Table 3.
# | Layer | Filter Size | Stride | Output Dimension | Activation Function |
---|---|---|---|---|---|
1 | Input | — | — | (128, 128, 3) | — |
2 | Conv1 | 3 × 3 | 1 | (128, 128, 64) | ReLU |
3 | Maxpool1 | 2 × 2 | 2 | (64, 64, 64) | — |
4 | Conv2 | 3 × 3 | 1 | (64, 64, 32) | ReLU |
5 | Maxpool2 | 2 × 2 | 2 | (32, 32, 32) | — |
6 | Conv3 | 3 × 3 | 1 | (32, 32, 16) | ReLU |
7 | Maxpool3 | 2 × 2 | 2 | (16, 16, 16) | — |
8 | FC1 | — | — | (128, 1) | — |
9 | FC2 | — | — | (100, 1) | dropout = 0.5 |
10 | Output | — | — | (0, 1) | softmax |
Conv = convolutional layer; Maxpool = max-pooling layer; FC = fully connected layer.