Skip to main content
. 2021 Dec 14;23(12):1678. doi: 10.3390/e23121678
Algorithm 1 Feature Engineering Generator Algorithm.
Require:
  • The original low-frequency time domain component L.

  • The original high-frequency time domain component H.

  • The number of samples in each data segment M.

  • The number of categories of data from different types of UAVs with flight modes N.

  • The points of moving average filter for the low-frequency and high-frequency components nl and nh, respectively.

Ensure:

The Feature Engineering Generator preprocessed frequency domain data D.

  • 1:

    forn in N do

  • 2:

       Extract the time domain low-frequency component Ln and high-frequency component Hn of category n.

  • 3:

       Resegment Ln, Hn into new segments with M samples per segment SL, SH, respectively.

  • 4:

       for l in SL do

  • 5:

         Fourier transform l.

  • 6:

         nl-point moving average filter l.

  • 7:

       end for l

  • 8:

       for h in SH do

  • 9:

         Fourier transform h.

  • 10:

         nh-point moving average filter h.

  • 11:

       end for h

  • 12:

       SL=SLmax(SL);SH=SHmax(SH).

  • 13:

       S=(SL;SH).

  • 14:

       Dn=(S2;n).

  • 15:

    end forn

  • 16:

    D=(D1,D2,,Dn).