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a b s t r a c t 

The increasing levels of pesticide resistance in agricultural pests and disease vectors represents a threat to both 

food security and global health. As insecticide resistance intensity strengthens and spreads, the likelihood of a pest 

encountering a sub-lethal dose of pesticide dramatically increases. Here, we apply dynamic Bayesian networks 

to a transcriptome time-course generated using sub-lethal pyrethroid exposure on a highly resistant Anophe- 

les coluzzii population. The model accounts for circadian rhythm and ageing effects allowing high confidence 

identification of transcription factors with key roles in pesticide response. The associations generated by this 

model show high concordance with lab-based validation and identifies 44 transcription factors putatively regu- 

lating insecticide-responsive transcripts. We identify six key regulators, with each displaying differing enrichment 

terms, demonstrating the complexity of pesticide response. The considerable overlap of resistance mechanisms in 

agricultural pests and disease vectors strongly suggests that these findings are relevant in a wide variety of pest 

species. 

I

 

v  

c  

(  

h  

d  

p  

i  

h  

o  

t  

t  

p  

t  

2  

i  

i  

m  

t  

o  

f

t  

b

 

v  

c  

T  

(  

s  

2  

b  

l  

c  

t

 

e  

s  

t  

i  

c  

t  

u  

f  

h

R

2

ntroduction 

Insecticides are critical for control of pests in agriculture and disease

ectors in public health. The intensive and widespread use of insecti-

ides in each of these settings has led to extensive insecticide resistance

 WHO 2020 ), which poses a threat to both food security and global

ealth. Vector borne diseases account for more than 17% of all infectious

iseases annually ( WHO 2020 ), whilst around 35% of crops are lost to

re-harvest pests, underlining the importance of pesticide chemistries

n global health and food security ( Popp et al., 2013 ). Malaria control

ighlights the pivotal role of insecticides in global health with over 80%

f the reductions in malaria cases since the turn of the century attributed

o their use ( Bhatt et al., 2015 ). Malaria control relies heavily on the dis-

ribution and use of insecticide treated bed nets (ITNs), which provide

rotection to the user and wider community protection through insec-

icide induced mortality of the adult Anopheles vectors ( Hawley et al.,

003 , Killeen and Smith, 2007 , Killeen et al., 2011 ). All ITNs currently

n use contain the pyrethroid class of insecticide; a fast-acting chem-

stry that induces immediate knockdown and mortality in susceptible

osquitoes. However, strength of resistance to pyrethroids is now such

hat populations of Anopheles can survive exposure with minimal effect

n their life span ( Hughes et al., 2020 ). Surviving sub-lethal exposures
∗ Corresponding author 

E-mail addresses: victoria.ingham@med.uni-heidelberg.de (V.A. Ingham), 

dondelinger.work@gmail.com (F. Dondelinger). 
# Present address Centre for Infectious Diseases, Parasitology, Heidelberg Universit

ttps://doi.org/10.1016/j.cris.2021.100018 

eceived 7 December 2020; Received in revised form 15 June 2021; Accepted 21 Jul

666-5158/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
o pesticides is likely to have large and sustained consequences on the

iology of the pest species. 

Resistance to insecticides both in agricultural pests and disease

ectors have been attributed to three characterised mechanisms;

hanges to the insecticide target site ( Weill et al., 2004 , Martinez-

orres et al., 1998 ), thickening of the cuticle to reduce penetrance

 Balabanidou et al., 2016 ) and metabolic clearance through overexpres-

ion of detoxification protein families ( Müller et al., 2008 , Voice et al.,

015 , Ingham et al., 2018 ). Recently, new resistance mechanisms have

een reported ( Ingham et al., 2018 , Ingham et al., 2019 ) and sub-

ethal exposure has been shown to induce large-scale transcriptomic

hanges, highlighting the complexity of the insects response to insec-

icides ( Ingham et al., 2020 ). 

The demonstration of large-scale changes in transcriptome post-

xposure emphasises the importance of transcriptional control in re-

ponse to insecticide. Despite this, the induction of genes in response

o insecticides is poorly studied and the regulatory processes underly-

ng these mechanisms have remained elusive. In most important pests,

is or trans-acting regulatory elements are yet to be identified, and lit-

le published research has focused on the role of the non-coding reg-

latory machinery. Although recent work has identified transcription

actors involved in insecticide resistance such as two transcriptional
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athways: the Nrf2-cnc pathway in both disease vectors ( Ingham et al.,

017 , Bottino-Rojas et al., 2018 ) and agricultural pests ( Kalsi and

alli, 2015 , Gaddelapati et al., 2018 ) and the ARNT-AhR in agricul-

ural pests ( Peng et al., 2017 , Hu et al., 2019 ), no studies in either set-

ing have examined transcriptional response in a holistic manner. The

vailability of transcriptomic time-series data from resistant Anopheles

oluzzii mosquitoes post-pyrethroid exposure ( Ingham et al., 2020 ) has

rovided a resource to examine the importance of multiple transcription

actors in response to insecticide. 

Elucidating complex gene networks from transcriptomic time course

ata is a fundamental problem in computational systems biology

 Delgado and Gómez-Vela, 2019 , Thompson et al., 2015 , Jackson et al.,

020 ). Time course data enables measurements of mRNA levels post-

erturbation and allows identification of transcripts following simi-

ar expression patters over time. Measuring changes in mRNA levels

cts as a proxy for protein expression, but regulatory relationships

annot be captured by correlation alone, due to the presence of in-

irect regulation (gene A regulates gene B which regulates gene C),

nd post-transcriptional changes. To allow reconstruction of gene reg-

latory networks, dynamic Bayesian networks have successfully been

pplied to real-world time course studies ( Murphy and Mian, 1999 ,

ondelinger et al., 2013 , Dondelinger and Mukherjee, 2019 ), allowing

dentification of key regulatory pathways within a system. These mod-

ls additionally allow correction for confounding factors. For example,

s circadian rhythms can play a significant role in gene expression pat-

erns over short time-scales ( Rund et al., 2011 ), sinusoidal patterns with

4-hour period may be corrected for. 

Here, we apply a modified dynamic Bayesian network method to

hole-organism microarray data taken at ten time-points post exposure

o a pyrethroid insecticide. The method corrects for both circadian pat-

erns and mosquito ageing, which have previously been shown to be

mportant in the insecticide resistance phenotype ( Jones et al., 2012 ,

und et al., 2016 ). The Bayesian network approach allows identifica-

ion of key regulatory factors influencing the expression of transcripts

n response to insecticide exposure. Based on validation experiments,

e estimate that the inferred network has 70% precision, indicating

trong concordance of experimental data to model prediction. The net-

ork is made freely available through a ShinyR application, allowing

on-bioinformaticians to easily access and visualise the data. Several

ranscription factors are highlighted as potential key regulators in re-

ponse to pyrethroid insecticide. This study demonstrates the impor-

ance and complexity of transcriptional control of insecticide response,

hich is likely to have cross species applicability due to relative conser-

ation of transcriptional pathways ( Hsia and McGinnis, 2003 ) and near

otal overlap of resistance mechanisms. 

esults 

dentification of transcription factors involved in insecticide resistance 

Of the transcripts in the Anopheles microarray, approximately 4%

re putative transcription factors, based on FlyMine.org AGAP homologs

f Drosophila transcription factors found on FlyTF.org. As exploration

f all possible transcription factor/transcript associations was not com-

utationally feasible, the number of transcription factors had to be re-

uced to < 50. Of the 559 total transcription factors, 44 were used in

urther analyses ( Table 1 ). These transcription factors were selected

ased on resistance-associated GO term enrichments in transcription

actor-transcript clusters ( Zhang et al., 2018 ) found using a previously

ublished library of microarray data comparing resistant and suscep-

ible Anopheles species across Africa ( Ingham et al., 2018 ). A number

f these transcription factors have known roles in stress response in

rosophila ( Table 1 ) ; however, only Maf-S, Met and Dm have previ-

usly been linked with insecticide response in mosquitoes ( Ingham et al.,

018 , Ingham et al., 2017 ) . Of the transcription factors selected for anal-

sis the following have been studied in mosquitoes: p53 has been shown
2 
o respond to arboviral infection ( Chen et al., 2017 ); Rbsn-5 has been

hown to be involved in egg shell formation ( Amenya et al., 2010 );

(1)sc is linked with sensory tissue development ( Wülbeck and Simp-

on, 2002 ); kaya k is involved in salivary gland response to arboviral in-

ection through JNK pathway activation ( Chowdhury et al., 2020 ); Hnf4

s linked to ecdysone and Met mediated lipid metabolism ( Wang et al.,

017 ); Cyc controls the circadian ryhthm ( Maliti et al., 2016 ); REL1 and

EL2 are involved in immune response ( Luna et al., 2006 ); Kr-h1 is es-

ential for egg development ( Fu et al., 2020 ) and Pan is linked with

hromatin changes upon Plasmodium infection ( Ruiz et al., 2019 ). 

odelling the insecticide response network 

To explore the role of the identified transcription factors in insec-

icide response, a previously generated time course experiment com-

aring pyrethroid exposed and unexposed Anopheles coluzzii was used

 Ingham et al., 2020 ). This dataset was then used to model the gene

egulatory relationships using a dynamic Bayesian network (DBN) ap-

roach ( Dondelinger et al., 2013 ) which infers the regulators of each

ranscript from the set of selected transcription factors using the time-

ourse of log-fold changes compared to the unexposed baseline mea-

urement, correcting for ageing and circadian rhythms. A Markov chain

onte Carlo (MCMC) algorithm was used to draw samples from the

osterior distribution of the network model given the data, and asso-

iations were then ranked between target genes and transcription fac-

ors using the marginal posterior probability of the corresponding edge

defined as a predicted transcription factor – transcript association) in

he network. Since experimental validation of all discovered edges is

rohibitively expensive, an important consideration was how many as-

ociations needed to be tested in order to establish the validity of the

etwork inference approach. A simulation study was performed under

he assumption that the number of genes regulated by each transcription

actor follows a Poisson distribution with parameter 𝜆= 10. We showed

hat under some assumptions (see Materials and Methods) testing 4

egulatory relationships for each of 7 transcription factors has a 70%

hance of obtaining an estimate of the precision that falls within 10%

f the true precision, and a 95% chance of obtaining an estimate that

alls within 20% of the true precision. For 5 transcription factors with

 regulatory relationships, this still gives a 65% chance of an estimate

ithin 10%, and a 90% chance of an estimate within 20% of the true

recision. 

The model was validated using quantitative PCR to confirm the inter-

ctions predicted by the model. Successful dsRNA mediated knock down

as performed on 5 transcription factors, these showed knock down

8-hours post insecticide exposure (Supplementary Figure 1); the single

ime point used for model confirmation (Supplementary Figure 1, Sup-

lementary Table 1). Four transcript interactors were chosen randomly

or each transcription factor based on a posterior probability of > 0.1.

o determine the change in transcript expression post-exposure and to

etermine whether predicted interactors were influenced by the knock

own of the stated transcription factor 2 comparisons were made: (i)

FP-injected exposed vs GFP-injected unexposed and (ii) Exposed tran-

cription factor knockdown compared to exposed GFP-injected for the

wo comparisons respectively (Supplementary Table 1). Of the 16 in-

eractors (4 transcription factors x 4 interactors), 11 demonstrated con-

ordance with the model, showing a substantial change in expression

ue to transcription factor knockdown, indicating 69% model precision

 Figure 2 , Supplementary Table 1). 

etwork Overview 

In order to determine what the optimal cut-off for the marginal pos-

erior probability values should be, a permutation test was performed

hereby the observed log-fold values for one of the 44 transcription fac-

ors are randomly permuted, so that the original time associations were
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Table 1 

List of Transcription Factors included in further analysis. 44 Transcription factors included in the analysis with the dynamic Bayesian model, including 

VectorBase Transcript ID, Drosophila gene name, FBgn identifier, % identity (taken from VectorBase), putative function and network interactor summary KEGG/GO 

enrichment from this study (See S1 Table 1 ). 

Transcript ID Gene Name Homolog % Identity Role in Drosophila Citation Network Enrichment 

AGAP000057-RA shaven (sv) FBgn0005561 34.12 Sensory tissue development Kavaler et al. 1999 

( Kavaler et al., 1999 ) 

None 

AGAP000066-RA Sox102F FBgn0039938 Neuronal development, 

behaviour and Wnt signalling 

Li et al. 2017 ( Li et al., 2017 ) mTOR and ECM-receptor 

interaction 

AGAP000141-RA CG31224 FBgn0051224 17.03 Unknown Nuclear-related 

AGAP000547-RA Rbsn-5 FBgn0261064 42.29 Endosome assembly Morrison et al 2008 

( Morrison et al., 2008 ) 

Polarity, Wingless 

AGAP000646-RA Diminuitive (Dm, 

dMyc) 

FBgn0262656 13.21 Glucose and lipid 

metabolism, development 

Parisi et al. 2013 

( Parisi et al., 2013 ) 

Sugar Metabolism, 

Miscellaneous Metabolism 

AGAP000876-RA achaete-scute 

complex (l(1)sc) 

FBgn0002561 26.42 Neuronal development, 

dopaminergic neurons 

Stagg et al 2011 ( Stagg et al., 

2011 ) 

Cuticle-related, Neuroactive 

ligand-receptor 

AGAP001093-RA kayak (kay) FBgn0001297 30.06 JNK signalling, wound 

healing, neuronal 

development 

Ramet et al. 2002 

( Rämet et al., 2002 ); Miotto 

et al. 2006 ( Miotto et al., 

2006 ) 

RNA/DNA-related Processes 

AGAP001156-RA PSEA-binding 

protein 95kD 

(Pbp95) 

FBgn0037540 13.89 Small nuclear RNA activating 

complex 

Li et al 2004 ( Li et al., 2004 ) Cytochrome P450s, 

Signalling Pathways 

AGAP001388-RA Doublesex-Mab 

related 93B 

(dmrt93B) 

FBgn0038851 41.61 Mouth development Panara et al 2019 

( Panara et al., 2019 ) 

Taste/sense-related, 

Oxidoreductase Activity 

AGAP001786-RA Osa FBgn0261885 36.83 EGFR signalling Terriente-Feliz and de Celis 

2009 ( Terriente-Félix and de 

Celis, 2009 ) 

GSTs 

AGAP001994-RA Brahma associated 

protein 111kD 

(Bap111) 

FBgn0030093 40.1 Chromatin remodelling Papoulas et al. 2001 

( Papoulas et al., 2001 ) 

Miscellaneous Metabolism, 

Cytochrome P450s, COEs 

AGAP002082-RA Squeeze (sqz) FBgn0010768 35.47 Neuronal development Terriente-Feliz et al 2007 

( Félix et al., 2007 ) 

Ligase Activity 

AGAP002155-RA Hepatocyte nuclear 

factor 4 (Hnf4) 

FBgn0004914 52.85 Lipid mobilisation, glucose 

homeostasis and 

mitochondrial function 

Palanker et al. 2009 

( Palanker et al., 2009 ); Barry 

and Thummel 2016 

( Barry and Thummel, 2016 ) 

Glyoxylate Metabolism, 

Transcription Coactivator 

AGAP002352-RB p53 FBgn0039044 14.2 Genotoxic stress response Brodsky et al. 2004 

( Brodsky et al., 2004 ) 

Carbon metabolism 

AGAP002773-RA Stripe (sr) FBgn0003499 Muscle development Lee et al. 1995 ( Lee et al., 

1995 ) 

Steroid biosynthesis 

AGAP002902-RA Medea (Med) FBgn0011655 52.42 Muscle development through 

BMP and dpp Pathways 

Wisotzkey et al. 1998 

( Wisotzkey et al., 1998 ) 

Metabolism-related 

AGAP002920-RA CG17829 FBgn0025635 17.84 Unknown Protein Complex Binding, 

DNA/RNA processes 

AGAP002954-RA Cell division cycle 5 

(Cdc5) 

FBgn0035136 63.63 Spliceosome Herold et al. 2009 

( Herold et al., 2009 ) 

Notch Signalling, Apoptosis 

AGAP003117-RA Capicua (cic) FBgn0262582 19.37 EGFR, Torso and TOLL 

signalling 

Astigarraga et al. 2007 

( Astigarraga et al., 2007 ); 

Papagianni et al.2018 

( Papagianni et al., 2018 ) 

Glycan degradation 

AGAP003449-RA Rootletin (Root) FBgn0039152 46.08 Hearing, touch and taste Chen et al. 2015 ( Chen et al., 

2015 ) 

Steroid Biosynthesis, 

Receptor-related activity, 

Cytochrome P450s 

AGAP003669-RA Drop (Dr) FBgn0000492 61.4 Eye and nerve development Tearle et al. 1994 

( Tearle et al., 1994 ) 

Circadian Pathway 

AGAP004864-RA Protein on ecdysone 

puffs (Pep) 

FBgn0004401 38.87 Hsp70 response through 

hnRNP complex 

Hamann et al. 1998 

( Hamann and 

Strätling, 1998 ) 

Response to xenobiotics 

AGAP004990-RA Multiprotein 

bridging factor 1 

(mbf1) 

FBgn0262732 74.15 Co-activator to induce 

stress-response genes 

Jindra et al. 2004 

( Jindra et al., 2004 ) 

Translation-related Processes 

AGAP005437-RA Inverted repeat 

binding protein 18 

kDa (Irbp18) 

FBgn0036126 Inhibitor of the conserved 

stress response protein 

dATF4/Crc 

Blanco et al 2020 

( Blanco et al., 2020 ) 

Fatty Acid-related 

AGAP005551-RA Rabaptin-5- 

associated exchange 

factor for Rab5 

(Rabex-5) 

FBgn0262937 37.75 Ras pathway homeostasis Yan et al. 2010 ( Yan et al., 

2010 ) 

Apoptosis 

AGAP005641-RA CG9705 FBgn0036661 54.78 Sensory neurons Iyer et al. 2013 ( Iyer et al., 

2013 ) 

Protein Sorting, Response to 

DNA-damage 

AGAP005655-RA Cylce (Cyc) FBgn0023094 35.25 Circadian rhythm Rutila et al. 1998 

( Rutila et al., 1998 ) 

UGTs, Hormone Biosynthesis 

AGAP006022-RA Methoprene tolerant 

(Met) 

FBgn0002723 21.2 Juvenile hormone binding Jindra et al. 2015 

( Jindra et al., 2015 ) 

Oxidative Phosphorylation 

AGAP006061-RA Ken FBgn0000286 5.92 JAK/STAT pathway Arbouzova et al. 2006 

( Arbouzova et al., 2006 ) 

GTPase Activity, 

Vesicle-related, Actin-related 

( continued on next page ) 

3 



V.A. Ingham, S. Elg, S.C. Nagi et al. Current Research in Insect Science 1 (2021) 100018 

Table 1 ( continued ) 

Transcript ID Gene Name Homolog % Identity Role in Drosophila Citation Network Enrichment 

AGAP006392-RA CG4617 FBgn0029936 38.58 Unknown Autophagy 

AGAP006601-RA MEP-1 FBgn0035357 31.69 Chromatin remodelling Reddy et al. 2010 

( Reddy et al., 2010 ) 

Peroxisome, CSPs 

AGAP006642-RA Defective 

proventriculus (dve) 

FBgn0020307 47.98 Mitochondrial reactive 

oxygen species modulator 

Baqri et al. 2014 ( Baqri et al., 

2014 ) 

Behavioural-related, 

Neuron-related 

AGAP006736-RA Sugarbabe (sug) FBgn0033782 28.24 Regulation of lipid and 

carbohydrate metabolism 

Varghese et al. 2010 

( Varghese et al., 2010 ) 

P450, IMD-pathway 

AGAP006747-RA Relish (REL2) FBgn0014018 24.12 Immune response Dushay et al. 1996 

( Dushay et al., 1996 ) 

Transferase, 

Dendrite-related, CSPs 

AGAP009444-RA Suppressor of 

variegation 205 

(Su(var)205) 

FBgn0003607 23.47 Hsp70 response through 

activation of euchromatic 

genes 

Piacentini et al. 2003 

( Piacentini et al., 2003 ) 

Ribosome-related, Hippo 

signalling 

AGAP009494-RA Ets at 21C (Ets21C) FBgn0005660 34.25 Stress inducible transcription 

factor through JNK 

Mundorf et al. 2019 

( Mundorf et al., 2019 ) 

Behaviour-related, Neuronal, 

JAK/STAT 

AGAP009515-RA REL1 FBgn0260632 38.96 Toll pathway Gross et al. 1999 

( Gross et al., 1999 ) 

Vesicle-related Transport, 

Mitophagy, Toll pathway 

AGAP009662-RA Kruppel Homolog 1 

(Kr-h1) 

FBgn0028420 36.47 20-hydroxyecdysone linked Pecasse et al. 2000 

( Pecasse et al., 2000 ) 

TCA-cycle 

AGAP009676-RA Chameau (chm) FBgn0028387 34.66 JNK signalling Miotto et al. 2006 ( Miotto 

et al., 2006 ) 

Transmembrane Signalling, 

Behavioural-related, 

Neuronal 

AGAP009888-RA CG33695 FBgn0052831 53.3 Unknown Hippo Signalling, COEs 

AGAP009899-RA klumpfuss (klu) FBgn0013469 42.86 Cell death, mitochondrial 

function, EGFR signalling 

Protzer etl al. 2008 

( Protzer et al., 2008 ); Chen 

et al. 2008 ( Chen et al., 

2008 ) 

Morphogenesis, Drug 

Metabolism, UGTs, GSTs 

AGAP009983-RA Net FBgn0002931 35.88 EGFR signalling Terriente-Feliz and de Celis 

2009 ( Terriente-Félix and de 

Celis, 2009 ) 

MAPK/Notch Signalling 

AGAP010405-RA Maf-S FBgn0034534 63.7 Reactive oxygen species 

stress response 

Misra et al. 2011 

( Misra et al., 2011 ) 

Respiration-related, 

Insulin-related 

AGAP012389-RA Pangolin (Pan) FBgn0085432 24.47 Wingless signalling Brunner et al. 1997 

( Brunner et al., 1997 ) 

Wnt-signalling, COEs 

n  
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Table 2 

Transcription factor hubs. Identifier, gene name and num- 

ber of associations for 23 transcription factor hubs within the 

network. 

Transcription Factor Name Number of associations 

AGAP009676-RA Chm 951 

AGAP001388-RA dmrt93B 535 

AGAP009444-RA Su(var)205 447 

AGAP003449-RA Root 447 

AGAP009983-RA Net 399 

AGAP009494-RA Ets21C 227 

AGAP001994-RA Bap111 201 

AGAP001156-RA Pbp95 185 

AGAP002920-RA CG17829 145 

AGAP009899-RA Klu 118 

AGAP005437-RA Irbp18 113 

AGAP006392-RA CG4617 98 

AGAP000646-RA Dm 91 

AGAP001093-RA Kay 87 

AGAP004990-RA Mbf1 72 

AGAP006642-RA Dve 69 

AGAP005655-RA Cyc 66 

AGAP010405-RA Maf-S 64 

AGAP002155-RA Hnf4 60 

AGAP006601-RA Ken 58 

AGAP000876-RA l(1)sc 57 

AGAP006022-RA Met 53 

AGAP002773-RA Sr 51 

a  

(

 

a  

a  

a  
o longer present (Appendix 1). Any association between this transcrip-

ion factor and the target gene would then be purely due to chance.

his process was then repeated 500 times, inferring the edges for all 44

ranscription factors each time. The resulting marginal posterior proba-

ility values were then analysed for the randomised transcription factor

nd showed that a threshold of 0.39 was sufficient to only produce one

alse positive out of 500 randomizations, or a false positive rate of 0.002

Appendix 1), which resulted in assignment of 5136 transcripts to the

4 transcription factors. 

The complete network using a posterior probability cut-off of 0.39 is

isplayed in Figure 1 . Due to the constraints imposed by this model

n number of parent nodes tested, simple network descriptive data

as generated only for edges from the selected transcription factors.

he average edge count was 118.48 ± 179.62 demonstrating high vari-

nce in connectivity as seen in Figure 1 with a range of 8 associ-

tions to 951. 23 transcription factors are network hubs, defined as

odes with a high number of associations ( > 50) ( Table 2 ), includ-

ng Dm, Met and Maf-S all previously linked with the insecticide re-

istance phenotype ( Ingham et al., 2018 , Ingham et al., 2017 ) and

bf1 a stress response transcription factor ( Jindra et al., 2004 ). To en-

ble the network to be freely accessible an application NetworkVis has

een written in ShinyR ( Chang et al., 2017 ) and is available online

https://github.com/VictoriaIngham/NetworkVis_TimeCourse; Supple-

entary Table 2) with all associated data. Users can manually se-

ect a posterior probability cut-off between 0.1-0.8, select and rear-

ange nodes and edges in the network and identify a priori transcrip-

ion factors through visual means rather than working with a large text

le. 

Enrichment analysis was run for every transcription factor and as-

ociated interactors for all GO term categories ( Ashburner et al., 2000 ),

EGG pathways ( Kanehisa and Goto, 2000 ), gene families previously as-

ociated with resistance ( Balabanidou et al., 2016 , Müller et al., 2008 ,

oice et al., 2015 , Ingham et al., 2018 , Ingham et al., 2019 ) and Re-

t  

4 
ctome pathways based on Drosophila homology ( Jassal et al., 2020 )

 Table 1 , Supplementary Table 3). 

GO enrichments were present for 21/44 of the transcription factors

cross all ontology categories (Molecular Function, Cellular Component

nd Biological Process). A large number of GO terms were significant

cross different transcription factor interactions analysed; however, the

erms were largely non-overlapping indicating that the transcription fac-
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Figure 1. Model validation. mRNA fold change (y-axis) of each transcript (x-axis) for each transcription factor showing knockdown 48-hours post-deltamethrin 

exposure. White bars show qPCR results from GFP-injected exposed mosquitoes (48-hours post exposure) compared to GFP-injected unexposed mosquitoes (48-hours 

post injection) to show induction effect in absence of treatment and grey bars show transcription factor-injected exposed (48 hours post exposure) vs GFP-injected 

exposed mosquitoes (48-hours) to demonstrate the effect of transcription factor knockdown. Error bars show standard deviation. 
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ors are playing differing roles in insecticide response (Supplementary

able 3, Supplementary Figure 2). Seven GO terms (dendrite, dendritic

ree, somatodendritic compartment, transmembrane signalling receptor

ctivity, signalling receptor activity, response to drugs) were significant

cross four transcription factors and relate to terms clearly involved in

tress response and associated behavioural changes. 

KEGG enrichments were present for 39/44 transcription factors (Sup-

lementary Table 3, Supplementary Figure 3), again there was minimal

verlap in the enriched pathways, in agreement with the divergent en-

iched GO terms. One KEGG pathway was significant for six transcrip-

ion factor associations (neuroactive ligand-receptor interaction) and

wo terms were significant for four transcription factor associations (in-

ect hormone biosynthesis, other glycan degradation). 

Given our a priori knowledge of insecticide resistance, enrichment

nalysis was also carried out for detoxification gene families, the cu-

icular hydrocarbon synthesis pathway and chemosensory proteins;

hree well described resistance mechanisms ( Balabanidou et al., 2016 ,

üller et al., 2008 , Voice et al., 2015 , Ingham et al., 2019 ). Enrich-

ents for these families occurred in 20/44 transcription factors with
5 
ytochrome p450s being significantly enriched in eight, GSTs in four,

GTs in three, COEs in eight, chemosensory proteins in two and the

uticular hydrocarbon pathway in three (Supplementary Table 3, Sup-

lementary Figure 4). Reactome enrichment was also carried out, with

ignificance for at least one pathway in 21/44 of the transcription fac-

ors (Supplementary Table 3, Supplementary Figure 5). 

Taken together, these data indicate that the applied DBN is success-

ully capturing differing roles of the transcription factors in insecticide

xposure response and the enrichment of a large number of a priori

etoxification candidates indicates we are successfully capturing tran-

cription factors controlling metabolic response to insecticide exposure.

ey transcriptional regulators of insecticide response 

Transcription factors that have previously been implicated in in-

ecticide resistance or stress response and those that have interactors

hich show a clear functional enrichment from the above analysis are

escribed in greater detail below. 
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Figure 2. Network overview. Emboldened black circles represent all 44 transcription factors, with grey nodes representing associated transcripts. Directed edges 

are coloured on posterior probability gradient from yellow (0.39) through green (0.5) to dark blue (0.97). High posterior probability indicates higher confidence in 

the interaction. The 23 hub transcription factors, with > 50 associations are labelled. 
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hameau 

Chameau ( Chm , AGAP009676-RA) is the transcription factor with the

ighest number of interactors at 951. Chm interactors are strongly en-

iched in transmembrane signalling activity (p = 1.32e-8), sensory per-

eption (p = 3.39e-6) and chemosensory behaviour (p = 8.74e-4). 26

ther transcription factors interact directly with Chm including Abd-

 (AGAP004664-RA) including a known Drosophila interaction and

o (AGAP011695-RA), Fer3 (AGAP003756-RA), disco (AGAP01106-RA),

15 (AGAP003674-RA), zfh1 (AGAP000779-RA), hkb (AGAP004517),

ll known secondary interactors. 14 interactors have posterior proba-

ilities of > 0.90, including fringe (AGAP006439-RA) a gene involved in

egulating the Notch signalling pathway ( Moloney et al., 2000 ), which

s significantly enriched in Chm interactors (p = 0.012) and Roquin

AGAP007114-RA) a protein that translocates to stress granules on

hemical induced toxicity ( Athanasopoulos et al., 2010 , Voßfeldt et al.,

012 ). 

iminuitive 

Diminuitive ( Dm , AGAP00646-RA) is a central network hub with 91

nteractors and its interactors are enriched in multiple KEGG pathways

uch as N-glycan biosynthesis, protein processing in the endoplasmic

ecticulum and starch and sucrose metabolism (Supplementary Table 3)

 Martinez-Torres et al., 1998 , Ingham et al., 2017 , Nagy et al., 2013 ,

appes et al., 2011 ). Previous work has demonstrated that attenuating

m expression in An. gambiae results in significantly higher mortality

ost-pyrethroid exposure ( Ingham et al., 2018 ); this role is underlined

y significant enrichment of detoxification gene families in this cluster

ncluding the COEs (p = 0.031) and ABCs (p = 7.2e-3) ( Wilding et al.,

014 , Riveron et al., 2014 ). Interestingly, the ABCs in this network be-

ong to the ABCB family of transporters, which are known as multi-drug

ransporters and are implicated in insecticide resistance in Drosophila

nd Anopheles ( Gellatly et al., 2015 , Pignatelli et al., 2018 ) . Dm also in-

eracts with Bap111 , whose network is enriched for fatty acid degrada-

ion and cuticular hydrocarbon synthesis and contains the cytochrome
6 
450 CYP4G17 , previously linked with cuticular thickening in resistant

osquitoes ( Balabanidou et al., 2016 ). ( Balabanidou et al., 2016 ) 

oublesex-Mab related 93B 

Doublesex-Mab related 93B (dmrt93B , AGAP001388-RA) is the second

ost well-connected node with 535 interactors. Dmrt93B is enriched in

ultiple GO-terms related to xenobiotic metabolism, including oxidore-

uctase activity (p = 7.7e-3), heme-binding (p = 2.6e-4) and monooxy-

enase activity (p = 0.014) as well as being highly enriched in the

 priori detoxification gene families; cytochrome p450s (p = 5.53e-6),

OEs (p = 0.023) and GSTs (p = 0.029). Taken together, these enrich-

ents indicate that dmrt93B is playing a central role in the response

f metabolic transcripts to insecticide exposure. Although not show-

ng enrichment in a related term, 14 cuticular proteins are present in

his interactome, one of which CPLCP11 (AGAP009758-RA) has been

hown to be up-regulated in resistant mosquitoes compared to suscepti-

le ( Balabanidou et al., 2019 ) and another, CPR133 (AGAP009872-RA),

as the highest posterior probability (0.93). 

et and Maf-S 

Both Maf-S (AGAP010405-RA) and Met (AGAP006022-RA) have pre-

iously been shown to have important roles in insecticide response

 Ingham et al., 2018 , Ingham et al., 2017 ). In the absence of insec-

icide exposure, attenuation of expression of these transcripts demon-

trated that both influenced the expression of key pyrethroid metabolis-

rs such as CYP6M2, CYP6Z2, CYP6Z3, CYP6P4, GSTD1 and CYP9K1

 Yunta et al., 2019 )( Ingham et al., 2017 ). Met interacts with CYP6Z2

hich is amongst the most strongly induced p450s in the dataset with

 marginal posterior probability of 0.88. Interestingly, Maf-S shows en-

ichment in ABC transporters and terms related to ATP production, in-

icating Maf-S may play a role in changes in metabolism, which is a

triking feature of this dataset. Met shows enrichment in glycolysis, po-

entially indicated an overlap in the function of these transcription fac-

ors, which would be in agreement with the Maf-S knockdown microar-
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ay which identified Met as a direct interactor. ( Murata et al., 2015 ,

ornelissen et al., 2018 ) 

bf1 

Multiprotein bridging factor 1 ( mbf1 , AGAP004990) has 119 interac-

ors and is enriched for GO terms related to the ribosome (p = 0.026) and

NA binding (p = 0.048) and is highly enriched in the KEGG ribosome

p = 4e-4). The role of mbf1 in Drosophila involved translocation to the

ucleus upon cellular stress, where it serves as a co-activator of stress

esponse genes ( Jindra et al., 2004 ); despite this role no enrichment

or detoxification transcripts is seen in the predicted mbf1 associations.

owever, 1 chaperone protein ( CCT6 ) and an oxidative stress sensing

rotein (AGAP000705-RA) are present in this network. AGAP002667

as the highest posterior probability in the network (0.84) and encodes

he homolog of Drosophila Tctp which is necessary for genomic stability

nder genotoxic stress ( Hong and Choi, 2013 ). 

( Taylor-Wells et al., 2015 , Zhong and Wu, 2004 , Ng and Luo, 2004 ,

och et al., 2008 , Schaefer et al., 2001 , Varghese et al., 2010 ,

usselman et al., 2018 , Bharucha et al., 2008 , Beller et al., 2010 ) 

iscussion 

In this study, we apply a dynamic Bayesian network approach to

hole transcriptome time-course data post-sublethal exposure of An.

oluzzii to the pyrethroid insecticide deltamethrin ( Ingham et al., 2020 ).

he modified DBN model employed here allows correction for not only

ircadian rhythms, but also for mosquito ageing, a critical variable in

he resistance status ( Jones et al., 2012 ). Interactions predicted by this

odel were then validated in vivo , demonstrating high model confi-

ence, with 70% precision. The high model precision and the overlap-

ing biological functions with known transcription factors in Drosophila

emonstrates the utility of this approach in assigning transcription fac-

or function. Furthermore, this study highlights the potential for use of

his methodology across multiple species of interest in which lower res-

lution time points are more feasible than those seen in model organism

tudies. Potential applications of this methodology could include explor-

ng transcriptional regulation of pesticide response in other pest species

r exposing the same species to additional stressors to distinguish be-

ween transcription factors involved in general and insecticide induced

tress response. 

In this study we highlight 44 transcription factors with putative roles

n response to sublethal pesticide exposure, 41 of which have not pre-

iously been linked to insecticide resistance. Of the 6585 transcripts

ifferential in the data set used, 5136 transcripts were assigned associ-

tions with these 44 transcription factors, using a posterior probability

ut-off of > 0.39. The assignment of 78% of the overall responsive tran-

cripts is likely due to necessity of reducing the number of transcription

actors to less than 50 transcripts and responsive transcripts being reg-

lated by other mechanisms such as non-coding regulatory machinery.

he transcription factors selected here for further analysis were identi-

ed by applying an SILGGM model ( Zhang et al., 2018 ) to 28 insecticide

esistant vs susceptible microarray datasets performed on the Anopheles

ambiae species complex collated by Ingham et al. ( Ingham et al., 2018 )

nd exploring enrichments of co-correlated transcripts; this represents a

onfounding aspect of this methodology as these transcripts are consti-

utively overexpressed and not induced by insecticide exposure due to

he nature of the transcriptomic designs. 

Of the 44 transcription factors, 3 had previously been linked with

nsecticide resistance in Anopheles mosquitoes and just 11 had been pre-

iously studied in mosquito species in any context ( Ingham et al., 2018 ,

ngham et al., 2017 , Ruiz et al., 2019 , Chen et al., 2017 , Amenya et al.,

010 , Wülbeck and Simpson, 2002 , Chowdhury et al., 2020 , Wang et al.,

017 , Maliti et al., 2016 , Luna et al., 2006 , Fu et al., 2020 ). All but

 of these transcription factors have a well-defined role in Drosophila .

sing a posterior probability cut off of > 0.39, the number of associ-

tions showed high levels of variation with an average edge count of
7 
18.48 ± 179.62, potentially demonstrating differential importance in in-

ecticide response, with those transcription factors with a high number

f edges or high network connectivity being more important. 23 tran-

cription factors were designated as transcript ‘hubs’ based on high lev-

ls of network interconnectivity ( > 50 edges). 

Enrichment analysis was performed for all transcription factors in

he network, using GO Terms, KEGG Pathway, Reactome and a priori

ranscript families with links to resistance. Interestingly, the overlap of

nriched terms was low, indicating that each transcription factor may

lay a differing role in the response to insecticides. 20 transcription fac-

ors show enrichments in a priori gene families; this may be an unsurpris-

ng feature of this dataset given the obvious change in expression across

ultiple members of these families within this dataset and their docu-

ented importance in insecticide metabolism ( Ingham et al., 2020 ). GO

erms enriched across multiple transcription factors include terms ex-

ected in an insecticide response, response to drugs, drug metabolism,

ensory perception of chemical stimuli and ABC transporters. The former

wo enrichment terms are in agreement with the well-established dogma

hat up-regulation of members of the cytochrome p450 class play a di-

ect role in increasing the rate of insecticide metabolism ( Ingham et al.,

018 , Yunta et al., 2019 ). ( Oliver and Brooke, 2016 , Wang et al.,

016 ). Interestingly, changes to the respiratory pathway through al-

erations to the oxidative phosphorylation pathway also appears across

ultiple transcription factors and is a striking feature of this dataset

 Ingham et al., 2020 ). 

To cross-validate the function of these transcription factors, their

nown functions in the model organism Drosophila were explored. De-

pite the differences in hypotheses explored in this study and the avail-

ble data in discerning Drosophila pathways, there were clear over-

aps in transcription factor roles and associations. For example, Dm is

nown to play a role in lipid and glucose homeostasis in Drosophila

 Parisi et al., 2013 ) and here, the associations are enriched in the

EGG pathways starch and sucrose metabolism; this is similar to

mrt93B which is involved ( Palanker et al., 2009 ) mouth part de-

elopment and is enriched in the GO term related to taste recep-

or activity ( Panara et al., 2019 ). Several further transcription fac-

ors show overlap with Drosophila function, including Pep which is in-

olved in stress response through activation of Hsp70 ( Hamann and

trätling, 1998 , Varghese et al., 2010 ), dve which is involved in reac-

ive oxygen species modulation ( Baqri et al., 2014 ), Ets21C which is a

tress-inducible transcription factor ( Mundorf et al., 2019 ), klumpfuss

hose role is related to morphogenesis in the central nervous system

 Melcher and Pankratz, 2005 ), REL1 which is implicated in the TOLL

athway ( Gross et al., 1999 , Murata et al., 2015 ) and Chm is a known

odulator of the stress responsive JNK pathway with a role in sensory

ell fate ( Melcher and Pankratz, 2005 ). ( Wang et al., 2017 , Ruiz et al.,

019 ) 

This study provides not only previously unreported transcription fac-

ors that are involved in the transcriptional response to pesticide expo-

ure but demonstrates the utility of applying a model-based approach

o lower-resolution time course data in ascertaining these associations.

ere, six transcription factors and their interactomes were delineated as

ub transcripts within the network, all of which have either been pre-

iously linked to resistance or stress response in Anopheles ( Dm, Maf-S

nd Met ) ( Ingham et al., 2018 , Ingham et al., 2017 ) or Drosophila (mbf1 )

 Jindra et al., 2004 ) or are highly significantly enriched for clear func-

ions ( chameau and dmrt93B) . These transcription factors are likely to be

nvolved in different facets of insecticide response and represent path-

ays that should be further explored. The modelling approach taken

ere, which accounts for both circadian patterns and ageing, two key de-

erminants in pesticide resistance, can be applied widely to other pest or

ector species. Using this approach will provide invaluable information

n changes to pest biology post-pesticide exposure and will elucidate

ew pathways to characterise and target to tackle the ongoing threat of

esticide resistance. 
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aterials and Methods 

icroarray Experiments 

Microarrays were taken from ( Ingham et al., 2020 ) and consist of

eltamethrin exposed mosquitoes compared to unexposed at the follow-

ng time points post-exposure: 0 minutes, 30 minutes, 1 hour, 2 hours, 4

ours, 8 hours, 12 hours, 24 hours, 48 hours and 72 hours. To account

or ageing effects, a twin time course was performed using age matched

emales that were unexposed to insecticide at the following time points:

 hours, 12 hours, 24 hours, 48 hours and 72 hours. All mosquitoes

ithin one experimental time course came from the same generation.

xperimental data is available on exposure time course (E-MTAB-9422)

nd ageing time course (E-MTAB-9423). Analysis was performed as pre-

iously described. 

ranscription factor identification 

To identify relevant nodes for the Bayesian analysis, 28 microar-

ay datasets encompassing resistant vs susceptible members of the

nopheles gambiae species complex were used from Ingham et al. 2018

 Ingham et al., 2018 ). A de-sparsified node-wise scaled lasso ( Janková

nd van de Geer, 2017 , Janková and van de Geer, 2018 ) implemented in

he R package SILGGM ( Zhang et al., 2018 ), was used to infer the gene

etwork. This method employs L1-regularisation to preserve sparsity

n the estimated network. For the L1-regularisation, the default value

f the tuning parameter 𝜆, was used: 
√

log(p)/n, where p is the num-

er of variables and n is the number of samples. The resultant Gaus-

ian graphical model produced a 14079 × 14079 file for every pos-

ible interaction in the transcriptome. Each interaction had an asso-

iated p-value for precision (Supplementary Table 4). A cut-off value

f p ≤ 0.1 was used to filter all interactions to prevent loss of po-

entially interesting transcription factors due to the differing experi-

ental design of the data set used. Annotated Drosophila transcription

actors were downloaded from FlyTF ( Adryan and Teichmann, 2006 )

http://flytf.gen.cam.ac.uk/) and Anopheles homologs identified using

lyMine ( Lyne et al., 2007 ) (https://www.flymine.org) using the anal-

se input box, and then selecting An. gambiae homologs, resulting in 559

utative transcription factors; all 559 were then extracted from the in-

erred network with all associated putative co-correlating transcripts.

lusterProfiler ( Yu et al., 2012 ) and AnnotationForge ( Carlson and

agès, 2019 ) were used to perform GO enrichments using an Anophe-

es database built from PEST/VectorBase ( Giraldo-Calderón et al., 2014 )

n Biological processes on transcription factors with > 10 interactors.

ranscription factors enriched in the following character patterns were

xtracted: ‘stress’; ‘oxi’; ‘lipid’; ‘behaviour’; ‘response’; ‘fat’; ‘sensory’

nd ‘ATP’ leading to 54 transcription factors. The terms were chosen

ased on previous knowledge of the resistant mechanisms present in An.

oluzzii mosquitoes as detailed in the introduction ( Balabanidou et al.,

016 , Müller et al., 2008 , Voice et al., 2015 , Ingham et al., 2018 ,

ngham et al., 2019 , Ingham et al., 2020 ) and ‘ATP’ due to a striking

hange in metabolism observed in this data set ( Ingham et al., 2020 ).

he transcription factors were further filtered on at least 50% of the

ranscripts in the cluster generated by SILGGM being differentially ex-

ressed in at least 1 time point within the time course datasets with an

djusted p value of ≤ 0.05. This procedure resulted in 44 transcription

actors being retained. To estimate the impact of transcription factor

hoice on the network inference, target genes with a marginal posterior

robability of > 0.75 of having an association with at least one of the

ranscription factors in the dynamic Bayesian network analysis were se-

ected and the model was re-run using a random selection for 25% of

he transcription factors (11/44). The difference in marginal probabil-

ty of the associations was then analysed. As the majority of differences

re < 0.2, the 0.39 cut-off used here would still correctly identify the

ssociations with > 0.75 marginal posterior probability in the original

nalysis (Supplementary Figure 6). 
8 
etwork reconstruction using Dynamic Bayesian Networks 

Dynamic Bayesian networks (DBNs) ( Dondelinger et al., 2013 ) were

sed to identify directed associations between the transcription factors

nd putative regulated genes. A dynamic Bayesian network defines a

raphical model for the dynamics of time series data, where the gene

xpression 𝑋 𝑖 ( 𝑡 ) of gene i at time t depends on the gene expression 𝑋 𝑗 ( 𝑡 )
f all transcription factor genes j at time 𝑡 − 𝛿. The relationship can be

escribed by the following auto-regressive linear regression: 

 𝑖 ( 𝑡 ) = 𝑎 0 + 

∑
𝑗∈𝑇𝐹 

𝑎 𝑗 𝑋 𝑗 ( 𝑡 − 𝛿) + 𝜀 

here 𝜀𝑁( 0 , 𝜎2 
𝑖 
) , ∧𝑇 Fistheseto f indices representing the transcription fac-

ors . To impose regularisation, we assumed truncated Poisson priors on

he number of regression parameters 𝑎 𝑗 that are non-zero: 

 

(
𝑠 𝑖 ∨ 𝜆

)
∝ 𝜆𝑠 𝑖 

𝑠 𝑖 ! 
𝐼 
(
𝑠 𝑖 < 𝑠 𝑚𝑎𝑥 

)

here 𝑠 𝑚𝑎𝑥 is the maximum number of transcription factors regulating a

ingle gene. We set 𝑠 𝑚𝑎𝑥 = 5 . Conditional on 𝑠 𝑖 , the number of non-zero

ranscription factor-gene associations, the prior on the set of transcrip-

ion factors for a given gene is simply a uniform distribution. 

Inference of the network structure can be done via a Markov Chain

onte Carlo algorithm, with discrete moves allowing for adding and

emoving edges during the sampling. Convergence was assessed by run-

ing each MCMC chain twice from independent starting points and

omparing the marginal posterior edge probability estimates. We ran

he MCMC algorithm for 500,000 iterations, discarding the first quar-

er as burn-in, which ensured good convergence across all target genes.

or full details on the model and inference procedure, please see Ap-

endix 1. Note that here we employ a simplified version of the model

n ( Dondelinger et al., 2013 ) which does not use a changepoint model

r information sharing priors. 

Prior to applying the network inference model, we pre-processed the

og-fold change data by first averaging the values for genes with multi-

le probes to obtain one measurement per gene. We then employ LOESS

stimation ( Cleveland et al., 1992 ), a local regression method which fits

ow-degree polynomials to subsets of the data, to interpolate the time

oints at 𝑡 − 𝛿, where we choose 𝛿 = 0 . 5 hours as the time interval. Inter-

olation is necessary, as the DBN method requires equal time intervals

etween each pair of measurements to estimate consistent associations.

We further extend the model to correct for circadian rhythms and

geing effects in the gene expression levels. For the circadian rhythm

orrection, we assume that all circadian rhythms have a period of 24

ours, and augment the design matrix X = { 𝑋 1 ( 𝑡 ) , ..., 𝑋 𝑝 ( 𝑡 ) } with two ad-

itional columns for the sine and cosine functions of a 24-hour periodic

ignal: 

 𝑠𝑖𝑛 ( 𝑡 ) = 𝑠𝑖𝑛 ( 2 𝜋𝑡 ∕24 ) , 𝑋 𝑐𝑜𝑠 ( 𝑡 ) = 𝑐 𝑜𝑠 ( 2 𝜋𝑡 ∕24 ) 

The resulting harmonic regression model with automatically correct

or circadian rhythms, including under phase shift, by adding the pe-

iodic signal as a parent in the network, while non-periodic genes will

emain unconnected to this signal. 

Similarly, we add additional columns for the data arising from the

geing controls to correct for the effect of ageing. Note that here we

nly have data starting from 8 hours, so earlier time points will be un-

orrected, and the corresponding values in the design matrix will be set

o zero. The final autoregressive model looks as follows: 

 𝑖 ( 𝑡 ) = 𝑎 0 + 

∑
𝑗∈𝑇𝐹 

{
𝑎 𝑗 𝑋 𝑗 ( 𝑡 − 𝛿) 

}
+ 𝑏 𝑠𝑖𝑛 𝑋 𝑠𝑖𝑛 ( 𝑡 ) + 𝑏 𝑐𝑜𝑠 𝑋 𝑐𝑜𝑠 ( 𝑡 ) +𝑐 𝑋 𝑖,𝑎𝑔𝑒𝑖𝑛𝑔 ( 𝑡 ) + 𝜀

here 𝑋 𝑖,𝑎𝑔𝑒𝑖𝑛𝑔 ( 𝑡 ) is the log-fold change of the ageing controls. 

We summarize the results of the DBN analysis using the marginal

osterior probability of each transcription factor – target gene associa-

ion, which can be calculated by obtaining samples from the converged

arkov chain and averaging over the presence/absence status of each

dge. In order to determine a sensible threshold for the marginal poste-

ior probability that keeps the false discovery rate low, we implement
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i  

m  

u  
he following permutation test to estimate the posterior probabilities

nder the null hypothesis of no associations: for each of n = 500 itera-

ions, we randomly permute the log-fold changes for one transcription

actor. Any associations with the target gene should then be entirely by

hance. Taking all n = 500 samples of the null distribution obtained in

his way, we determine that a threshold of 0.39 was sufficient to only

roduce one false positive out of 500 randomizations, or a false positive

ate of 0.002. Further detail of the model can be found in Appendix 1.

he network was displayed using Cytoscape ( Shannon et al., 2003 ). 

To estimate how the computational time needed scales with the num-

er of transcription factors, we repeatedly selected 10 target genes and

 transcription factors, where p ∈(5,100). Network inference using EDI-

ON was then performed on a computational cluster with two Intel

eon E5-2660 v4s, which have 14 physical cores running @ 2.00GHz

ach, and 256 GB of RAM, and the resulting computational time is

ecorded. All MCMC chains for the network inference algorithm are run

or 500,000 iterations (Supplementary Figure 7). 

etworkVis App 

The NetworkVis app and associated data can be downloaded on

ithub (https://github.com/VictoriaIngham/NetworkVis_TimeCourse)

nd installed as described. ShinyR ( Chang et al., 2017 ) was used to

reate a user interface, both VisNetwork ( Almende et al., 2018 ) and

graph ( Csardi and Nepusz, 2006 ) were used to allow dynamic selection

f nodes and edges, and to display the network. 

nrichment analysis 

Enrichment analysis was performed using clusterProfiler ( Yu et al.,

012 ) and a custom Anopheles database produced using Annotation-

orge ( Carlson and Pagès, 2019 ). GO term and KEGG enrichments were

erformed using a Benjamini-Hochberg corrected p value cut-off of ≤

.05 with transcription factors > 10 interactions. Clusters of each tran-

cription factor were compared using the compareCluster function us-

ng default parameters, Benjamini-Hochberg correction and a full back-

round geneset from org.Agambiae.eg.db built from the PEST assem-

ly; these were then displayed using Cytoscape ( Shannon et al., 2003 ).

nrichment analysis on individual gene families were performed us-

ng a hypergeometric test with the phyper function in R; significance

as considered when p ≤ 0.05. Reactome analysis was also performed

sing a hypergeometric test with p ≤ 0.05; Drosophila pathway mem-

ership was downloaded from Reactome.org (https://reactome.org/)

 Jassal et al., 2020 ) for each pathway of interest, FlyMine ( Lyne et al.,

007 ) was then used to convert these to Anopheles homologs. Fly-

ase ( Consortium, 2003 ) was used to determine functions of homologs

hroughout the analysis. We applied the Benjamini-Hochberg correction

or multiple testing outputs of the hypergeometric test. 

alidation of Network 

We first performed a simulation study to determine the number of

ssociations that need to be tested experimentally in order to obtain an

ccurate estimate of the precision of our network inference method. We

ade the following assumptions: (i) The mean number of gene regulated

y each transcription factor is 10, and the actual number of regulated

enes follows a Poisson distribution; (ii) The rate of true positives (cor-

ectly predicted associations) of our network is 0.75, and the rate of true

egatives (correctly predicted non-associations) is 0.997; this results in

 precision of ∼0.56 and a recall of ∼0.72 (Appendix 2); (iii) Transcrip-

ion factors and regulated genes to test are selected randomly and (iv)

he qPCR knockdown test is 100% accurate. The results of the simu-

ation study can be found in Appendix 2. We concluded that testing 4

egulatory relationships for 7 transcription factors has a 70% chance of

btaining an estimate of the precision that falls within 10% of the true
9 
recision, and a 95% chance of obtaining an estimate that falls within

0% of the true precision. 

In order to choose associations for validation, we then chose inter-

ctors by extracting the transcription factor of interest and associated

ranscripts from the results of the network inference. Transcripts were

isted as 1 to n based on posterior probability in descending order. A

andom number generator was then used to select 4 transcripts for vali-

ation from 6 transcription factors chosen based on previous knockdown

n the case of Maf-S, Met, Dm or through a random number generator. 

osquito Rearing 

The An. coluzzii VK7 colony reared and profiled at Liverpool School

f Tropical Medicine were used for all experiments ( Williams et al.,

019 ). VK7 are a highly pyrethroid resistant population originating from

allée de Kou, Burkina Faso ( Toé et al., 2015 ). They have been reared

t LSTM since 2014 under pyrethroid selection pressure ( Williams et al.,

019 ). All mosquitoes used were reared under standard insectary condi-

ions of 27°C and 70-80% relative humidity under a 12:12 photoperiod

nd are presumed mated. 

sRNA knockdown 

RNAi was performed using 7 transcription factors based on previ-

us publication of knockdown (Maf-s, Met, Dm ( Ingham et al., 2018 ,

ngham et al., 2017 )) or through random selection using a random

umber generator (Med, Pan, l(1)sc, mbf1) (Supplementary Table 5).

CR was performed on 3-day old VK7 unexposed cDNA using Phusion®

igh-Fidelity DNA Polymerase (Thermo Scientific) following manufac-

urer’s instructions and primer sets with a T7 docking sequence at the 5 ′

nd of both the sense and antisense primers (Supplementary Table 5).

rimers were designed as previously described ( Ingham et al., 2018 ).

CR was performed using the following cycles: 98°C for 30s, (98°C 7s,

5°C 10s, 72°C 10s) x35 and 72°C 5 minutes. PCR product was then pu-

ified using a Qiagen QIAquick PCR Purification Kit following manufac-

urers’ instructions. dsRNA was then synthesised using a Megascript® T7

ranscription (Ambion) kit, following manufacturer’s instructions (16-

our 37 °C incubation). The dsRNA was cleaned using a MegaClear®

ranscription Clear Up (Ambion) kit, with DEPC water, twice heated at

5 °C for 10 min, to elute the sample. The resultant dsRNA product was

nalysed using a nanodrop spectrometer (Nanodrop Technologies, UK)

nd subsequently concentrated to 3 𝜇g/ 𝜇l using a vacuum centrifuge at

5°C. 69nL of dsRNA was subsequently injected into presumed mated,

on-blood fed, 3-day old VK7 females immobilised using a CO 2 block

sing a NanoInject II. 50 females were injected with each of the tran-

cription factor dsRNA and 50 with dsGFP as a non-endogenous control.

nsecticide Exposures 

25-30 female mosquitoes were exposed to 0.05% deltamethrin im-

regnated papers for one hour in a standard tube bioassay kit following

HO guidelines. Post-exposure mosquitoes were transferred into hold-

ng tubes and maintained on sucrose solution. 

NA extraction and cDNA synthesis 

RNA was extracted from 7-10 female mosquitoes in biological tripli-

ate for each experimental group. RNA was extracted from homogenised

osquitoes using a PicoPure RNA isolation kit (Thermo Fisher, UK)

ollowing manufacturers’ instructions and treated with DNAase (Qia-

en) to remove any DNA contamination. Quality of RNA was checked

sing a nanodrop spectrophotometer (Nanodrop Technologies UK). 1-

μg of RNA from each experimental set was reversed transcribed us-

ng OligoDTT (Invitrogen) and Superscript III (Invitrogen) according to

anufacturers’ instructions. The following experimental groups were

sed: (i) knockdown efficacy for each transcription factor and the GFP
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ontrol using females 48-hours post RNAi injection and (ii) pathway

alidation using females 48-hours after they were exposed to 0.05%

eltamethrin for 48-hours post-injection for transcription factors and

FP controls. 

PCR validation 

Quantitative real-time PCR was performed using SYBR Green Su-

ermix III (Applied Biosystems, UK) using an MX3005 and the asso-

iated MxPro software v4.10 (Agilent, UK). Primer Blast (NCBI) was

sed to design primer pairs. Where possible, primers were designed to

pan an exon junction (Supplementary Table 5). Each 20μl reaction con-

ained 10μl SYBR Green Supermix, 0.3μM of each primer and 1μl of

ng/μL cDNA. Standard curves for each primer set were used to cal-

ulate efficiency, using five 1:5 dilutions of cDNA to ensure that all

rimer sets met the MIQE guidelines (90-120% efficiency) ( Bustin et al.,

009 ). qPCR was performed with the following conditions: 3 minutes at

5°C, with 40 cycles of 10 seconds at 95°C and 10 seconds at 60°C.

elative expression was normalised against two housekeeping genes:

F (AGAP005128) and S7 (AGAP010592) and analysed using compar-

tive CT method ( Schmittgen and Livak, 2008 ). qPCR was used to de-

ermine the efficacy of transcription factor knockdown by comparing

DNA taken from mosquitoes 48-hours post dsRNA injection for each

ranscription factor and comparing it to GFP-injected controls all taken

rom the same mosquito generation. To validate findings in the network,

PCR was performed on dsRNA injected mosquitoes exposed to 0.05%

eltamethrin at 48-hours post injection, these mosquitoes were then left

or a further 48-hours before harvesting; again, transcription factor in-

ected mosquitoes were compared to the dsGFP injected controls. 
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