growth factor receptor β (PDGFRβ) was recently identified as a cell-surface substrate of
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LOXL2 [6]. Elevated expression of LOXL2 has been associated with poor prognosis in
metastatic/invasive cancers and fibrotic disorders [7–9]. Small molecule inhibitors and
inhibitory RNAs have shown to effectively retard disease progression in both in vitro and
in vivo studies [6,9–16]. Despite its prominence as a therapeutic target, little progress has
been made on structure-based drug design for LOXL2 specific inhibitors because of the
lack of 3D structural information of the catalytically competent (mature) form of LOXL2.

The loxl2 gene encodes four scavenger receptor cysteine-rich (SRCR) domains at the
N-terminus and the amine oxidase domain at the C-terminus (Figure 1). The C-terminal
amine oxidase domain is conserved among the LOX-family of proteins and the catalytic
domains of LOXL2 and LOX share 68% similarity and 49% identity. SRCR domains are
ancient motifs found on the cell surface and are involved in protein–protein, protein-
substrate or receptor-ligand interactions [17,18]. SRCR domains are 90–110 amino acids
long and contain highly conserved Cys residues. Based on the numbers of Cys residues
and intradomain disulfide bonds, SRCR domains are classified into two categories (type A
and type B). Type A domain is characterized by six Cys residues (three disulfide bonds)
while type B domain is characterized by eight Cys residues (four disulfide bonds). The
SRCR domains of LOXL2 contain six Cys residues per domain, therefore it is categorized
as type A [17]. The physiological role of SRCR domains of LOXL2 largely remains elusive.
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LOXL2 secretes as ~100-kDa full-length protein (fl-LOXL2) and that undergoes prote-
olytic cleavage of the first two SRCR domains by PACE4, a proprotein convertase, at 
Arg314-Phe315-Arg316-Lys317↓Ala318 (underlined: the recognition sequence of PACE4) to 
yield ~60-kDa protein (Δ1-2SRCR-LOXL2) [4]. In vitro, this processing does not affect the 

Figure 1. A schematic diagram of rLOXL2s in this study. fl-LOXL2: full-length LOXL2; ∆1-2SRCR-
LOXL2: LOXL2 which lacks the first two SRCR domains; ∆1-3SRCR-LOXL2: LOXL2 which lacks the
first three SRCR domains; ∆1-4SRCR-LOXL2: LOXL2 which lacks all four SRCR domains.

LOXL2 secretes as ~100-kDa full-length protein (fl-LOXL2) and that undergoes pro-
teolytic cleavage of the first two SRCR domains by PACE4, a proprotein convertase, at
Arg314-Phe315-Arg316-Lys317↓Ala318 (underlined: the recognition sequence of PACE4) to
yield ~60-kDa protein (∆1-2SRCR-LOXL2) [4]. In vitro, this processing does not affect
the amine oxidase activity of LOXL2 in the oxidation of cadaverine and tropoelastin, but
increases the solubility of LOXL2 [4]. The physiological significance of this processing is
still unclear. In 2018, a 2.4 Å crystal structure of a Zn2+-bound precursor form (lacking
the LTQ cofactor) of ∆1-2SRCR-LOXL2 became available [19]. The overall structure of
∆1-2SRCR-LOXL2 is in a triangular shape (Figure 2A) where the 3rd SRCR domain inter-
acts with the catalytic domain through in total of six hydrogen bonds and two van der
Waals interactions (Figure 2E). The 4th SRCR domain has no interaction with either the
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catalytic domain or the 3rd SRCR domain (Figure 2C,D). The precursor residues of LTQ
(Lys653 and Tyr689) were 16.6 Å apart (Figure 2B) and it was suggested that a substantial
conformational change is required to enable the LTQ cofactor formation.
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Figure 2. X-ray structure of ∆1-2SRCR-LOXL2 in the precursor form (PDB: 5ZE3). (A) Monomer
(B) The active site structure. The precursor residues (Lys653, Tyr689) are 16.6 Å apart. Zn2+ (gray
sphere) occupies the predicted Cu2+ binding site (His626-X-His628-X-His630). Ca2+ is shown as a
green sphere. (C) In each asymmetric unit (ASU), two molecules are observed. The intermolecular
association between monomers is mediated mainly through the 4th SRCR domains (in forest and
light green). (D) A top view of the ASU shown in (C). (E) The 3rd SRCR domain (in cyan) interacts
with the catalytic domain (in yellow) mostly through hydrogen bonding interactions (in red) but
also through van der Waals interactions (in green). (F) The intermolecular association observed in
between the 4th SRCR domains (shown in C,D) are all through van der Waals interactions (in green).
Numbers in (A,E,F) are all in Å.

In this study, we focused on understanding the biophysical significance of the prote-
olytic cleavage of the first two SRCR domains using catalytically competent forms (con-
taining the LTQ cofactor and Cu2+) of full-length (fl-LOXL2) and 60-kDa form (∆1-2SRCR-
LOXL2) of LOXL2. The latter was generated from K317R mutant (furin-cleavage site,
315Arg-Phe-316Arg-317Arg, was engineered) of LOXL2. We determined the oligomeric
states and hydrodynamic radii (Rh) of the two forms of LOXL2. The latter values are
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compared with those calculated from a 3D model structure of the precursor fl-LOXL2
being generated by AlphaFold V2 [20] and the crystal structure of the precursor ∆1-2SRCR-
LOXL2 [19], respectively.

2. Materials and Methods
2.1. Protein Purification

The fl- and ∆1-2SRCR-LOXL2s were both produced in FreeStyle™ 293 Expression
System (Thermo Fisher Scientific, Lenexa, KS, USA) and were purified as described pre-
viously [4]. ∆1-3SRCR- and ∆1-4SRCR-LOXL2s were produced in DES® system (Thermo
Fisher Scientific) and were purified as described previously [21].

2.2. PAGE Analysis

For SDS-PAGE, 4 µg of protein samples was loaded on to a 10% TGX™ FastCast™ (Bio-
Rad Laboratories, Hercules, CA, USA) polyacrylamide gel. Protein samples were prepared
with 4X sample loading buffer (Bio-Rad Laboratories) for reducing conditions and with
Pierce™ LDS sample buffer, non-reducing (4X) (Thermo Fisher Scientific) for non-reducing
conditions. For native PAGE, protein samples were loaded on to a NativePAGE™ 4 to
16% Bis-Tris Mini Protein Gels (Thermo Fisher Scientific) with NativeMark™ Unstained
Protein Standard (Thermo Fisher Scientific) and separated at 125 V for 2 h. A recombinant
prolyl-4-hydroxylase (homodimer, 49.2-kDa) was used as the protein standard [22].

2.3. SEC-MALS

The light scattering data were collected from size exclusion chromatography (SEC)
using a Superdex 200 10/300, HR Size Exclusion Chromatography column (GE Healthcare,
Piscataway, NJ, USA) connected to Agilent 1200 High Performance Liquid Chromatog-
raphy (HPLC) System (Agilent Technologies, Wilmington, DE, USA) equipped with an
autosampler. The elution from SEC was monitored by a photodiode array (PDA) UV/VIS
detector (Agilent Technologies, Wilmington, DE, USA), differential refractometer (OPTI-
LabrEx Wyatt Corp., Santa Barbara, CA, USA), static and dynamic, multiangle laser light
scattering (LS) detector (HELEOS II with QELS capability, Wyatt Corp., Santa Barbara,
CA, USA). The SEC-UV/LS/RI system was equilibrated in 50 mM Tris, pH 8.0 containing
150 mM NaCl and 0.01% sodium azide at a flowrate of 0.5 mL/min or 1.0 mL/min. Two
software packages were used for data collection and analysis: the Chemstation software
(Agilent Technologies, Wilmington, DE, USA) controlled the HPLC operation and data
collection from the multi-wavelength UV/VIS detector, while the ASTRA software (Wyatt
Corp., Santa Barbara, CA, USA) collected data from the refractive index detector, the light
scattering detectors, and recorded the UV trace at 280 nm sent from the PDA detector. The
weight average molecular masses, Mw, were determined across the entire elution profile
in the intervals of 1 s from static LS measurement using ASTRA software as previously
described [23]. Hydrodynamic radii, Rh, were measured from an “on-line” dynamic LS
measurement every 2 s. The dynamic light scattering signal was analyzed by the method
of cumulants [24].

2.4. Analytical Ultracentrifugation

Analytical ultracentrifugation (AUC) experiments were performed on an Optima XL-I
(Beckman Coulter, Fullerton, CA, USA) analytical ultracentrifuge equipped with a scanning
UV-Visible optical system set at 280 nm and an An-60 Ti 4-hole rotor. Sedimentation velocity
experiments were conducted using a Beckman double-sector Epon centerpiece cell with
12 mm sapphire windows at 40,000 RPM. The experiments were performed in 50 mM
HEPES (pH 8.0) containing between 0.088 mg/mL and 0.88 mg/mL fl-LOXL2. The data
were analyzed using the continuous sedimentation coefficient distribution model c(s) of
SEDFIT [25]. Sedimentation equilibrium experiments were performed using a six-sector
Epon centerpiece cell with 12 mm sapphire windows (Beckman Coulter). Rotor speeds of



Biomolecules 2021, 11, 1846 5 of 13

10,000, 12,500, and 15,000 RPM were applied. The data were analyzed using HeteroAnalysis
to fit molecular weight, n, ln(K) and baseline [26].

2.5. pI Determination of LOXL2s

Purified recombinant LOXL2s were subjected to 2-dimensional (2D) gel electrophore-
sis. ReadyStrip™ IPG Strips (11 cm pH 3–10 nonlinear, immobilized pH gradient, IPG
strip) (Bio-Rad Laboratories) were rehydrated with 200 µL of rehydration buffer [8 M
urea, 2% CHAPS, 50 mM dithiothreitol (DTT), 0.2% Bio-Lyte® 3/10 ampholyte, and 0.001%
Bromophenol Blue] containing 100 µg of protein for 12 h in a rehydration tray overlayed
with 5 mL of mineral oil. The excess mineral oil was removed from the rehydrated strips by
blotting the strip on a filter paper. The IPG strips were transferred to the running tray of a
PROTEAN® i12™ IEF system (Bio-Rad Laboratories) before being overlaid with another 5
mL of mineral oil and run using the recommended procedure for 11 cm pH 3–10 IPG strips
(e.g., 250 volts for 20 min, 8000 volts for 1 h, and 8000 volts for 26,000 volt hours, with a total
run time of approximately 6 h at 20 ◦C). The IPG strips were taken out of the IEF system,
and the excess mineral oil was removed by blotting. The strips were then equilibrated with
4 mL of SDS-PAGE Equilibration Buffer 1 (6 M urea, 2% SDS, 0.375 M Tris-HCl (pH 8.8),
20% glycerol and 2% (w/v) DTT) for 15 min and SDS-PAGE Equilibration Buffer 2 [6 M
urea, 2% SDS, 0.375 M Tris-HCl (pH 8.8), 20% glycerol, and 0.135 M iodoacetamide] from
the ReadyPrepTM 2D Starter Kit (Bio-Rad Laboratories) for 15 min. Equilibrated IPG strips
were rinsed in 1X TGS running buffer before mounting onto an AnykD™ Criterion™ TGX
Stain-Free™ Precast Gel (Bio-Rad Laboratories) and overlaying with 0.5% agarose. The
2D gel was run at 200 V for 60 min or until the dye front reached the bottom of the gel.
The gels were then stained using Coomassie Brilliant Blue G-250 stain before imaging on a
ChemidocTM MP Imaging system (Bio-Rad Laboratories). pI values were calculated based
on the length that the protein traveled through the IPG strip.

3. Results and Discussion
3.1. Polyacrylamide Gel Electrophoresis

Intermolecular association of two molecules of Zn2+-bound precursor ∆1-2SRCR-
LOXL2 [19] is mediated mainly through SRCR4 domains via van der Waals interactions
(3.3–4.0 Å) [27], as shown in Figure 2F. Although it was stated that the precursor ∆1-2SRCR-
LOXL2 was monomeric in solution, no experimental data supporting this statement was
provided [19]. In this study, both fl-LOXL2 and ∆1-2SRCR-LOXL2 in mature forms were
purified to homogeneity (Figure 3A,B). fl-LOXL2 and ∆1-2SRCR-LOXL2 were subjected to
polyacrylamide gel electrophoresis (PAGE) under both reducing and non-reducing condi-
tions (Figure 3A). In the presence of a reducing reagent (all disulfide bonds are reduced),
the molecular weights of fl-LOXL2 and ∆1-2SRCR-LOXL2 were ~95-kDa and ~60-kDa,
respectively, which are in good agreement with the predicted values for monomers. In the
absence of a reducing agent, both proteins are more compact and migrated as ~20-kDa
smaller in size than when a reducing agent was added (Figure 3A) [28].

When these protein samples were subjected to native PAGE, ∆1-2SRCR-LOXL2 mi-
grated (Figure 3B) similarly to the molecular weight under denaturing and reducing
conditions (Figure 3A), suggesting that ∆1-2SRCR-LOXL2 is a monomer. ∆1-3SRCR- and
∆1-4SRCR-LOXL2s (Figure 3B) that lack the first three and all of the four SRCR domains
also migrated to the expected molecular weights (42.7-kDa, 29.6-kDa) that were previously
determined by mass spectrometry [21]. On the other hand, fl-LOXL2s of the wild-type
(WT-LOXL2), R314A/R316A/K317Q-LOXL2 (AAQ-LOXL2, a PACE4 cleavage site null
mutant) [4] and K317R-LOXL2 were detected as a single band with molecular weight of
~175-kDa but no protein band corresponding to the monomer, expected to be ~75-kDa
under non-reducing conditions (Figure 3A), was detected. In addition to the ~175-kDa
band, a faint band with a much higher molecular weight (~340-kDa) was detected in
all three lanes containing fl-LOXL2 (AAQ-, WT- and K317R-LOXL2s) (Figure 3B). These
results suggest that fl-LOXL2 exists predominantly as dimer and also as tetramer to a lesser
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extent. Since we did not detect dimers or other oligomers for ∆1-2SRCR-, ∆1-3SRCR-, and
∆1-4SRCR-LOXL2s, it is evident that one or both of the first two SRCR domains is/are
essential for oligomerization of fl-LOXL2.
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R315A/R316A/K317Q mutant form of LOXL2; WT: wild type; K317R-LOXL2 was isolated as a mix-
ture of fl-LOXL2 and ∆1-2SRCR-LOXL2; ∆1-2SRCR-LOXL2 was isolated from the mixture by FPLC;
r-P4H: recombinant Bacillus anthracis prolyl-4-hydroxylase as a molecular standard (homodimer,
49.2 kDa) [22].

3.2. Molecular Weight Determination by SEC-MALS

The molecular masses of fl-LOXL2 and ∆1-2SRCR-LOXL2 were determined by size ex-
clusion chromatography coupled with multi angle light scattering (SEC-MALS) (Figure 4).
At concentrations from 0.08 to 1.6 µM, fl-LOXL2 exists predominantly as the monomer
with molecular weight of ~83-kDa at the elution volume of 13.6 mL but a small amount of
dimer with molecular weight of ~176-kDa at the elution volume of 12.1 mL and a minor
amount of tetramer (unable to calculate the molecular weight) at the elution value of
7.6 mL (Figure 4A). On the other hand, ∆1-2SRCR-LOXL2 elutes solely as a monomer with
molecular weight of ~56-kDa at the elution volume of 15.5 mL (Figure 4B). The amounts of
oligomers (dimer, tetramer) in Figure 4A in comparison to those in native acrylamide gel
electrophoresis (Figure 3B) strongly indicates that fl-LOXL2 is predominantly a monomer
but it is in an equilibrium of monomer-dimer-tetramer.

3.3. The Oligomeric State of fl-LOXL2

Since some oligomers (e.g., mostly dimers and tetramers in a lesser amount) were
observed for fl-LOXL2 in the native PAGE and SEC-MALS (Figures 3B, 4 and 5), oligomer-
ization of fl-LOXL2 was observed by sedimentation velocity–analytical ultracentrifuga-
tion (SV-AUC) at 20 ◦C with rotor speed at 40,000 RPM. Three different concentrations
(0.88 mg/mL, 0.30 mg/mL and 0.088 mg/mL) were run to verify the system was not inter-
acting on the timescale of the experiment. The weight average sedimentation coefficient
showed no obvious trend with concentration (Figures S1 and S2) of fl-LOXL2 indicating a
non-interacting system. A disperse distribution of four populations at monomer (~4.7 s),
dimer (~6.9 s), tetramer (~9.3 s), and pentamer (~11.5 s) were observed (Figure 5A). Dis-
tribution integrations calculated were 83.6 ± 1.1% of monomer, 11.6 ± 0.3% of dimer and
4.7 ± 1.5% of tetramer and pentamer together (Figure 5B).
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fl-LOXL2. (B) A digitized graph showing the percentage of monomer, dimer, tetramer and pentamer
of fl-LOXL2.

The shape of a molecule can be assessed from SV-AUC data by examining the frictional
ratio, f/f0, which can be thought of as a measure of asymmetry. F/F0 is equal to smax/s*,
the ratio of the maximum theoretical sedimentation coefficient (that of a perfect sphere) to
the observed sedimentation coefficient. If we use ~86.2-kDa for the monomer of LOXL2, the
maximum of sedimentation coefficient can be calculated as ~7.0 s (s: Svedberg unit, 10−13 s)
by using equation: smax = 0.00361M

2
3 (smax: the maximum theoretical sedimentation

coefficient, M = molecular weight) [29,30]. The observed sedimentation coefficient is
~4.7 s, that will make f/f0 = smax/s* = 7.0 s/4.7 s = 1.5. This indicates that fl-LOXL2 is a
moderately asymmetrical protein (Table 1). From these data we can also calculate a Stokes
radius (radius of the equivalent sphere that sediments at the same rate) of 4.5 nm.
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Table 1. A comparison of biophysical data of fl-LOXL2 and ∆1-2SRCR-LOXL2.

LOXL2 pH Methods MW
(kDa)

Rg
(nm)

Rh
(nm)

1013 s
(sec)

f/f0

fl- (a) 8.0 AUC/SEC-MALS 83/91 (f) − 4.58 ± 0.05 4.7 1.49
∆1-2SRCR- (a) 8.0 AUC/SEC-MALS 57.3 − 3.40 ± 0.15 − −

fl- (b) − Computation (e) 86.7 3.31 4.48 4.73 1.54
∆1-2SRCR- (c) 7.6 Computation (e) 49.6 2.41 3.12 3.94 1.29

fl- (d) 7.4 AUC/SEC-MALS 92.6 − 5.6 5.15 1.44
fl- (d) 4.7 TEM 93 4.7 6.6 5.52 −

(a) Purified recombinant proteins used in this study. (b) 3D structure predicted by AlphaFold V2 [20]. (c) The monomer part of the X-ray
crystal structure (PDB:5ZE3) without water molecules. (d) Purified recombinant protein [4]. (e) Computational calculation by HullRad [31].
(f) Including N-glycans.

3.4. Hydrodynamic Radii (Rh) of fl- and ∆1-2SRCR-LOXL2

Hydrodynamic radii (Rh) of fl-LOXL2 and ∆1-2SRCR-LOXL2 were calculated from
the “on-line” dynamic light scattering measurement (Figure 6, Table 1) and the dynamic
light scattering signal was analyzed by the method of cumulants [24]. The Rh value of
fl-LOXL2 (4.58 ± 0.05 nm) is comparable to that (4.98 ± 0.08 nm) of aldolase, a globular
protein that has been routinely used as the standard [31,32]. However, the molecular
weight of aldolase is 158-kDa that is larger than the monomer of fl-LOXL2 (~86-kDa). On
the other hand, the Rh value of ∆1-2SRCR-LOXL2 (3.40 ± 0.15 nm) is in good agreement
with those (3.40–3.69 nm) of bovine serum albumin and human serum albumin which
both have similar mass (66.5-kDa) [31] to that of ∆1-2SRCR-LOXL2 (~66 kDa). These
results suggest that fl-LOXL2 is a moderately elongated protein but ∆1-2SRCR-LOXL2
is an approximately globular protein. While the difference (~1.2 nm) between Rh values
of fl-LOXL2 and ∆1-2SRCR-LOXL2 is significant, it is still considerably smaller than
the difference in molecular weights (~20-kDa). Therefore, the difference cannot account
for a fully extended conformation of the first two SRCR domains of fl-LOXL2 (SRCR1
and SRCR2).
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3.5. Structure Prediction of fl-LOXL2

The overlaid image (Figure 7A) of the 3D structure of fl-LOXL2 (precursor form)
that was predicted by AlphaFold 2 (AF-Q9Y4K0-F1-model_vi.pdb) [20] and X-ray crystal
structure of ∆1-2SRCR-LOXL2 (precursor form) were generated by PyMOL [33]. The third
and fourth SRCR domains and the C-terminal amine oxidase domain of the 3D modeled
structure were superimposable with those of the X-ray structure, where the root mean
square deviation (RMSD) for the overlay was calculated as 0.490 Å. The first and second
SRCR domains (in slate and in purple, respectively) of the 3D modeled structure have
domain–domain interactions with the third SRCR domain (in cyan) but not with the fourth
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SRCR domain (in green) (Figure 7B, left). As seen in the crystal structure of ∆1-2SRCR-
LOXL2, there is no direct interaction between the third and fourth SRCR domains of the
3D predicted structure. The PACE4 cleavage site (314Arg-315Phe-316Arg-317Lys-↓318Ala) [4]
is in the loop region between the second and the third SRCR domains and solvent-exposed
(Figure 7B, right). The three N-glycosylation sites (Asn288, Asn455, Asn644) [34] are all
solvent-exposed as well. The Rh value of the 3D predicted structure of fl-LOXL2 was
calculated as 4.48 nm by HullRad [31] that is within a reasonable margin of error of the
Rh value (4.58 ± 0.05 nm) calculated from our mature fl-LOXL2 in solution by SEC-MALS
(Table 1). These results indicate that the overall domain organizations of the 3D modeled
precursor fl-LOXL2 are closely related to the mature fl-LOXL2 in solution.
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During the course of our study, Rh values of 5.6–6.6 nm for a fl-LOXL2 were calculated
from SEC-MALS and single-particle electron microscopy (EM), respectively [5]. In that
study, a recombinant fl-LOXL2 was purified from the conditioned media of Chinese hamster
ovary cells stably transfected with an expression construct of C-terminally His-tagged fl-
LOXL2. The EM images after negative staining indicated that the four SRCR domains of
the fl-LOXL2 are fully extended and there was no sign of domain–domain interactions. The
Rh values determined for the fl-LOXL2 are 1–2 nm (10–20 Å) larger than those calculated
for both fl-LOXL2 and the 3D predicted structure (AlphaFold V2) that have been previously
discussed in this study (Table 1). As mentioned earlier, in our hands, the difference observed
in Rh values (1.18 ± 0.02 nm, or 11.8 ± 0.2 Å) between fl-LOXL2 and ∆1-2SRCR-LOXL2
(mature forms) are in good agreement with the difference in Rh values calculated (1.36 nm,
13.6 Å) between the 3D-predicted structure of fl-LOXL2 and the X-ray crystal structure of
the monomer of ∆1-2SRCR-LOXL2 (precursor forms) by HullRad [31]. Our results strongly
suggest that the overall structures of both fl-LOXL2 and ∆1-2SRCR-LOXL2 (mature forms)
in solution are related to those of 3D-predicted fl-LOXL2 and X-ray crystal structure of
∆1-2SRCR-LOXL2 (precursor forms). The difference in Rh value determined by EM may
be due to the acidic environment (pH 4.7) for staining.
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3.6. The Isoelectric Point (pI) of LOXL2

The isoelectric points (pIs) of a series of recombinant LOXL2s were determined by
isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) (Table 2). The exper-
imentally determined pIs are in good agreement with values predicted by Isoelectric
Compute pI/MW [35] and Point Calculator 2.0 [36]. A slight smearing of fl-LOXL2 was de-
tected and two major spots gave a pI of 5.5–5.9. This is most likely due to the heterogeneity
of N-glycoconjugates (31 varieties at Asn288) [34]. Although N-glycoconjugates at Asn644
also possess 34 varieties [34], they did not have significant influence on pI values for all
forms of recombinant LOXL2 in this study. Overall, LOXL2 is a weakly acidic protein.
A surface electrostatic potential map generated by PyMOL with APBS Electrostatistics
plug-in [37] shows a large acidic patch expanding from the amine oxidase domain through
the SRCR3 domain to the SRCR1 domain in one face of fl-LOXL2 (Figure S3A). On the other
hand, there is a basic patch present in the SRCR2 domain and another acidic patch in the
amine oxidase domain on the other face of fl-LOXL2 (Figure S3B). The estimated pI value
of the SRCR2 domain is 8.8–9.6 (Table 3), which is over 3 pH unit more basic than other
three SRCR domains. Further study is necessary to define the biological and physiological
significance of the basicity of the SRCR2 domain.

Table 2. Isoelectric points (pIs) of the series of recombinant LOXL2s in this study.

LOXL2 pI (Computed pI (a,b))

fl-LOXL2 5.5–5.9 (5.7, 6.0)
∆1-2SRCR-LOXL2 5.4 (5.9, 5.9)
∆1-3SRCR-LOXL2 5.9 (5.3, 5.1)
∆1-4SRCR-LOXL2 5.1 (5.1, 4.9)

(a) Compute pI/Mw [36], (b) Isoelectric Point Calculator 2.0 [37].

Table 3. Isoelectric points (pIs) of SRCR domains of fl-LOXL2.

SRCR Domain of LOXL2 pI (Computed (a,b))

SRCR1 5.4, 5.2
SRCR2 9.6, 8.8
SRCR3 5.1, 5.0
SRCR4 5.9, 5.6

(a) Compute pI/Mw [36], (b) Isoelectric Point Calculator 2.0 [37].

A significant amount of dimerization of LOXL2 was only observed with fl-LOXL2 at
concentrations ≥0.88 mg/mL (Figures 3 and 5). As the dimerization only occurred within
fl-LOXL2, it is most likely that the dimerization involves one or both of the first two SRCR
domains. Two docking programs, PatchDock and ZDOCK were used to generate possible
modes of dimerization [38–40]. While the most common pattern seen was interaction
between SRCR1 of monomer and SRCR2 of the other monomer (an example is shown in
Figure S4), some models that were generated showed interactions between the first SRCR
domain and the catalytic domain. More study is necessary, such as H/D exchange mass
spectrometry, site-directed mutagenesis, or deletion of the binding motif to elucidate the
nature of the dimerization of fl-LOXL2.

4. Conclusions

In solution, fl-LOXL2 exists predominantly as a monomer, but it can be in equilib-
rium with dimer–tetramer–pentamer when the protein concentration is ≥0.88 mg/mL
(monomer: 83.6%; dimer: 11.6%; tetramer + pentamer: 4.7%). On the other hand, ∆1-
2SRCR-, ∆1-3SRCR-, and ∆1-4SRCR-LOXL2s exists exclusively as a monomer. These
results suggest that the dimerization of fl-LOXL2 involves one or both of the first two
SRCR domains. The pI value of the SRCR2 domain is basic (~9.2), in contrast to the
rest of the SRCR domains and the catalytic domain of LOXL2 (5~6). This basicity of the
SRCR2 domain potentially mediates protein–protein interaction in the ECM or cell-surface
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through ionic interactions. The higher affinity of fl-LOXL2 to the ECM that we previously
observed [4] could partly be attributed to the basicity of the SRCR2 domain. LOXL2 has
been shown to oxidatively deaminate Lys residue(s) of the extracellular domain of PDGFRβ
to an aldehyde [6]. The pI value of the extracellular domain of PDGFRβ is predicted to be
4.83 and 4.71 by Isoelectric Compute pI/MW [35] and Point Calculator 2.0 [36], respectively.
It is possible that the interaction of LOXL2 and PDGFRβ is facilitated by the SRCR2 domain.
The Rh values determined for fl-LOXL2 and ∆1-2SRCR-LOXL2 in solution strongly suggest
that the overall structures of both fl-LOXL2 and ∆1-2SRCR-LOXL2 in solution are closely
related to those of 3D-predicted fl-LOXL2 and X-ray crystal structure of ∆1-2SRCR-LOXL2,
and the LTQ cofactor biogenesis does not have a significant effect on the overall structure
of LOXL2.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11121846/s1, Figure S1: Weight average sedimentation coefficient with concentration
of fl-LOXL2, Figure S2: Data, fit, and residuals plot for a representative SV-AUC run of fl-LOXL2 at
0.88 mg/mL, Figure S3: Electrostatic potential on the surface of 3D-predicted LOXL2, Figure S4: A
predicted dimer of fl-LOXL2 generated by ZDOCK.
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