Traditional regression based pLOS-ICU prediction models |
Zoller et al. [16] |
General ICU patients |
110 |
Single-center |
pLOS-ICU |
Customized SAPS II |
× |
AUROC: 0.70 |
Houthooft et al. [18] |
General ICU patients |
14,480 |
Single-center |
pLOS-ICU |
Customized SOFA score |
× |
Sensitivity: 0.71 |
Herman et al. [6] |
Patients undergoing CABG |
3483 |
Single-center |
pLOS-ICU |
LR |
× |
AUROC: 0.78 |
Rotar et al. [19] |
Patients following CABG |
3283 |
Single-center |
pLOS-ICU |
LASSO |
× |
AUROC: 0.72 |
ML-based models in ICU |
Meiring et al. [24] |
General ICU patients |
22,514 |
Multicenter |
ICU mortality |
AdaBoost, RF, SVM, DL, LR, and customized APACHE-II |
× |
AUROC: 0.88 (DL) |
Lin et al. [20] |
Acute kidney injury patients |
19,044 |
Single-center |
ICU mortality |
ANN, SVM, RF, and customized SAPS II |
× |
AUROC: 0.87 (RF) |
Viton et al. [25] |
General ICU patients |
13,000 |
Single-center |
ICU mortality |
DL |
× |
AUROC: 0.85 |
Qian et al. [13] |
General ICU patients |
17,205 |
Single-center |
Acute kidney injury |
XGBoost, RF, SVM, GBDT, DL, and LR |
× |
AUROC: 0.91 (GBDT) |
ML-based pLOS-ICU prediction models |
Navaz et al. [26] |
General ICU patients |
40,426 |
Single-center |
pLOS-ICU |
Decision tree |
× |
Accuracy: 0.59 |
Rocheteau et al. [27] |
General ICU patients |
168,577 |
Multicenter |
LOS-ICU |
DL |
√ |
R2: 0.40 |
Ma et al. [28] |
General ICU patients |
4000 |
Single-center |
pLOS-ICU |
Combining just-in-time learning and one-class extreme learning |
× |
AUROC: 0.85 |
Our study |
General ICU patients |
160,238 |
Multicenter |
pLOS-ICU |
RF, SVM, DL, GBDT, and customized SAPS II |
√ |
- |