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Abstract: In this study, we propose an integrated econometric framework incorporating the difference-
in-differences model, the propensity-score-matching difference-in-differences model, and the spatial
difference-in-differences model to explore the effect of the Air Pollution Prevention and Control
Action Plan on per capita carbon emission in China at the national, regional, and administrative
levels. Contradictory results are supported under different econometric models, which highlight
the importance and necessity of comprehensive analysis. Taking 285 prefecture-level and above
cities as an example, the empirical results show that APPCAP has effectively reduced per capita
carbon emission in China at the national level without the consideration of the spatial spillover effect.
However, with the consideration of the spatial spillover effect, APPCAP has effectively and directly
increased per capita carbon emission in local pilot cities at the national level, and reduced it among
pilot cities via the spatial spillover effect, but the effects have become invalid in the non-pilot cities
neighboring the pilot cities. Furthermore, the spatial heterogeneity of the effects of APPCAP on per
capita carbon emission are supported at the regional and administrative levels. Finally, some specific
policy implications are provided for achieving the “win-win” situation of energy saving, emission
reduction, and economic development.

Keywords: carbon emission reduction; Air Pollution Prevention and Control Action Plan; parallel
trend test; placebo test; spatial difference-in-differences model

1. Introduction

In the 21st century, accompanied by the excessive consumption of fossil energies and
the ecological deterioration of air quality, the conflict between economic development and
environmental protection has become a bottleneck for China’s sustainable development,
that is, the extensive and high-speed economic development mode has lost its momentum
and should be converted to high-quality development in the new era [1]. In addition,
the severe shock of COVID-19 has worsened the international economic and investment
environment, that is, the dual pressures—domestic and from overseas—also called for
the transformation of development from extensive to intensive [2]. Thus, balancing the
relationship between ecological civilization and steady economic development has become
a great challenge for the Chinese government [3].

Specifically, to abate the severe air pollution and promote green development, the
State Council of China released the Air Pollution Prevention and Control Action Plan
(i.e., APPCAP) on 10 September 2013 [4]. Considered as the first comprehensive plan
to control air pollution in China, the APPCAP contains a series of stringent measures,
including discharge standards, monitoring plans, and accountability systems [5]. Since
its implementation, the APPCAP in China has gained enough attention in academia, and
a basic consensus has been reached on its effectiveness in improving air quality, which
provides a valuable insight into the pollution abatement effect of it, while few studies have
paid attention to how this policy affects carbon emission [6].
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The rapid growth of carbon emissions has led to global climate change, which forms
an enormous challenge to human sustainable development [7]. Against this background,
in order to shoulder the international responsibility and promote the construction of “A
Community of Shared Future for Mankind”, Chinese president Xi Jinping put forward the
program of “reaching carbon dioxide emissions peak before 2030 and achieving carbon
neutrality before 2060” at the 75th United Nations General Assembly on 22 September
2020 [8]. Then, China constructed a national carbon online trading market on 16 July
2021, which will play a vital role in China’s energy saving and emission reduction strategy.
Thus, learning from the past by exploring the effect of APPCAP on carbon emission is
of great significance to academia and practice. However, the spatial spillover effect and
spatial heterogeneity are often ignored in the empirical analysis of policy evaluation, which
delivers another research gap for this study [9].

Therefore, the main contributions of this study lie in three aspects. Firstly, an integrated
econometric framework incorporating the difference-in-differences (i.e., DID) model [10],
the propensity-score-matching difference-in-differences (i.e., PSM-DID) model [11], and
the spatial difference-in-differences (i.e., SDID) model [12] is proposed to explore the effect
of APPCAP on per capita carbon emission in China, which can provide more specific
policy recommendations for reducing carbon emissions. Secondly, to gain a deep insight
into the spatial heterogeneity, this study divided the full sample into subgroups at the
regional and administrative levels, which is conducive to improving the significance in
practice [13]. Finally, as a typical emerging country, the effect of APPCAP on per capita
carbon emission in China can provide an instructive policy reference for other developing
counties in similar situations in terms of transforming their economic development mode
from extensive to intensive.

The rest of this study is constructed as follows. Section 2 provides the policy back-
ground of the APPCAP. Section 3 introduces the methodology, including variables’ selec-
tion, data sources, and econometric models. Section 4 reports the estimation results of
the DID, PSM-DID, and SDID models, as well as the parallel trend test and the placebo
test. Section 5 discusses the spatial heterogeneity at the regional and administrative level.
Section 6 concludes this study and provides policy implications.

2. Policy Background of the APPCAP

To alleviate the health risks and economic losses caused by severe air pollution, the
Chinese central government has implemented a series of air pollution prevention and
control policies, such as the 11th Five-Year Plan on Environmental Protection (2006–2010),
the Energy Conservation and Emissions Reduction policy during the 11th Five-Year Plan,
the 12th Five-Year Plan on Environmental Protection (2011–2015), the 12th Five-Year Plan
on Energy Conservation and Emissions Reduction, the 12th Five-Year Plan on Air Pollution
Prevention and Control in Key Regions, and the 12th Five-Year Plan on Air Pollution
Prevention and Control [14].

In particular, the goals of air pollutant concentration control were initially proposed in
the 12th Five-Year Plan on Air Pollution Prevention and Control in Key Regions issued on
29 October 2012, and strengthened in the 12th Five-Year Plan on Air Pollution Prevention
and Control Action Plan issued on 10 September 2013 [15,16]. As the first comprehensive
plan for air pollution prevention and control, APPCAP comprises a series of detailed
contents, including ten key actions and 35 concrete measures, detailed assessment plans
and clear accountability models for local governments, and substantial measures and
supporting policies [5].

As a milestone for air quality control in China, APPCAP achieved great success in
PM2.5 (fine particulate matter with a diameter less than 2.5 µm) and PM10 (inhalable
particles with a diameter less than 10 µm) concentration reductions during the first five
years [4,17]. For instance, five years after the peak in 2013, the annual average concen-
trations of PM2.5 decreased by 39%, 34%, and 26% in the Beijing–Tianjin–Hebei Region,
the Yangtze River Delta Region, and the Pearl River Delta Region, respectively [5]. Corre-
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spondingly, the annual average concentrations of PM10 in those three regions decreased by
19%, 28%, and 22%, respectively [5].

Since carbon emission plays a vital role in China’s battle against air pollution, the air
pollution policies during 11th Five-Year Plan mainly focused on total emission reduction,
and this trend was basically extended during 12th Five-Year Plan [14]. The implementation
of APPCAP indicates that the goals of air pollution control began to focus on the environ-
mental quality, while the success of this policy for air pollution control has been confirmed
by many studies [15–18]. Therefore, considering the inertia of the emission control-oriented
policy, the questions as to whether and how APPCAP affects carbon emission still deserve
in-depth research against the background of carbon peak and carbon neutralization.

3. Methodology
3.1. Variables Selection
3.1.1. Dependent Variable

Referring to the study of Chen et al. (2020) [19], this study first calculated provin-
cial CO2 emissions based on the provincial energy balance tables and established the
relationship between provincial CO2 emissions and nighttime light data (i.e., the sum
of the Digital Number (i.e., DN) values from the Defense Meteorological Satellite Pro-
gram/Operational Linescan System (i.e., DMSP/OLS) data and the National Polar-orbiting
Partnership/Visible Infrared Imaging Radiometer Suite (i.e., NPP/VIIRS) data; then, the
sum of the DN values was employed as a proxy to estimate the prefecture-level carbon
emissions. Finally, to alleviate the influence of population flow and growth, this study
adopted per capita carbon emission as the proxy of dependent variable.

In particular, based on the methods in the 2006 Guidelines for National Greenhouse
Gas Inventories provided by the Intergovernmental Panel on Climate Change (i.e., IPCC),
provincial CO2 emissions could be calculated by the following formula [19]:

CO2 =
4

∑
i=1

Eit × NCVi × CEFi × COFi × (44/12) (1)

where i = 1, 2, 3, 4 represent coal, oil, natural gas, and non-fossil fuels, respectively. Eit
denotes the ith type of energy consumption, NCVi denotes the average low calorific value
of the ith energy source, CEFi denotes the carbon content of the ith energy source, COFi
denotes the carbon oxidation factor of the ith energy source, and 44 and 12 denote the
relative atomic mass of carbon dioxide and carbon, respectively.

3.1.2. Key Explanatory Variables

Two dummy indicators, such as post and treat, were employed to act as the proxy
of key explanatory variables, and their interaction term (i.e., treat × post) is employed to
act as the proxy of APPCAP. Post is the time dummy variable, which equals 1 after 2013,
and 0 otherwise. Treat is the city dummy variable, which equals 1 when the city i is in the
treatment group, and 0 otherwise.

3.1.3. Control Variables

In addition to key explanatory variables, several control variables were introduced
into this study to capture the influences of other factors on carbon emission in China. The
control variables included fiscal decentralization (FD, defined by the proportion of financial
expenditure to financial revenue), industrial upgrading (IU, defined by the proportion of
the added value of the tertiary industry to the secondary industry), urbanization rate (UR,
defined by the proportion of non-farm population to city’s total population), and foreign
direct investment (FDI, defined by the proportion of foreign direct investment to GDP),
which were employed by referring to the studies of [9,10,13], etc.
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3.2. Data Sources

In 2018, China promulgated an updated version of APPCAP, that is, the Three Year
Action Plan to Beat Air Pollution, which aims to further strengthen the joint prevention
and control of air pollution [16]. Thus, to eliminate the effect of the Three Year Action
Plan to Beat Air Pollution, the sample of this study included 285 prefecture-level and
above cities in China from 2007 to 2017, excluding the cities dismantled and established
during the research period, and the cities with severe data loss and inaccessibility. In
addition, the interpolation method was employed to supplement the missing values
of individual cities. In particular, 47 prefecture-level and above cities in the Beijing–
Tianjin–Hebei Region, the Yangtze River Delta Region, the Pearl River Delta Region,
and the Fen-Wei Plain were set as the treatment group, and another 238 prefecture-level
and above cities were set as the control group [20]. As for the data sources, several
channels were adopted in this study. For instance, the provincial data of energy use were
derived from the China Energy Statistics Yearbook; the nighttime light brightness data
of DMSP/OLS and NPP/VIIRS were derived from the corresponding websites of http:
//ngdc.noaa.gov/eog/dmsp/downloadV4composites.html and https://www.ngdc.noaa.
gov/eog/viirs/download_dnb_composites.html, respectively (accessed on 21 November
2020); the list of APPCAP were collected from the 12th Five-Year Plan on Air Pollution
Prevention and Control in Key Regions; while the socioeconomic data of control variables
were derived from the China City Statistical Yearbook. The statistical description of the
whole sample is reported in Table 1.

Table 1. Statistical description.

Variables Observations Mean S.D. Min Max

CO2 3135 27.606 30.193 1.875 405.582
Post 3135 0.545 0.498 0.000 1.000
Treat 3135 0.165 0.371 0.000 1.000
FD 3135 2.353 2.063 0.000 43.844
IU 3135 0.869 0.481 0.094 5.340
UR 3135 0.597 0.255 0.046 1.000
FDI 3135 0.021 0.030 0.000 0.775

3.3. Econometric Models

One important observation is that APPCAP caused a difference between the treatment
group and the control group. Another is that APPCAP created a difference between the
treatment group before and after its implementation. Thus, APPCAP could be treated
as a quasi-natural experiment, and the difference-in-differences (i.e., DID) model could
effectively identify the effect of it on per capita carbon emission in China [10]. Therefore,
the benchmark DID model was defined as:

Yit = β0 + β1 × treati × postt + β2 × controlit + µi + λt + εit (2)

where Yit denotes the per capita carbon emission of city i in year t, treati denotes the city
dummy variable, postt denotes the time dummy variable, controlit denote a vector of control
variables, β0 denotes the constant term, β1 denotes the policy coefficient, β2 denotes the
coefficients of control variables, µi denotes the city fixed effect, λt denotes time fixed effect,
εit denotes the random interference term.

To reduce the differences between the treatment group and the control group, this
study also employed the propensity-score-matching difference-in-differences (i.e., PSM-
DID) method to test the effect of APPCAP on carbon emission in China [11]. In particular,
the propensity-score-matching (i.e., PSM) radius matching method was employed to
estimate the propensity scores, the dependent variable was per capita carbon emission, and
the control variables formed the covariate of PSM. After PSM matching, the anomalous
samples were deleted, that is, there was no significant systematic difference between the

http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
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treatment group and the control group, and thus, the differences in per capita carbon
emission could only be caused by APPCAP.

To simultaneously investigate the direct and indirect effects of APPCAP on per capita
carbon emission in China, this study also employed the spatial difference-in-differences
(i.e., SDID) model by referring to the research of Chagas et al. (2016) [12]. Specifically, the
SDID model is constructed as follows:

Yit = β0 + β1 × treati × postt + β2 × controlit + γ1 × WT,T Dit + γ2 × WNT,T Dit
+γ3 × W × controlit + µi + λt + εit

(3)

where WT,TDit denotes the spatial spillover effects on the pilot cities, WNT,TDit denotes the
spatial spillover effects on the non-pilot samples neighboring the pilot cities, W denotes the
squared inverse distance weight matrix [9]. γ1, γ2, and γ3 denote the spatial coefficients
of WT,TDit, WNT,TDit, and W × controlit, respectively. Other parameters are defined as
described in Equation (2).

4. Empirical Results and Analysis
4.1. Parallel Trend Test

Before regression, the key identification assumption of the DID model was that the
carbon emission in non-pilot cities provide effective counterfactual changes to the carbon
emission in pilot cities. However, a potential challenge of the above-mentioned assumption
is the variability between the pilot and non-pilot cities driven by pre-existing time trends.
Thus, to alleviate this concern, two diagnostic tests were employed to verify that this
assumption was not violated, that is, before the implementation of the APPCAP, the per
capita carbon emission of each pilot city should have maintained a relatively steady trend
of change.

In the first diagnostic test, following the method of Hu et al. (2020) [21], the yearly
changes in the mean values of per capita carbon emission between pilot cities and non-pilot
cities were observed. As shown in Figure 1, before 2013, the pilot cities and non-pilot cities
had similar time trends in terms of per capita carbon emission, while this trend changed
after 2013 following the implementation of the APPCAP pilot policy.
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In the second diagnostic test, following the method of Feng et al. (2021) [10], we
constructed a series of time dummy variables to capture the dynamic effect of APPCAP on
per capita carbon emission. If the pilot cities and non-pilot cities had similar time trends
before 2013, the coefficients of treat × year were expected to be statistically insignificant. In
particular, we constructed the following regression:

Yit = β0 +
2017

∑
t=2007

βt × treati × yeart + β2 × controlit + µi + λt + εit (4)

where yeart denotes a series of time dummy variables, and other parameters are also
defined as described in Equation (2). As shown in Figure 2, the coefficients of treat × year
were statistically insignificant before 2013, and became significantly negative from 2013
onwards; thus, there was no systematic difference found between pilot cities and non-pilot
cities in the absence of the APPCAP pilot policy. Therefore, the parallel trend assumption
was satisfied, and the DID approach was found to be suitable for this study.
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4.2. Placebo Test

To alleviate the concern of other unknown factors on the selection of pilot cities, we
performed the placebo test by randomly selecting several virtual treatment groups to esti-
mate the benchmark DID model, and to ensure that the conclusion of this study was caused
by the implementation of APPCAP [18]. In particular, random sampling was performed
1000 times among full samples, with 47 prefecture-level and above cities randomly selected
as the treatment group, while the other 238 prefecture-level and above cities were selected
as the control group; the kernel density distribution is illustrated in Figure 3. In particular,
the x-axis represents the policy coefficient’s t-value of treat × year, and the y-axis represents
the corresponding p-value. As can be seen from Figure 3, almost all the absolute t-values of
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the randomly sampling estimation coefficients were less than 2 and their corresponding
p-values were greater than 0.1, which indicates that the unobserved factors had a negligible
impact on the estimation results; thus, the placebo test was also not violated.
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4.3. Estimation Results of the DID Model

Based on Equation (2), this study adopted the DID model with a time fixed effect
to explore the effect of APPCAP on per capita carbon emission in China; the parameter
estimation results are reported in column (2) of Table 2, and the estimation results in
column (1) are selected as a comparison without any control variables. It can be seen
that the coefficients of the key explanatory variable treat × post are significantly negative
in columns (1) and (2), indicating that the implementation of APPCAP reduced the per
capita carbon emission in China, and this was found to be the case with or without the
consideration of control variables. The reason for this may be that APPCAP was able
to promote the green transformation by optimizing the energy structure, thus limiting
high-pollution industrial activity and reducing per capita carbon emissions simultaneously.

For the control variables, UR and FDI were found to be positively correlated to per
capita carbon emission at the significance levels of 1% and 5%, respectively. This finding
shows that the process of urbanization and the inflow of FDI can inevitably increase per
capita carbon emission, which, to some extent, verifies the “Pollution Heaven Hypothesis”
of China, that is, enterprises in pollution-intensive industries tend to transfer into the coun-
tries or regions with relatively low environmental standards. FD and IU were positively
correlated to per capita carbon emission but at an insignificant level. This shows that fiscal
decentralization and industrial upgrading played an invalid role in terms of affecting per
capita carbon emission, which highlights the complexity and difficulty of carbon emis-
sion reduction. On one hand, the improvement in production efficiency caused by fiscal
decentralization and industrial upgrading may lead to a reduction in per capita carbon
emission. On the other hand, the rise in production scale caused by fiscal decentralization
and industrial upgrading may lead to the energy rebound effect and ultimately cause an
increase in per capita carbon emission. Thus, the insignificant coefficients of FD and IU
indicate that those two powers are even-handed.
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Table 2. Parameter estimation results of the DID model.

Variables
DID

(1) (2)

post × treat −3.886 *** −3.649 ***
(−5.444) (−5.175)

FD 0.083
(0.810)

IU 0.138
(0.215)

UR 11.474 ***
(11.026)

FDI 14.363 **
(2.457)

Constant 22.360 *** 17.738 ***
(51.109) (21.722)

Observations 3135 3135
R-squared 0.142 0.178

Note: t statistics in parentheses; *** p < 0.01, ** p < 0.05.

4.4. Estimation Results of the PSM-DID Model

To ensure the robustness of DID analysis results, this study employed the PSM-DID
model to re-investigate the effect of APPCAP on per capita carbon emission in China. The
validity test results for tendency score matching are reported in Table 3. It can be found
that all the variables were not significant at the level of 10% after PSM, that is, the null
hypothesis of no significant difference between the treatment group and the control group
was accepted, and PSM-DID was effective. In addition, as shown in Figure 4, the covariate
standardization bias test indicated that only a small amount of the samples failed to match,
which also to some extent supported the effectiveness the PSM-DID model.

Table 3. Validity test results for tendency score matching.

Variables
Unmatched Mean %Reduct t-Test

V(T)/V(C)
Matched Treated Control %bias |bias| t p > |t|

FD U 1.32 2.46 −73.50 −8.92 0.00 0.05 *
M 1.32 1.32 0.10 99.90 0.03 0.98 0.94

IU U 1.12 0.84 53.30 9.31 0.00 1.48 *
M 1.07 1.06 2.20 95.80 0.24 0.81 0.37 *

UR U 0.70 0.59 47.20 7.17 0.00 0.76 *
M 0.70 0.70 −1.90 96.10 −0.23 0.82 0.86

FDI U 0.03 0.02 33.00 6.32 0.00 2.15 *
M 0.03 0.03 −5.20 84.30 −0.88 0.38 0.60 *

Note: z-statistics in parentheses; * p < 0.1.

The parameter estimation results of the PSM-DID model are reported in column (2)
of Table 4, and the estimation results in column (1) are selected as a comparison without
any control variables. It is indicated that all the coefficients did not change significantly
after PSM, and this was found to be the case with or without the consideration of control
variables. Therefore, APPCAP indeed reduced per capita carbon emission, that is, the
results of this study have high-level robustness.
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Table 4. Parameter estimation results of the PSM-DID model.

Variables
PSM-DID

(1) (2)

post × treat −3.794 *** −3.467 ***
(−6.430) (−5.940)

FD 0.219
(0.855)

IU 0.105
(0.136)

UR 11.576 ***
(8.443)

FDI 18.234 **
(2.083)

Constant 28.419 *** 20.481 ***
(200.755) (16.213)

Observations 3015 3015
R-squared 0.946 0.948

Note: t statistics in parentheses; *** p < 0.01, ** p < 0.05.

4.5. Estimation Results of the SDID Model

Based on the Equation (3), this study explored the direct and indirect effects of AP-
PCAP on per capita carbon emission in China by adopting the SDID model under the
squared inverse distance weight matrix; the corresponding results are reported in column
(2) of Table 5, and the estimation results in column (1) are selected as a comparison without
any control variables. It can be found that the direct coefficients of treat × post are signifi-
cantly positive, the spatial coefficients of WT,TD are significantly negative, and the spatial
coefficients of WNT,TD are positive but insignificant in columns (1) and (2), indicating that
the implementation of APPCAP increased per capita carbon emission in local pilot cities,
but reduced per capita carbon emission among pilot cities via the spatial spillover effect,
while the spatial spillover effect on reducing per capita carbon emission was not supported
in the non-pilot cities neighboring the pilot cities. Thus, in contrast to the non-spatial DID
and PSM-DID models, the SDID model effectively identified the channel of APPCAP in
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reducing per capita carbon emission from the spatial spillover effect among the pilot cities,
which highlights the advancement and innovation of this study.

Table 5. Parameter estimation results of the SDID model.

Variables
SDID

(1) (2)

post × treat 6.404 *** 6.367 ***
(12.451) (12.437)

WT,TD −5.753 *** −6.083 ***
(−8.371) (−8.822)

WNT,TD 0.332 0.018
(0.588) (0.033)

Control variables No Yes
Observations 3135 3135

R-squared 0.541 0.548
Note: t statistics in parentheses; *** p < 0.01.

5. Heterogeneous Analysis
5.1. Regional Heterogeneity Analysis

Referring to the geographical division standard announced by the Chinese National
Bureau of Statistics (CNBS), this study divided the full sample into three regions, namely the
eastern region, the central region, and the western region. Then, considering the advantage
of the SDID model in identifying the spatial spillover effect, this study employed it to
conduct the estimation at the regional level; the corresponding results are reported in
columns (2), (4), and (6) of Table 6, and the estimation results in columns (1), (3), and (5)
are selected as a comparison without any control variables. It can be found that the direct
coefficients of treat × post are significantly positive in columns (1)–(6), the spatial coefficients
of WT,TD are significantly negative in columns (1), (2), (5), and (6), but insignificant in
columns (3) and (4), and the spatial coefficients of WNT,TD are significantly positive in
columns (5) and (6), but insignificant in columns (1)–(4), indicating that the implementation
of APPCAP also increased per capita carbon emission in local pilot cities at the regional
level, but merely reduced per capita carbon emission among pilot cities via the spatial
spillover effect in the eastern and western regions, and increased per capita carbon emission
in the non-pilot cities neighboring the pilot cities of the western region. After all, most of
the pilot cities are located in the eastern region; thus, the estimation results, to some extent,
verified the rationalization of the regional analysis. Meanwhile, the spatial heterogeneity
of APPCAP affecting per capita carbon emission is supported at the regional level.

Table 6. Regional heterogeneity results of the SDID model.

Variables
Eastern Central Western

(1) (2) (3) (4) (5) (6)

post × treat 4.420 *** 3.992 *** 6.155 ** 5.295 * 10.308 *** 10.076 ***
(5.141) (4.605) (2.024) (1.744) (13.431) (13.068)

WT,TD −3.743 *** −3.410 *** 602.672 2014.109 −5.927 *** −6.414 ***
(−3.734) (−3.276) (0.142) (0.474) (−4.146) (−4.375)

WNT,TD −0.780 −1.008 0.021 −0.184 3.435 *** 2.800 ***
(−0.785) (−1.010) (0.017) (−0.149) (4.057) (3.272)

Control
variables No Yes No Yes No Yes

Observations 1111 1111 1199 1199 825 825
R-squared 0.518 0.530 0.563 0.571 0.624 0.634

Note: t statistics in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.
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5.2. Administrative Heterogeneity Analysis

To investigate the heterogeneous effect of APPCAP on per capita carbon emission
at the administrative level, this study divided the full samples into two parts: first- and
second-tier cities and third-tier cities. Specifically, the first- and second-tier cities are the
centrally administrated municipalities, provincial capitals, and sub-provincial cities, while
the third-tier cities are the prefecture-level cities. Then, considering the advantage of the
SDID model in identifying the spatial spillover effect, this study employed it to conduct the
estimation at the administrative level; the corresponding results are reported in columns
(2) and (4) of Table 7, and the estimation results in columns (1) and (3) are selected as a
comparison without any control variables. It can be found that the direct coefficients of
treat × post are significantly positive in columns (1) and (2), and positive but insignificant in
columns (3) and (4), the spatial coefficients of WT,TD are significantly negative in columns
(1) and (2), significantly positive in column (3), and positive but insignificant in column (4),
and the spatial coefficients of the spatial coefficients of WNT,TD are significantly positive
in column (3), negative but insignificant in column (1), and positive but insignificant in
columns (2) and (4), indicating that the implementation of APPCAP not only increased
per capita carbon emission in local pilot cities of the first- and second-tier cities, but also
reduced per capita carbon emission among pilot cities via the spatial spillover effect of
the first- and second-tier cities, while the direct and indirect effects of APPCAP on per
capita carbon emission of the third-tier cities were relatively invalid and unstable. Thus,
the spatial heterogeneity of APPCAP affecting per capita carbon emission is also supported
at the administrative level, and the popularization of extending it in the third-tier cities
still has a great space to improve.

Table 7. Administrative heterogeneity results based on the SDID model.

Variables
First- and Second-Tier Cities Third-Tier Cities

(1) (2) (3) (4)

post × treat 2.913 ** 3.930 *** 1.031 0.957
(2.116) (2.893) (1.169) (1.097)

WT,TD −11.008 *** −9.483 *** 1.784 * 1.235
(−6.976) (−5.815) (1.709) (1.192)

WNT,TD −36.629 1.194 0.870 * 0.519
(−1.528) (0.048) (1.842) (1.105)

Control
variables No Yes No Yes

Observations 385 385 2750 2750
R-squared 0.631 0.666 0.565 0.578

Note: t statistics in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

6. Conclusions and Policy Implications
6.1. Conclusions

In this study, we proposed a comprehensive research framework including the DID,
PSM-DID, and SDID models to explore the effects of APPCAP on per capita carbon emission
in China at the national, regional, and administrative levels. Taking 285 prefecture-level
and above cities from 2007 to 2017 as an example, this study empirically examined the
aforementioned effects and draws the following conclusions.

Firstly, without the consideration of the spatial spillover effect, it was found that
APPCAP effectively reduced per capita carbon emission in China at the national level,
while two control variables including UR and FDI had an opposite effect on it, which, to
some extent, verified the “Pollution Heaven Hypothesis” of China.

Secondly, with the consideration of the spatial spillover effect, it was found that
APPCAP effectively and directly increased per capita carbon emission in local pilot cities
at the national level, and reduced it among pilot cities via the spatial spillover effect, but
became invalid in the non-pilot cities neighboring the pilot cities.
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Thirdly, the effects of the spatial heterogeneity of APPCAP on per capita carbon
emission were supported at the regional and administrative levels, and the effects of
APPCAP in terms of reducing per capita carbon emission in pilot cities were established in
the eastern cities and the first- and second-tier cities via the spatial spillover effect.

6.2. Policy Implications

According to the above-mentioned findings, several policy implications are proposed
as follows.

Firstly, to achieve the win-win of emission reduction and economic development in
China, the traditional development path of “pollution first and control later” should turn
to the sustainable development path of “prioritizing ecological conservation and boosting
green development”, such as eliminating backward production capacity, promoting the
use of renewable energy in the process of urbanization, and improving the threshold and
quality of FDI.

Secondly, to enjoy the bonus of the spatial spillover effect in China, the synergy
between APPCAP and a national carbon trading system should be supported to reduce the
cost of carbon trading and improving carbon trading efficiency. In addition, the cooperation
between the carbon market and environmental policies could enhance the transparency
of various entities to guarantee the fairness of cleaner production and the efficiency of
green innovation.

Thirdly, regional and administrative heterogeneity should be considered when for-
mulating environmental policies, and goals specific to different stages rather than rigid
policy provisions should be formulated to satisfy local conditions and characteristics. In
addition, green transformation should be encouraged for high-pollution and high-emission
enterprises rather than transferred to less developed cities, and more financial funds should
be invested to promote green development.

Although it attempted to investigate the effect of APPCAP on per capita carbon
emission in China by utilizing several econometric models, this study still has some
limitations, which deserve in-depth research in the future. For instance, the dynamic
effect was ignored in the empirical analysis, which, to some extent, limits the practical
significance of this study. Even so, this study attained its original goal and obtained diverse
interesting findings.
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Abbreviations

CO2 Per capita carbon emission
APPCAP Air Pollution Prevention and Control Action Plan
DID Difference-in-differences
PSM-DID Propensity-score-matching difference-in-differences
SDID Spatial difference-in-differences
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DN Digital Number
DMSP/OLS Defense Meteorological Satellite Program/Operational Linescan System
NPP/VIIRS National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer Suite
IPCC Intergovernmental Panel on Climate Change
FD Fiscal decentralization
IU Industrial upgrading
UR Urbanization rate
FDI Foreign direct investment
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