Skip to main content
. 2021 Nov 30;11(12):2242. doi: 10.3390/diagnostics11122242

Table 1.

Characteristics of related work.

Category Study Population Sample Size Dataset Outcome Models External Validation Performance
Traditional regression based pLOS-ICU prediction models Zoller et al. [16] General ICU patients 110 Single-center pLOS-ICU Customized SAPS II × AUROC: 0.70
Houthooft et al. [18] General ICU patients 14,480 Single-center pLOS-ICU Customized SOFA score × Sensitivity: 0.71
Herman et al. [6] Patients undergoing CABG 3483 Single-center pLOS-ICU LR × AUROC: 0.78
Rotar et al. [19] Patients following CABG 3283 Single-center pLOS-ICU LASSO × AUROC: 0.72
ML-based models in ICU Meiring et al. [24] General ICU patients 22,514 Multicenter ICU mortality AdaBoost, RF, SVM, DL, LR, and customized APACHE-II × AUROC: 0.88 (DL)
Lin et al. [20] Acute kidney injury patients 19,044 Single-center ICU mortality ANN, SVM, RF, and customized SAPS II × AUROC: 0.87 (RF)
Viton et al. [25] General ICU patients 13,000 Single-center ICU mortality DL × AUROC: 0.85
Qian et al. [13] General ICU patients 17,205 Single-center Acute kidney injury XGBoost, RF, SVM, GBDT, DL, and LR × AUROC: 0.91 (GBDT)
ML-based pLOS-ICU prediction models Navaz et al. [26] General ICU patients 40,426 Single-center pLOS-ICU Decision tree × Accuracy: 0.59
Rocheteau et al. [27] General ICU patients 168,577 Multicenter LOS-ICU DL R2: 0.40
Ma et al. [28] General ICU patients 4000 Single-center pLOS-ICU Combining just-in-time learning and one-class extreme learning × AUROC: 0.85
Our study General ICU patients 160,238 Multicenter pLOS-ICU RF, SVM, DL, GBDT, and customized SAPS II -