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Abstract: This study was conducted to evaluate the influence of kernel size and its potential interac-
tion with genotype on durum wheat quality with emphases on kernel physical characteristics, milling
performance, and color-related quality parameters. Wheat samples of seven genotypes, selected
from the 2018 Canadian durum variety registration trial, were segregated into large (LK), medium
(MK), and small-sized kernels (SK). In general, the kernel size greatly affected the durum wheat
milling performance. Within a given size fraction, a strong impact of genotype was shown on the test
weight of SK and the milling yields of MK and LK. Particularly, the MK fraction, segregated from the
genotypes with superior milling quality, had a higher semolina yield than LK from the genotypes of
inferior milling quality, inferring the importance of intrinsic physicochemical properties of durum
kernels in affecting milling quality. SK exhibited inferior milling quality regardless of the genotypes
selected. A strong impact of genotype was shown for the total yellow pigment (TYP) content and
yellowness of semolina, while the kernel size had a significant impact on the brightness and redness
of the semolina and pasta. Despite SK possessing much higher TYP, the semolina and pasta prepared
from SK were lower in brightness and yellowness but with elevated redness.

Keywords: durum wheat; kernel size; genotype; milling quality; semolina quality; pasta color

1. Introduction

Durum wheat physical properties are very important in determining its commercial
value. Strong associations have been reported between kernel physical characteristics
and durum wheat milling performance, semolina composition, and pasta processing
quality [1–6]. Emphasis has been on unveiling the relationship between test weight (TWT)
to durum wheat milling potential by evaluating samples with a wide range of TWT, protein
content, and kernel size distribution (KSD) [3–5]. Recent study in our laboratory has shown
that kernel size is more effective than TWT in predicting the milling performance of durum
wheat by assessing Canadian durum samples with a wide range of TWT and KSD [5].

In general, with the decrease of kernel size from large to medium, the semolina and
total milling yields of durum wheat reduced gradually. A drastic decrease in milling quality
was observed for small kernels passing through the no. 6 slotted sieve (2.38 mm aper-
ture) [4,5] with much reduced milling yields coupled with elevated ash content. Baasandorj,
Ohm, Manthey, and Simsek (2015) studied the impact of kernel size and mill type on the
milling and baking quality of hard red spring wheat [7]. Compared with large-sized ker-
nels, the small-sized kernels had a much lower flour yield because of the lower proportion
of starchy endosperm to bran.

The kernel size of durum wheat can significantly affect not only the milling perfor-
mance but also the semolina and pasta quality [3,5]. Semolina milled from SK exhibited
higher protein content, finer granulation, and was higher in TYP but less bright in color
with elevated ash [3,5]. Cooked pasta made from durum samples with a high proportion
of SK had higher firmness but was duller in color.
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While the impact of kernel size on semolina and pasta quality is well-documented,
limited information is available on the response of genotype to the general relationships
between kernel size and the key durum wheat quality parameters. Due to the variation in
intrinsic quality, the degree of impact of kernel size on quality could be genotype dependent.
Using milling performance as an example, it is not clear if the genotypes with superior
milling quality would be less susceptible to kernel size variation than those of inferior
milling quality, or vice versa. Genotypes with different intrinsic quality could respond
differently to variations in kernel size.

On the other hand, differences in quality among genotypes could be affected by the
variation in kernel size. Although TKW was shown to be highly correlated with semolina
yield across four different durum varieties (R2 = 0.92) evaluated by Wang and Fu (2020),
greater variation in semolina yield was seen for larger kernels than for smaller ones [5].
The fact that the genotypic variation in durum milling performance was related to kernel
size suggests a potentially greater role of genotype in the milling quality of large kernels
than that of the small ones.

With the prevalence of hot and dry growing conditions on Canadian prairies in the
last few years, some durum samples, although graded as No.1 or No. 2 Canada Western
Amber Durum (CWAD), showed relatively wide range of KSD and milling quality [5]. To
optimize the commercial value of durum wheat of different KSD and understand how
quality parameters respond to kernel size variations, a thorough investigation is required
to further elucidate the combined effect of kernel size and genotype on key durum wheat
quality parameters.

Therefore, the objective of this study was to evaluate the influence of kernel size and
its potential interaction with genotype on key durum wheat quality traits with emphases
on the wheat physical properties, milling performance, and color-related quality attributes.

2. Materials and Methods
2.1. Wheat Samples

Seven genotypes were selected from the 2018 Canadian durum wheat variety registra-
tion trial based on their intrinsic differences in milling and color-related quality parameters.
A composite of each genotype was prepared from wheat samples grown at nine locations
across western Canada. Based on availability and grading information of wheat samples
from the nine locations, a recipe was developed for the preparation of the wheat composites.
All composites were graded as No.1 CWAD. Each of these variety composites was segre-
gated into three size fractions using a Carter dockage tester (Simon-Day Ltd., Winnipeg,
MB, USA) equipped with no. 6 (2.38 mm × 19.05 mm) and no. 7 (2.78 mm × 19.05 mm)
slotted sieves. The segregated kernel size fractions were categorized as small-sized kernels
(SK, through no.6 slotted sieve), medium-sized kernels (MK, passing no.7 but remained
above no.6 slotted sieve), and large-sized kernels (LK, remained above no.7 slotted sieve).

2.2. Wheat Physical Properties

To accommodate the small sample size, the test weight (TWT) was measured using a
0.5 L container equipped with a cox funnel following the standard procedure described
by the Canadian Grain Commission [8]. The value in gram per half liter was converted
to kg per hectoliter using the test weight conversion chart for amber durum wheat. TKW
was determined with an electronic seed counter (Model 750, The Old Mill Company,
Savage, Maryland) using a 20 g sample of wheat of which all broken kernels were manually
removed. KSD was determined on a series of slotted sieves (i.e., no. 6, 7, and 8). One
hundred grams of wheat was subsampled and manually shaken for 30 s, after which the
four fractions separated by the sieves were collected and weighted individually. All wheat
physical tests were conducted in duplicate.
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2.3. Standard Durum Milling Procedure

Following the mill flow previously described by Dexter et al. (1990) [9], original
unsorted wheat samples were milled into semolina in duplicates of 2.3 kg lots with a four
stand Allis-Chalmers laboratory mill (West Allis, WI, USA) in conjunction with a laboratory
purifier. The mill room was controlled at 21 ◦C and 60% relative humidity. Semolina is
defined as having less than 3% pass through a 149 µm sieve. The total milling yield is the
combination of semolina and flour. Both the total and semolina yields are reported as a
percentage of the cleaned wheat on a constant moisture basis. Semolina granules were
prepared by adding the most refined flour stream(s) to semolina until 70% extraction was
reached for quality analysis.

2.4. Micro-Milling and Purification Protocol

Wheat samples of various size fractions were milled to predict semolina and total
milling yields following the micro-milling procedure previously developed by Wang et al.
(2019) [10]. After tempering to a moisture content of 16% overnight, 200 g of wheat sample
was ground with a Quadruma Junior (QJ)-II-G mill-semolina version (C.W. Brabender
Instruments, Inc., South Hackensack, NJ, USA) with the original sifter removed. The
resulting wholemeal was sifted through a universal laboratory sifter (Bühler MLUA GM
sieve, Bühler AG) equipped with a bottom screen of 180 µm to remove the flour and a
top screen of 630 µm to retain the bran-rich fraction. The unpurified semolina fraction
(SY1) between the two screens was collected. Based on the prediction models developed
by Wang et al. (2019) [10], semolina yield and total milling yield were calculated according
to the amount of SY1 and bran-rich fraction. Formulas (1) and (2) are as follows:

Semolina Yield (%) = 1.02 × Bran-rich fraction + 1.80 × SY1 − 73.17. (1)

Total Milling Yield (%) = 0.62 × SY1 + 39.42 (2)

To prepare refined semolina for analysis and pasta processing, the original purification
steps described by Dexter et al. [9] were modified to accommodate the small semolina
sample size with three purification and two sizing passages. A detailed description of
the micro-milling and purification steps is illustrated in Figure 1. In a typical experiment,
SY1 obtained from QJ semolina mill was passed over a laboratory purifier (Namad, Rome,
Italy) equipped with four different sizing sieves (335, 425, 570, and 670µm). After the
first purification (P1), large semolina granules collected in tray 4 and 5 were reduced with
the first sizing roll (S1). The reduced semolina was sifted through a box sifter equipped
with a 180 µm sieve for 30 s to remove the flour. The resulting fraction retained above the
180 µm sieve together with the semolina collected in tray 3 at P1 were subject to a second
purification (P2). After P2, the semolina granules which remained in tray 4 and 5 were
subject to a second sizing step (S2). The reduced fraction was sifted with a box sifter for
30 s to remove bran/shorts (>425 µm) and flour (<180 µm). The semolina fraction between
180 and 425 µm was combined with the semolina collected in tray 3 at P2 and transferred
to the third purification (P3). Refined semolina was collected as tray 1 and 2 in P1, tray 1
and 2 in P2 and tray 1, 2, and 3 in P3. Tray 4 and 5 in P3 were defined as Feeds.
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Figure 1. Durum micro-milling flow and purification procedure. B = break passage, FLR = flour, P = purifier, S = sizing 
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screen (Trapezoid holes) at a speed of 14,000 rpm. Ash content, wet gluten, and gluten 
index were determined using AACC International approved methods 76-31.01 and 38-
12.02, respectively [12]. Semolina color was measured with a Minolta colorimeter CR-410 
(Konica Minolta Sensing, Inc., Tokyo, Japan) with a D65 illuminant. Color readings are 
expressed on the CIELAB color space system with L*, a* and b* parameters representing 
brightness, redness, and yellowness values, respectively. A micro scale rapid extraction 
procedure as described by Fu et al. [13] was used for the determination of the total yellow 
pigment (TYP) content of the semolina. 

2.6. Spaghetti Processing and Color Measurement 
Spaghetti were produced from semolina using a customized micro-extruder 
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(DAC 400 FVZ SpeedMixer, FlackTec, Landum, SC, USA) at water absorption of 31–32% 
to maintain a constant extrusion pressure of about 100 psi. Vacuum was applied to elimi-
nate introduction of air bubbles and minimize oxidative degradation of the yellow pig-
ment, after which the dough crumbs were extruded through a four-hole Teflon coated 
spaghetti die (1.8 mm). The fresh pasta was subsequently dried in a pilot pasta dryer 
(Bühler, Uzwil, Switzerland) coupled with a 325 min drying cycle and a maximum tem-
perature of 85 °C. To measure spaghetti color, 6.5 cm bands of spaghetti strands were 
mounted on a white mat board with minimum interspace. Spaghetti color was determined 
using a Minolta colorimeter (CR-410) as described above. 

  

Figure 1. Durum micro-milling flow and purification procedure. B = break passage, FLR = flour, P = purifier, S = sizing
passage, SEMO = semolina, SY1: unpurified semolina.

2.5. Semolina Quality Testing

The protein content of the whole wheat and semolina were measured following
the method previously described by Williams et al. [11] with a LECO Truspec N CNA
(combustion nitrogen analysis) analyzer (Saint Joseph, MI). Ground wheat meal was
prepared using a Retsch ZM 200 mill (Retsch GmbH, Haan, Germany) equipped with
a 0.5 mm screen (Trapezoid holes) at a speed of 14,000 rpm. Ash content, wet gluten,
and gluten index were determined using AACC International approved methods 76-31.01
and 38-12.02, respectively [12]. Semolina color was measured with a Minolta colorimeter
CR-410 (Konica Minolta Sensing, Inc., Tokyo, Japan) with a D65 illuminant. Color readings
are expressed on the CIELAB color space system with L*, a* and b* parameters representing
brightness, redness, and yellowness values, respectively. A micro scale rapid extraction
procedure as described by Fu et al. [13] was used for the determination of the total yellow
pigment (TYP) content of the semolina.

2.6. Spaghetti Processing and Color Measurement

Spaghetti were produced from semolina using a customized micro-extruder (Randcas-
tle Extrusion Systems Inc., Cedar Grove, NJ, USA) following the method of Fu et al. [6].
Semolina was first mixed with water in a high-speed asymmetric centrifugal mixer (DAC
400 FVZ SpeedMixer, FlackTec, Landum, SC, USA) at water absorption of 31–32% to main-
tain a constant extrusion pressure of about 100 psi. Vacuum was applied to eliminate
introduction of air bubbles and minimize oxidative degradation of the yellow pigment,
after which the dough crumbs were extruded through a four-hole Teflon coated spaghetti
die (1.8 mm). The fresh pasta was subsequently dried in a pilot pasta dryer (Bühler, Uzwil,
Switzerland) coupled with a 325 min drying cycle and a maximum temperature of 85 ◦C.
To measure spaghetti color, 6.5 cm bands of spaghetti strands were mounted on a white
mat board with minimum interspace. Spaghetti color was determined using a Minolta
colorimeter (CR-410) as described above.



Foods 2021, 10, 2992 5 of 15

2.7. Statistical Analysis

All data were analyzed with Microsoft Excel and SAS 9.4 Software (SAS Institute Inc.,
Gary, NC, USA). A 3 × 7 factorial experiment was applied to evaluate the impact of kernel
size and genotype on key durum wheat quality characteristics by including 3 levels of
kernel size (small, medium, and large) and 7 different genotypes (A to G) representing the
major source of variations. Each segregated kernel size fraction from a selected genotype
was treated as an independent sample. Significance of each factor as indicated by F values
and percentage of variability assignable to each factor as measured by the ratio of sum of
square to the total sum of squares was calculated. Tukey’s test, which followed the analysis
of variance, indicated significant differences with a level of p < 0.05.

3. Results and Discussion
3.1. Influence of Kernel Size and Genotype on Physical Properties of Durum Wheat

To understand the impact of kernel size, genotype, and their interactions on major
durum wheat quality parameters, seven durum genotypes with variation in milling and
color related quality attributes were segregated into three kernel size fractions using a
Carter dockage tester. The wheat and semolina quality parameters of the unsorted samples
are summarized in Table 1. The selected genotypes differed greatly in semolina and total
milling yields, TYP, and gluten index, but with less variation in wheat physical properties
(i.e., HVK, TWT, TKW, KSD), wheat protein, and ash contents. The semolina and total
milling yields from the micro-milling procedure were comparable to those of standard
laboratory milling except genotype D which showed higher semolina and total milling
yields in the micro-milling process.

The significance of kernel size, genotype, and their interactions on major durum wheat
quality parameters, as measured by the F value and percentage of variability assignable
to each factor and their interactions, are summarized in Table 2. Significant impact was
found for kernel size, genotype, and their interactions on all wheat quality parameters
examined (p < 0.001). In terms of wheat physical properties, kernel size accounted for
more than 80% of the variability in TWT and TKW with minor influences shown for
genotypes and their interactions. Table 3 summarizes the impact of genotype on key
quality parameters in relation to kernel size. TKW reduced drastically from 51.0 ± 1.8 g
of LK to 36.1 ± 0.9 g of MK, but was only accompanied by a small decrease of TWT
from 83.7 ± 0.7 kg/hL to 82.2 ± 0.6 kg/hL. Further decrease of kernel size from MK to
SK led to a much greater reduction in average TWT from 82.2 kg/hL to 77.6 kg/hL,
suggesting SK (TKW of 23.9 ± 0.4 g) was much less dense than the corresponding larger
ones. A similar decrease in TKW and TWT was reported when a bulk CWAD cargo
aggregate was fractioned into five different kernel sizes [5]. Wang and Fu reported that
TWT is less effective than TKW in distinguishing the difference in kernel size [5].

Interestingly, the impact of genotype on TWT was greater for SK than for both MK and
LK (Table 3). Although there was no significant difference in TKW of the SK fractions, SK
possessed much greater variability in TWT, ranging from 74.5 to 80.6 kg/hL (F value = 465.6,
p < 0.001) as compared to MK (81.1–82.6 kg/hL, F value = 73.3, p < 0.001) and LK (82.3 to
84.5 kg/hL, F value = 130, p < 0.001). On the other hand, greater variation in TKW among
genotypes was shown for LK (48.3 to 52.8 g, F value = 23.81, p < 0.001) in comparison to
MK (34.8–37.0 g, F value = 4.5, p < 0.05) and SK (23.2 to 24.4 g, F value = 1.9, ns).
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Table 1. Wheat and semolina quality parameters of selected genotypes.

Line

Wheat Properties Standard Milling Micro-Milling Semolina Properties-Standard Milling

Grade HVK
(%)

TWT
(kg/hL)

TKW
(g)

KSD (%) Protein
(%)

Ash
(%) SY (%) TMY

(%) SY (%) TMY
(%)

Protein
(%)

Ash
(%)

TYP
(ppm)

Gluten
index(%)Small Medium Large

A 1 94 83.6 48.0 5.8 22.3 71.9 14.3 1.40 68.1 76.2 68.1 75.7 13.3 0.65 10.3 62
B 1 92 83.1 44.8 5.8 29.3 64.9 14.5 1.37 68.0 76.0 68.0 75.1 13.4 0.65 9.0 70
C 1 92 82.8 45.7 6.0 24.6 69.4 15.2 1.38 67.2 75.3 67.8 75.6 13.1 0.61 10.7 85
D 1 91 82.8 43.2 7.6 33.2 59.2 14.3 1.47 66.3 74.7 67.8 75.0 14.2 0.62 10.3 77
E 1 95 83.0 46.6 4.9 26.3 68.9 14.9 1.39 66.9 75.6 67.0 74.7 13.9 0.62 9.4 66
F 1 93 81.5 47.7 3.5 22.4 74.2 15.5 1.45 66.1 73.4 67.0 74.2 14.4 0.63 10.8 57
G 1 96 83.0 44.7 7.4 32.3 60.3 14.7 1.44 65.2 73.4 65.7 73.4 13.7 0.69 11.5 56

Mean 93.3 82.8 45.8 5.9 27.2 67.0 14.8 1.42 66.8 74.9 67.3 74.8 13.8 0.64 10.3 69
Range 5 2.1 4.8 4.1 10.9 15.0 1.2 0.10 2.9 2.8 2.4 2.3 1.3 0.08 2.5 29

Note: small kernels: through No.6 slotted sieve (2.38 × 19.05 mm); medium kernels: passing No.7 but remained above No.6 slotted sieve; large kernels: remained above No.7 slotted sieve (2.78 × 19.05 mm).
HVK = hard vitreous kernels; TWT = test weight; TKW = thousand kernel weight; KSD = kernel size distribution; SY = semolina yield; TMY = total milling yield; TYP = total yellow pigment.

Table 2. Significance of kernel size, genotype, and their interaction on major durum wheat quality parameters as measured by F values and percentage of variability assignable to each
factor and their interaction.

F Values Percentage of Variability Assignable to Each Factor

Kernel Size Genotype Interactions Kernel Size Genotype Interactions Error

Wheat properties
TWT 502 **** 215.2 **** 66.8 **** 82.6 10.6 6.6 0.2
TKW 9365.2 **** 8.3 *** 11.2 **** 98.9 0.3 0.7 0.1
Protein 555.5 **** 2159.1 **** 68.9 **** 7.4 86.6 5.5 0.4
Ash 800.9 **** 281.2 **** 33.9 **** 42.6 44.9 10.8 1.7

Milling quality
Semolina yield 13177.7 **** 546.9 **** 36.0 **** 87.6 10.9 1.4 0.1
Total milling yield 7392.8 **** 531.9 **** 24.4 **** 80.8 17.4 1.6 0.1
Semolina ash 2143.3 **** 131.0 **** 30.6 **** 77.9 14.3 6.7 1.1

Semolina color
Semolina TYP 2897.9 **** 1276.6 **** 24.5 **** 42.1 55.6 2.1 0.2
L* 608.8 **** 10.4 **** 9.6 **** 84.7 4.3 8.0 2.9
a* 238.2 **** 5.7 *** 6.6 **** 75.5 5.4 12.5 6.7
b* 96.0 **** 177.8 **** 13.5 **** 13.1 73.0 11.0 2.9
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Table 2. Cont.

F Values Percentage of Variability Assignable to Each Factor

Kernel Size Genotype Interactions Kernel Size Genotype Interactions Error

Pasta color
L* 18998 **** 184.9 **** 293.1 **** 89.1 2.6 8.1 0.1
a* 30824.8 **** 452.5 **** 150.0 **** 93.1 4.0 2.7 0.1
b* 9625.5 **** 406.4 **** 59.0 **** 85.9 10.9 3.2 0.1

***, **** indicate significance level of 0.001 and 0.0001. TWT = test weight; TKW = thousand kernel weight; TYP = total yellow pigment.

Table 3. Impact of genotype on wheat, milling, semolina, and pasta quality parameters of selected genotypes at three different level of kernel sizes.

Wheat Properties Milling Quality Semolina Color Pasta Color

TWT
(kg/hL) TKW (g) Protein

(%) Ash (%) SY (%) TMY (%) Semolina
Ash (%)

Semolina
TYP L* a* b* L* a* b*

Large kernels
Mean 83.7 51.0 14.8 1.41 68.0 75.3 0.57 9.4 83.7 −2.7 33.5 74.5 3.2 65.4

SD 0.7 1.8 0.5 0.04 0.9 0.9 0.02 0.8 0.2 0.1 1.1 1.3 0.4 1.5
Range 2.2 4.5 1.3 0.11 2.7 2.5 0.06 2.3 0.5 0.2 3.1 3.9 1.1 4.0

F values 130 **** 23.81 *** 1343.5 **** 130.6 **** 203.7 **** 220.4 **** 52. 7**** 511 **** 9.27 *** 5.7 ** 49.5 *** 658 **** 299 **** 223 ****

Medium kernels
Average 82.2 36.1 14.6 1.41 66.7 74.0 0.60 10.6 83.4 −2.7 34.5 72.6 4.6 66.2

SD 0.6 0.9 0.5 0.04 0.7 0.7 0.02 0.8 0.2 0.1 1.0 0.4 0.3 1.4
Range 1.5 2.2 1.3 0.08 1.8 1.9 0.05 2.5 0.5 0.3 2.8 1.1 0.9 3.3

F values 73.3 **** 4.5 * 1100.1 **** 96.0 **** 170.6 **** 160.8 **** 73.2 **** 1464 **** 11.5 *** 11.5 *** 68 *** 56 **** 171 **** 205 ****

Small kernels
Average 77.6 23.9 14.9 1.49 63.6 71.9 0.67 11.1 81.7 −2.1 33.9 69.4 6.5 59.4

SD 2.0 0.4 0.4 0.05 0.5 0.6 0.03 1.0 0.6 0.2 1.3 0.4 0.4 1.0
Range 6.1 1.2 1.2 0.15 1.3 1.5 0.07 3.0 1.7 0.6 4.1 1.1 1.3 2.3

F values 465.6 **** 1.9 ns 386.4 **** 121.0 **** 128.6 **** 106.1 **** 70.3 **** 2149 **** 17.3 **** 9 *** 92 *** 57 **** 282 **** 96 ****

*, **, ***, **** indicate significance level of 0.05, 0.01, 0.001 and 0.0001, respectively. ns = not significant; SD = standard deviation; TWT = test weight; TKW = thousand kernel weight; SY = semolina yield; TMY =
total milling yield; TYP = total yellow pigment.
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TWT can be affected by wheat moisture, kernel density, kernel shape, and packing
factors, which were not directly associated with milling yield [14–18]. Simmons and
Meredith attributed the difference in TWT to bran surface roughness, distribution of kernel
size, shape, volume, and kernel density [19]. Troccoli and di Fonzo found that kernel shape
such as rectangular aspect ratio (kernel width/kernel length) and circularity shape factor
(4π × area/perimeter2) were positively related to TWT [20]. More recently, Wang and Fu
reported that durum wheat with a high proportion of SK could exhibit TWT comparable
to the wheat samples of larger kernel size but exhibited much lower milling yields [5].
The relationship appears to be genotype dependent. The great variation in TWT of the SK
fraction could likely be attributable to large differences in kernel shape and packing density.
Due to the potential strong impact of genotype, TWT can vary widely for small-sized
kernels. Therefore, TWT may not be reliable as a direct indicator of the milling potential of
durum wheat when SK is predominantly present. It is critical to monitor the KSD when a
larger proportion of SK is present. Wang and Fu (2020) demonstrated that by accounting
for the difference in KSD, greater relationships were found for TKW (R2 > 0.91, p < 0.001) or
the proportion of kernels passing the no.6 slotted sieve with milling yields than TWT alone
(R2 = 0.75, p < 0.001) by studying 21 wheat composites of four major CWAD varieties [5].

3.2. Influence of Kernel Size and Genotype on Milling Quality of Durum Wheat

From Table 2, a significant impact of kernel size, genotype and their interactions was
found on durum milling performance (semolina and total milling yields and semolina
ash content). Based on the ANOVA test, more than 80% of variation in milling yields
was attributed to kernel size alone, with a greater impact of kernel size being noted for
semolina yield than total milling yield (F value: 13177.7 vs. 7392.8). Figure 2 demonstrates
the semolina and total milling yields in relation to TKW and TWT as affected by kernel size.
Regardless of genotype selected, decrease of kernel size significantly reduced semolina and
total milling yields. A drastic reduction of milling yields was evident for kernels passing
no.6 slotted sieve (Table 3). On average, LK (68.0 ± 0.9%) had 1.3% higher SY than MK
(66.7 ± 0.7%), and the latter was about 3.1% higher in SY than that of SK (63.6 ± 0.7%).
Kernel size is clearly a better indicator of average milling yields for SK than the TWT
(Figure 2). For LK and MK; however, both TWT and TKW provided strong indication
of average milling quality. A similar adverse effect of SK on durum milling quality was
reported by Wang and Fu (2020) and Dexter et al. (2007) by examining durum composites
with a wide variation in kernel sizes [4,5].

From Figure 2, considering the response of genotype to the relationship between
kernel size and milling quality, genotypes A and B appeared to be more susceptible to
kernel size variations showing a greater decrease (~4.9%) in semolina yield from 68.9 to
64.0% than those of the inferior ones (e.g., G) from 66.2 to 62.9% (vs. 3.3%). A similar trend
was found for total milling yield (3.5% vs. 2.7%). There were significant differences in
semolina and total milling yields among the genotypes at all three kernel size fractions
(Figure 2a,b). The difference in milling yields was greater for LK (2.7%) than MK (1.8%)
and SK (1.3%) among the selected genotypes (Table 3).

When comparing milling quality of all kernel size fractions (Figure 2), semolina and
total milling yields of MK segregated from genotypes with superior milling quality (A
and C) were comparable or superior to the LK from genotypes of inferior or moderate
milling quality (E, F, and G) despite the TKW of those MK (34.8 to 37.0 g) being significantly
lower than LK counterparts (48.3 to 52.8 g). In addition, LK from genotypes with inferior
milling quality showed lower milling yields. SK exhibited inferior milling quality to both
MK and LK regardless of the genotypes selected (Table 3). SK is very detrimental to the
overall milling quality but usually represents only a small proportion in commercial durum
shipments. Analysis of variance by excluding SK revealed that genotype accounted for
52.0% of variation in semolina yield, followed by kernel size of 44.3% and their interaction
of 3.4%. These results strongly suggest that the intrinsic kernel properties could play an
important role in determining the milling quality of durum wheat. Selection of genotypes
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with superior milling quality could compensate the negative impact of SK which is usually
present in higher percentage in dry and hot growing seasons. When a large proportion
of small kernels was present; however, milling quality could be poor regardless of the
genotypes selected.
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In addition to the milling yields, ash content is an important part of overall milling
quality. The ash contents of wheat and semolina increased with the decrease of kernel
size (Table 3). Coupled with the lower semolina yield of SK, its high semolina ash could
further decrease the wheat milling potential when a constant degree of semolina refinement
is required.

Milling quality of durum wheat is a complicated trait [10]. From Figure 2, a coopera-
tive effect between kernel size and genotype on durum milling quality was evident when
considering both MK and LK. The average milling yields of SK were lower and the impact
of genotype was much less (Table 3). While the impact of some common kernel physical
parameters (e.g., vitreousness, TWT, and KSD) on milling quality has been extensively
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investigated, the work on the intrinsic properties that contribute to varietal differences in
milling quality of durum wheat are scarce [19,21–24]. Both kernel morphological parame-
ters (e.g., length, width, thickness, size, shape, etc.) and kernel physical properties (e.g.,
hardness, vitreousness, TWT) could affect milling quality. Simmons and Meredith (1979)
summarized three major factors that contribute to the difference in milling quality: the
amount of endosperm contained in the grain (endosperm-to-bran ratio); the separability of
the endosperm from the aleurone and bran layers (structure dissociates on fracture and
milling); and endosperm hardness, which determines how the kernel fragments during
the milling process [19]. Novaro et al. (2001) reported ellipsoidal volume was the best
predictor of semolina yield among other grain morphological parameters evaluated [25].
Haraszi et al. found that the rheological phenotype phases of an average crush response
profile obtained from a single kernel characterization system provided good predictions of
the laboratory milling potential of durum wheats [26].

Due to the relatively large kernel size of the original unsorted samples (Table 1) and the
similar TKW of the segregated kernel fractions (Table 3), the varietal differences in milling
quality among selected genotypes could be attributed to their intrinsic kernel properties.
Information on hardness, endosperm-to-bran ratio, and kernel fracture behavior could
shed some light on the genotypic variation in milling quality. A study is currently being
conducted in our laboratory to investigate the underlying factors, which could affect the
milling quality of durum genotypes with a similar size of wheat kernels.

3.3. Influence of Kernel Size and Genotype on Semolina and Pasta Color Parameters

Both genotype and kernel size significantly affected semolina TYP (Table 2). Figure 3
presents the semolina TYP of three kernel size fractions segregated from the selected
genotypes. The decrease of kernel size led to significant increase in semolina TYP for all
genotypes. Alvarez et al. (1999) reported a similar negative relationship between kernel
weight and yellow pigment concentration [27]. A greater difference in TYP was shown
between MK and LK (1.0–1.6 ppm) than between small and medium ones (0.2–0.9 ppm).
The degree of increase in semolina TYP as shown in Figure 3 was comparable to the level
previously reported by Wang and Fu, who found that semolina TYP of SK was about
1.5 ppm higher than that of LK segregated from a bulk CWAD cargo composite [5]. Large
genetic variations in semolina TYP from 2.3 to 3.0 ppm were noted for the genotypes used
in this study across three different kernel sizes.
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The colour of semolina and pasta made from the size fractions are summarized in
Figure 4. Brightness and redness of semolina were greatly influenced by kernel size,
while the genotype had a large impact on semolina yellowness (Table 2). In general,
semolina prepared from MK and LK was much brighter (Figure 4a) and less dull (Figure 4c)
compared to that prepared from SK. Much greater variation in brightness and redness was
also shown for SK fractions than MK and LK ones (Figure 2 and Table 3).

With the decrease of kernel size from LK to MK, significant increases in semolina TYP
and yellowness were shown (Figure 4e). However, except for genotypes D and G, reduction
of kernel size from MK to SK did not lead to further increase in semolina yellowness despite
the TYP being significantly higher in SK. The drastic decrease in semolina brightness and
increase in redness for small kernels might mask semolina yellowness.

Table 2 showed a large impact of kernel size on pasta color. The decrease in kernel
size led to a significant reduction in pasta brightness (Figure 4b) and an increase in pasta
redness (Figure 4d). Superior yellowness was seen for pasta prepared from medium and
large kernel fractions. However, a drastic decrease in pasta yellowness of about 7 units was
noticed for SK despite its semolina TYP being significantly higher (Figure 4f). By plotting
semolina yellowness against TYP for three different kernel size fractions of the selected
genotypes, it was shown that semolina b* linearly increased about 1.2 units with each ppm
increase in TYP (Figure 5a). The degree of increase in semolina yellowness in relation to
TYP was similar for all three size fractions. For a given TYP, however, semolina prepared
from LK and MK consistently showed superior yellowness than that of SK, inferring the
negative impact of SK on semolina yellowness. This negative impact was much more
profound for pasta yellowness (Figure 5b). As far as SK fraction is concerned, the increase
in semolina TYP resulted in little increase in pasta yellowness. This is in contrast to the MK
and LK fractions evaluated in this study.

Pasta brightness and yellowness decrease with the increase of semolina ash con-
tent [28,29]. Although SK have lower semolina and total milling yields, the higher ash
content suggests inclusion of a greater proportion of external tissues, which could lead to
pasta browning due to high enzymatic activities [28]. Maillard reaction between amino
acid and reducing sugars could lead to the undesirable reddish color of pasta dried at
high temperature [30,31]. Although the protein content was not significantly higher for SK
as compared with MK and LK, pasta prepared from SK was much redder (6.2–7.3 in a*)
than that made from LK (2.7–3.7 in a*), suggesting other underlying factors such as amino
acid composition or reducing sugar content may favor the development of the reddish
coloration of pasta prepared from small kernels. Joubert et al. revisited the role of particle
size, ash, and protein on pasta color and viscoelasticity [32]. By combining the milling
fractions of five durum wheat patches, a series of formulated mixes of semolina/flour were
prepared so that the effect of protein, ash, and particle size distribution (PSD) could be
evaluated in an unbiased manner. The authors found that pasta brightness and yellowness
decreased while redness increased with the increase of semolina ash content regardless
of protein content and PSD. The authors attributed the increase in pasta redness to the
elevation of reducing sugars accompanied by the high ash content in the semolina. A sig-
nificant correlation was found between the ash content and total arabinoxylans in semolina,
which were known to concentrate in the outer layers of the grain [33]. The extrusion
process can significantly increase the reducing sugars due to shearing stress [34]. It is likely
that the SK contains a high level of arabinoxylan, which could result in a high level of
reducing sugar during extrusion and increase the potential of Maillard reactions [32]. The
elevated redness/brownness and decrease in pasta brightness could subsequently mask
pasta yellowness. Wang and Fu proposed that the drastic elevation in pasta redness due to
the Maillard reaction under high-temperature (85 ◦C) drying conditions could adversely
impact pasta yellowness regardless of the level of TYP [5].
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Figure 4. Impact of genotype and kernel size on semolina (a,c,e) and pasta color (b,d,f).
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4. Conclusions

By segregating durum samples of selected genotypes into three kernel size fractions,
the impact and relative importance of kernel size, genotype, and their interaction on
major quality parameters were characterized in this study. For LK and MK fractions, TWT
and kernel size are closely related. However, a greater influence of genotype on TWT
of SK was evident. Regardless of the genotype, the SK fraction is detrimental to durum
milling performance as shown by low semolina yield, high semolina ash content, and
poor semolina color. The degree of impact of genotype on the durum milling performance
appears to be related to kernel size. A greater impact was shown for LK than MK and SK,
based on seven genotypes evaluated in this study. When the SK fraction is excluded, the
genotype or intrinsic property of the durum kernel played an important role in contributing
to overall milling quality. Genotype is a dominant factor in determining semolina TYP
and yellowness despite TYP increases with the decrease of kernel size. Semolina and
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pasta prepared from MK and LK fractions were much brighter and less dull than those
made from SK. Regardless of the genotype, the SK fraction exerted a strong detrimental
effect on pasta yellowness, despite the higher level of TYP in SK. To meet the milling
and end-product quality expectation of domestic and international durum buyers, it is
critical to monitor the presence of SK (through a no.6 slotted sieve) in commercial durum
samples, particularly in hot and dry growing seasons. More research is needed to confirm
the potential interactions between genotype and kernel size and their effects on durum
quality by using wheat samples from various genotypes and different growing conditions.
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