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Abstract
Anterior spine decompression and reconstruction with bone grafts and fusion is a routine spinal surgery. The intervertebral
fusion cage can maintain intervertebral height and provide a bone graft window. Titanium fusion cages are the most widely
used metal material in spinal clinical applications. However, there is a certain incidence of complications in clinical follow-
ups, such as pseudoarticulation formation and implant displacement due to nonfusion of bone grafts in the cage. With the
deepening research on metal materials, the properties of these materials have been developed from being biologically inert to
having biological activity and biological functionalization, promoting adhesion, cell differentiation, and bone fusion. In
addition, 3D printing, thin-film, active biological material, and 4D bioprinting technology are also being used in the
biofunctionalization and intelligent advanced manufacturing processes of implant devices in the spine. This review focuses
on the biofunctionalization of implant materials in 3D printed intervertebral fusion cages. The surface modifications of
implant materials in metal endoscopy, material biocompatibility, and bioactive functionalizationare summarized.
Furthermore, the prospects and challenges of the biofunctionalization of implant materials in spinal surgery are discussed.
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Graphical Abstract
Fig.a.b.c.d.e.f.g As a pre-selected image for the cover, I really look forward to being selected. Special thanks to you for your
comments.

1 Introduction

Spinal interbody fusion systems are widely used in the field
of spinal surgery [1]. To accelerate osteogenic fusion after
the insertion of spinal implants, three strategies have been
reported, usually to improve the bone-implant interface
morphology and promote bone-implant adhesion. The first
strategy is to physically modify the material-bone interface
by adjusting the surface roughness or porosity to increase
the migration and proliferation of bone cells and ultimately
promote the osseointegration of endophytes [2–7]. The
second strategy is to chemically modify the surface of the
endophytic material to enhance its biological activity,
thereby stimulating bone regeneration and differentiation
[8]. The third strategy is to modify the biological activity of
the surface of the endophyte. As the endophyte material
changes over time, it promotes cell recruitment, prolifera-
tion on the surface and in the surface, and finally differ-
entiates into bone tissue to promote the biological
functionalization of intervertebral fusion.

Bone regeneration is a complex coordinated physiolo-
gical response of the body to bone defects [9–11] involving
unknown signaling pathways and processes that are regu-
lated by different cells, cytokines and growth factors
[12–14]. Autologous bone transplantation remains the gold
standard for bone regeneration treatment [15, 16]. Although
autologous bone transplantation has obvious advantages,
such as immunocompatibility, excellent bone conduction,
osteoinduction and osteogenic properties, its applications
are limited due to the insufficient supply of donor tissue and
the risk of complications at the donor site. Similarly, the use
of allografts and xenografts is limited by the immune
response or infection [17–19]. The autologous bone grafts,

allografts and xenografts in the above methods can sig-
nificantly promote bone regeneration. However, the main
limitation of bone substitutes is their lack of interactions
that support the complex cell-osteogenic microenvironment
[20]. Therefore, combining bone substitutes with cells to
regulate osteogenic differentiation is an important direction
in bone regenerative medicine.

2 The development history of plant
materials in the spine

In the middle of the 20th century, Cloward and others first
proposed posterior lumbar interbody fusion, which is still
one of the basic methods of spinal surgery [21]. In the
1980s, Bagby, Kuslich and others designed the first inter-
vertebral fusion cage made of hollow stainless steel, which
is suitable for the anatomical structure of the human body
based on the compression and stabilization effects of
expansion [21, 22]. In recent years, research on implant
systems in the spine has intensified. Spine interbody fusion
cages can not only store autologous bone particles but also
restore the height between the vertebral bodies. These cages
have become an ideal bone graft substitute material [23]. In
order to avoid the overall stability of the spine, the loss of
the lordosis angle, and the settlement or displacement of the
internal plant after the operation, the spine interbody fusion
cage is usually used in combination with a spine internal
fixation system such as a pedicle screw internal fixation
system. While effectively preventing the loss of the height
between the vertebral bodies, the abundant local blood
supply is obtained due to the expansion of the vertebral
bodies to promote a higher rate of osteogenesis and fusion,
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and better maintain the advantages of the physiological
curvature of the spine of the postoperative patient. Long-
term follow-up shows that the spinal interbody fusion sys-
tem has a better fusion rate and higher patient satisfaction
[23].

In the development of spinal surgery, despite the rapid
developments in biomaterials and tissue engineering, the
development of spinal implants remains challenging due to
the limitations of autogenous and allogeneic bone trans-
plantation [19]. In addition to the application of support to
patients who need osteotomies, such as those with severe
angular kyphosis and spinal tumors, these limitations put
forward higher requirements for matching spinal support
performance, and the research and development of spine
implants will become a new direction for bionic materials
and personalized 3D printing customization.

3 Application of 3D printing technology

3.1 Using 3D printing technology to make spinal
implants

3D printing technology is also known as Additive Manu-
facturing (AM), which is based on a digital model that inte-
grates computer-aided manufacturing, numerical control
technology, laser technology, polymer materials and three-
dimensional computed tomography (CT) technology. 3D
printing technology can quickly and accurately print the dis-
eased area according to the patient’s personalized anatomical
characteristics and clinical needs; thus, the required anatomical
models and appropriate internal implants should be used
clinically. Patients with spinal degenerative diseases often have
variations in the anatomical parameters of the vertebral body,
especially large changes in the height of the intervertebral
space, and traditional mass production of spinal implants can-
not fully meet clinical needs. Therefore, personalized custo-
mization of spinal implants has become necessary.

Currently, the main printing materials on the market are
titanium and its alloys. Titanium has excellent corrosion
resistance, good biocompatibility and good mechanical
properties and is widely used in biomedical implants.
However, the difference between Young’s modulus of Ti
implants (110 GPa) and bone (10–30 GPa) results in a stress
shielding effect after implantation in the body. 3D-printed
customized porous titanium implant materials can adjust
and optimize the parameters of the spinal implant, changing
the porosity, connectivity and hole diameter by setting to
finally effectively control the strength and elastic modulus
of the stent and obtain the target porous titanium alloy
spinal implant [24]. For implants with highly porous
structures, there is greater surface contact at the bone-
implant interface, and bone tissue and blood vessels can

grow into the pores on the porous titanium [25], providing
more space for bone integration and mechanical interlock-
ing [26]. Studies have shown that the minimum pore size
for significant bone growth should be between 75 and
100 µM [27] but the best-observed range was between 100
and 135 µM. However, to promote bone formation and
angiogenesis, more than 300 µM of pores are needed [28].
3D printing technology can independently set parameters,
and Young’s modulus of the material can be adjusted to be
similar to that of bone (average compressive modulus of
elasticity 1.41 ± 0.007 GPa), which is between that of cor-
tical bone and cancellous bone, making its clinical appli-
cation adaptability increasingly higher [29, 30].

3.2 3D printing technology realizes material
biofunctionalization

The ideal bone tissue engineering scaffold has good bio-
compatibility, bone tissue integration ability and suitable
mechanical properties with an internal implant structure
design that is consistent with the anatomical structure of
natural bone tissue. 3D printing technology can measure the
relevant anatomical spine parameters of patients with
degenerative diseases, allowing the personalized custom
anatomical spinal interbody fusion cage to have an
improved fit on the bone surface, which can better solve the
problem of traditional prostheses not matching the patient’s
bones. Simplifying the operation steps also promotes a
reduction in tissue damage. 3D printing of anatomical spinal
implants has been gradually applied in clinical practice.
With the development of AM technology, great progress
has been made. For example, Professor Liu Zhongjun’s
team from the Third Hospital of Peking University com-
pleted the world’s first 3D-printed artificial customized axial
replacement for cervical malignant tumors [30, 31]. How-
ever, the lack of biological activity on the surface of the
titanium alloy spinal implant is still an urgent problem in
the osseointegration process [8]. The rapid recruitment of
osteoblasts is a necessary prerequisite for the effective
repair of bone defects. Some studies have shown that rough
nanosurfaces can build a suitable microenvironment for cell
growth. Therefore, the study of biomimetic implants con-
structed by increasing the surface roughness of materials to
promote cell adhesion and osteogenic differentiation will
receive increasing attention [30].

This group independently designed a 3D printing porous
titanium alloy bone substitute material by using synchrotron
radiation imaging technology. The unit structure of material
pore structure can design three kinds of spatial structures,
including cylindrical rod diamond structure, cylindrical rod
octahedron structure and cylindrical rod dodecahedron
structure. The aperture range is 400–1500 μM. The range of
rod diameter is 150, 200 and 250 μM (Fig. 1). The 3D data
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information of goat endplate microstructure was analyzed
for modeling design, and the characteristics of natural cer-
vical vertebral endplate such as pore size, porosity and pore
connectivity were copied. By analyzing the 3D data of the
microstructure of the goat vertebral body, the 3D printing
modeling design is carried out, and a scaffold with the same
micromechanical structure of the goat vertebral body end-
plate is produced. We call it the bionic printing anatomical
scaffold material (Fig. 2). It is expected that the bionic 3D
printing titanium alloy stent can maintain the spinal stability
after bone graft fusion, enhance the effect of bone graft
fusion, guide the bone growth in the pore structure, and
effectively reduce the complications caused by the tradi-
tional titanium mesh sinking.

4 Surface modification of plant materials in
the spine

4.1 Chemical and physical modification of
endophyte materials

There have been different technical methods to improve the
surface biological properties of such implants by coating or
changing its surface morphology. The technology of
mechanical, chemical or biomimetic modification of the
surface of materials is changing with each passing day.
Among these, biological functionalization of the material
surface, including the immobilization of various peptide
sequences, proteins, and even drug molecules, has been
gradually developed [32, 33].

Although titanium is the most biocompatible metal
material, it lacks biological activity and cannot induce
bone regeneration or directly integrate with bone after

implantation [8]. Therefore, the development of titanium-
based biomaterials that can achieve biofunctionalization and
ensure the ideal performance of the implants is a very
important topic. Researchers have used micro-arc oxidation
(MAO) technology to adjust the crystallinity and morpho-
logical characteristics to improve the biological properties
of the titanium surface [34, 35]. The most common and
effective way to improve the osseointegration of titanium
and its alloys is to introduce a layer of hydroxyapatite (HA)
coating to promote the transformation of the surface prop-
erties of the endophyte from a biologically inert surface to a
biologically active surface [36, 37]. However, both the
overall performance and biological activity of HA are not
stable [38, 39]. Compared with pure HA, silicon-doped HA
has higher dissolution and ion release rates in the body,
which can provide a sufficient ion source for new bone
formation. Therefore, implants with silicon-doped HA have
can better promote angiogenesis and osteogenic regenera-
tion [40, 41].

Biological functionalization of the inner implant surface
can not only promote cell adhesion and proliferation but
also trigger bacterial adhesion and the formation of bacterial
biofilms and cause inflammation and infection, leading to
implantation failure of the inner implant [42]. Some
researchers fix antibacterial drugs on the surface of the inner
implants to avoid spontaneous inflammatory reactions after
the inner implants are implanted in the body. Commonly
used methods of drug immobilization include physical
adsorption [43], chemical grafting [44], polymer coatings
containing antibacterial drugs [45], silver coatings [46], etc.
However, these strategies also have drawbacks. For exam-
ple, the adsorption method can cause the excessive release
of antibiotics, causing cytotoxicity and increasing the risk of
bacterial resistance [47]. Although chemical grafting avoids

Fig. 1 Three-dimensional model diagram of pore structure ((a) sagittal plane (b) coronal plane (c) 3D stereo view (1) diamond structure (2)
octahedron structure (3) dodecahedron structure).
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excessive drug release, the process of chemical covalent
bonding may destroy the molecular structure of the drug
and affect its biological functions. Polymer coatings with
high hydrophobicity and an antibacterial agent is not con-
ducive to the formation of strong biological bonds between
the bone tissue and coating substrate. Although silver (Ag)
has antibacterial properties, the release of Ag+ from silver-
containing coatings will increase the cumulative con-
centration of Ag+ in the body, which will cause toxic side
effects in body tissues [46]. With further study of the
antibacterial properties of materials, biodegradable bovine
serum albumin (BSA) nanoparticles (BNPs) have been used
as carriers of many drugs [48–50]. As the carrier partner,
BNPs have not only good biocompatibility and non
immunogenicity but also high loading efficiency so that the
antibacterial drugs attached to the surface of the inner
implant can be implanted into the body for slow release
[51]. Therefore, it is expected that antibiotic-loaded BNPs

can maintain a stable blood concentration of antibiotics for a
long period without affecting the biological functions of the
substrate surface and cell physiological functions so that the
drugs can exert better effects and enhance the antimicrobial
activity of the endogenous implants.

Studies have shown that the structure of strontium can
change from flakes to needle-shaped with increasing pH.
In vitro experiments have shown that nanoneedle-like Sr
(Sr: strontium) coatings prepared under high pH condi-
tions can significantly inhibit the activity of osteoclasts,
facilitate the adhesion, diffusion, proliferation and
osteogenic differentiation of mesenchymal stem cells
(MSCs), and promote the formation of new bone to
enhance endophyte osseointegration. This provides new
theoretical guidance for the design of implant surface
coating in the spine and brings new hope for reducing the
complications of endophytes after surgical treatment of
clinical osteoporosis [52].

Fig. 2 Bionic 3D printing porous titanium alloy bracket Schematic and
physical drawings ((a) 3D three-dimensional side view (b) 3D three-
dimensional front view (c) 3D three-dimensional top view (d) 3D

three-dimensional side view (e) 3D three-dimensional front view (f)
3D three-dimensional top view).
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With continuous in-depth research on the bionics of
implants in the spine, the construction of a bionic natural
extracellular matrix microenvironment on the surface of
internal implants has also attracted widespread attention
[53]. Studies have shown that extracellular matrix (ECM)
proteins with cell-binding domains can play an important
role in regulating cell adhesion, proliferation and differ-
entiation. The combination of ECM proteins and HA can
completely mimic the functions of inorganic and organic
components in the natural bone matrix, becoming an ideal
osteoconductive and osteoinductive functional coating [54].
This system not only gives physical support but also forms
a natural bone matrix microenvironment to induce tissue
regeneration [55]. Fabrizio et al. used a porous titanium
metal scaffold made by 3D printing and gelatin cross-
linking to the extracellular matrix of platelets that can
effectively release low-dose growth factors after implanta-
tion in vivo. This scaffold is conducive to the growth of
bone tissue and has shown good biocompatibility [56]. The
creation of bionic titanium scaffolds provides a promising
structural and functional dual bionic strategy for the design
of metal implants with osteoinductive, antibacterial, bone
regenerative and infection-preventing functions.

4.2 Combined application of biology and
biomaterials

In recent years, tissue engineering technology has combined
biomedical engineering, cell biology and biomaterial sci-
ence to provide new strategies for the treatment of bone
defects [57–59]. To design scaffolds to induce bone for-
mation and angiogenesis, biodegradable materials are made
into porous shapes and combined with growth factors,
drugs, genes or stem cells with different bioactive functions
to promote cell material surface interactions, which play an
important role in bone integration after spinal implant
implantation. Tissue engineering guides the fate of cell
transformation through growth factors and regulates the
expression of functional genes related to bone marrow
mesenchymal stem cell (BMSC) bone formation on bio-
material scaffolds, which has become a very promising
method for the treatment of bone defects [60]. Currently,
DNA plasmids [61, 62], short interfering RNA (siRNA)
[63], microRNA (miRNA) [64], stem cell exosomes [65]
and other functional gene regulatory molecules have been
experimentally applied in bone tissue engineering. Plasmid
DNA (pDNA) requires DNA to undergo transfection,
transcription, translation and other processes to express the
effector proteins [66]. Noncoding RNA only needs to enter
the cytoplasm to regulate genes at the expression level, and
studies have shown that this is related to the fine regulation
of bone regeneration [64, 67–71]. Some researchers have
found that miR-19b-3p can inhibit the expression of the

negative osteogenic regulator SmurF1 [72]. The lentivirus
pLVTHM-miR-19b-3p was used to transfect BMSCs to
promote their osteogenic differentiation by inhibiting the
expression of Smurf1. This provides a new strategy for
bone tissue engineering using microRNA gene-modified
BMSCs combined with poly(lactic acid) (PLLA)/polyhedral
oligomeric silsesquioxane (POSS) scaffolds [73].

Hydrogels, as carriers of cells and biologically active
molecules, are used in ECM bionic scaffolds to mediate cell
and tissue regeneration [74, 75]. Developing a new gen-
eration of hydrogel-inorganic particle stem cell composite
implant materials improves the physical and biological
properties of engineered bone and cartilage tissue [76].
Genetically modified potato virus X (PVX) nanoparticles
can produce bone-related functional peptides, which are
ideal materials for preparing hydrogel nanocomposites in
bone tissue engineering [77].

By adjusting the physical and chemical properties of the
substrate to imitate the ECM of natural tissues, cell-
substrate contact can be enhanced to regulate cell behavior.
Recombination occurs under the influence of pressure that
is equivalent to the cells passing into the environment [78].
Studies have shown that liquid crystal substrates improve
surface biological activity to enhance cell affinity and
osteogenic differentiation [79]. Using the adhesive poly-
dopamine (PDOPA) as the reaction platform, chitosan oli-
gosaccharide (COS) can be immobilized on the
hydroxypropyl cellulose ester (OPC) substrate to generate
an active OPC-PDOPA-COS liquid crystal substrate to
simulate the ECM environment in vivo, enhancing the
positive cell-substrate interaction to provide good support.
The results showed that after inoculation of rat bone marrow
mesenchymal stem cells (rBMSCs) with OPC-PDOPA-
COSs, alkaline phosphatase (ALP) activity increased, cal-
cium deposition increased, and bone-related gene (BMP-2,
RUNx-2, COL-I and OCN) expression was upregulated.
The viscoelasticity and deformability of the liquid crystal
materials led to an active substrate, which will have broad
application prospects as an engineering interface with living
cells [80].

Bone morphogenetic proteins (bone morphogenetic
proteins 2 and 7; BMP-2 and BMP-7), as growth factors,
cytokines and metabolites, participate in the osteogenic
differentiation of BMSCs [81] and play a key role in the
regulation of bone induction and repair [82]. Traditional
BMP-2 carriers include collagen, hyaluronic acid, poly-
ethylene glycol diacrylate and gelatin [83]. The low binding
affinity of BMP-2 to collagen leads to the uncontrolled
release of collagen-encapsulated BMP-2 [84]. A novel and
simple micropattern-based carrier of gelatin array BMP-2
[85] used a GelMA hydrogel micro membrane for the local
and controlled release of BMP-2 [85–87]. BMP affects the
cell differentiation of BMSCs and promotes bone
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regeneration by binding to the BMP receptor or heterodimer
on the cell surface [88]. Studies have shown that low-dose
alendronate sodium can inhibit osteoclast activity through
the mevalonate pathway, enhance the proliferation and
differentiation of osteoblasts, and induce human MSCs to
undergo osteogenesis [89, 90]. In in vitro studies, fixing
BMP-2, BMP-7 or alendronate onto the surface of a tita-
nium alloy interbody fusion cage significantly improved the
adhesion, proliferation and differentiation of BMSCs and
had significant biological effects [91]. It has also been
shown that the nanohydroxyapatite (n-HA)-resveratrol
(RES)-chitosan (CS) micro complex can create a favorable
microenvironment by local slow release and can be used as
a multifunctional filler for the treatment of osteoporosis
bone defects and fracture repair [92].

In the field of bone tissue engineering, significant
progress has been made in the design of implants within
the spine. Compared with traditional polymer materials,
self-assembled supramolecular biomaterials have many
advantages, including structural and functional tun-
ability, contact reactivity, reversibility, and good bio-
compatibility. MSCs have been proven to effectively
promote osteogenic differentiation [93]. However, due to
factors such as manufacturing and industry supervision,
scalability, immunogenicity, effectiveness, safety, the
cost of grafts and structures, and other constraints, the
clinical conversion rate of these therapies is very low
[94]. Proteins are the executive molecules of all activities
of in the body, and cell-derived exosomes/extracellular
vesicles (EXOs/EVs) and synthetic liposomes have been
widely used in heart disease, neurogenesis, osteochon-
dral defects and tooth tissue repair [95, 96]. Exosomes
are lipid bilayer-binding vesicles with a diameter of
50–150 nm and have specific surface markers [97–99].
Compared with stem cells in terms of tumorigenicity and
immunogenicity, EXOs have better safety for use in vivo
[100, 101]. However, clinically, due to their rapid

metabolism, the administration of exosomes is limited to
high-dose intravenous infusion or direct injection, the
use period is short, and there is a risk of off-target effects
[102]. Therefore, the development of a controlled release
platform for complex biological agents has become the
only way to promote and apply EXOs, ensuring that their
integrity and biological activity are maintained during
the encapsulation and release process. Polylactic acid-
glycolic acid (PLGA) is widely used in the development
of controlled release systems due to its controllable
degradation rate and safe degradation byproducts [103].
Double embedding technology embeds proteins and
small hydrophilic molecules into polymer microspheres
[104]. Researchers designed a three-dimensional tissue
engineering structure that combined PLLA nanofibers
with porous implant scaffolds to guide bone regeneration
by the local controlled release of stem cells, stem EXOs
and EVs to reproduce the characteristics of MSCs with
osteogenic advantages [105], providing infinite possibi-
lities for the development and iterative optimization of
new spine implant materials.

In the early stage, the research group used 3D bionic
printed anatomical scaffold materials with the same end-
plate microstructure, premixed the obtained vertebral bone
marrow stem cell exosomes into the hydrogel, and used
light curing treatment and bionic 3D printing of porous
titanium alloy scaffolds The interface of the endplate
formed a tight adhesion, and finally an exosome-biomimetic
3D printed porous titanium alloy stent integrated graft was
obtained (Fig. 3).The specific quality of bone fusion in the
bone graft window and the growth of bone in the pore
structure of porous titanium alloy stent after 3 months were
evaluated by micro-CT and hard tissue section staining. The
results showed that compared with the traditional titanium
mesh, the new exosome-bionic 3D printed porous titanium
alloy stent had better bone-metal interface integration and
bone tissue growth in the pore structure.

Fig. 3 Vertebral bone marrow
stem cell exosomes/biomimetic
3D printing porous titanium
alloy scaffold construction and
mechanism of promoting bone
formation and angiogenesis
in vivo and in vitro and
promoting cervical fusion.
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4.3 Four-dimensional (4D) bioprinting technology
applied to spine materials

4.3.1 The development of 4D bioprinting technology

Fractures and surgical decompression of bone and joint
degenerative diseases can lead to vertebral bone tissue defects,
and it is usually necessary to use internal implants to promote
bone regeneration and replace the defective tissue [106]. In the
past two decades, as 3D bioprinting technology has made
significant progress in bone tissue engineering, a large number
of studies have combining biomaterials, cells and biologically
active factors has become a development trend in the field of
bone tissue engineering [107, 108]. With the continuous
development of new material technologies, printing materials
have also been developed from single solid powder materials
such as metals, plastics, and ceramics mixed with materials
such as liquids, gels, and cells [109]. These advanced tech-
nologies can promote the regeneration of bone tissue by using a
controllable mode to construct bionic structure implants
[110, 111]. As a kind of surgical implant product with clinical
application prospects, the use of 3D-printing rapid prototyping
technology is increasing and developing rapidly [112–114].
However, the clinical applications of 3D bioprinting in bone
tissue engineering still face a series of challenges, such as tissue
reconstruction of large and irregular bones and the personalized
clinical needs of formed blood vessels and nerve regeneration
[111, 115, 116]. 3D bioprinting can only print objects with
static and inanimate initial conditions, while bone tissue
regeneration includes a complex three-dimensional structure,
microstructure and extracellular matrix composition, as well as
the corresponding response to internal or external stimuli by
endogenous mechanisms, which is finally accompanied by
dynamic changes in tissue conformation from objects with
unique functions. These dynamic functional conformation
changes cannot be simulated by 3D bioprinting technology.
Skylar Tibbits, the director of MIT’s Self-Assembly Labora-
tory, demonstrated four-dimensional (4D) printing technology
for the first time in 2014. 4D bioprinting is a new generation of
tissue engineering that integrates the concept of time as the
fourth dimension into 3D bioprinting technology. This tech-
nology is expected to reshape the potential of implant product
design in the spine. The two main features of 4D bioprinting
are as follows: the shape or function of the biological endo-
phyte, which is made based on the configuration of the printed
object, does not change; and when external stimulation, cell
fusion or self-assembly occurs after printing, the shape or
function of the printed object also changes over time
[117, 118]. The structure or function of the 4D-printed product
is stable before and after stimulation, so the technology of 3D
printing a structure with controllable degradation materials that
completely disappears in the dynamic process will not be
included in the scope of 4D printing [119]. Artificial induction

or cell traction [120] can adjust the biological behavioral
changes in cells and tissues, such as wound healing, angio-
genesis, metastasis, and inflammation [120, 121] to achieve the
structural deformation of endophytes while integrating 3D
bioprinting technology to achieve 4D bioprinting [122–124].

4.3.2 The progress of 4D bioprinting technology

4D bioprinting of bone tissue implants can meet the needs
of personalized bone regeneration by stimulating the shape
change characteristics of materials [124]. Programmed
cross-linking or recombination can regulate the mechanical
properties of the internal implants [125], design self-folding
microtubules [126] engineer vessels to achieve the spatio-
temporal distribution and release of bioactive cells to pro-
mote the regeneration of bone, blood vessels and nerve
tissues, and establish a long-term bionic microenvironment
to enhance the osteogenic differentiation of stem cells [127].
With the deepening of 4D bioprinting technology research,
scientific and technical guidance can be provided for the
future clinical applications of spinal implants to manu-
facture fine-printed bone structures to dynamically adapt to
bone defect areas [128–130].

4.3.3 Controlling factors of 4D bioprinting materials

4D bioprinted bone tissue implants can be stimulated by
changes in the internal environment of the machine and tem-
poral shape changes, so these changes can provide a tracing
direction for the formulation of 4D bioprinted materials.

The extension and contraction of polymer chains caused
by temperature changes are the most commonly used phy-
sical stimuli to achieve shape transformation. Therefore, a
series of thermally responsive materials have been devel-
oped [131], such as poly-N-isopropylacrylamide [131, 132].
Changes in wettability and solubility with temperature
cause biological materials to expand or contract and corre-
spondingly deform [133–137]. Bioelectric stimulation can
adjust the expansion, contraction or folding of endophyte
biomaterials by changing the internal environment to affect
the direction and intensity of the electric field, so hydrogels
containing conductive polymers with good biocompatibility
and printing performance should be selected for 4D bio-
printing materials [138–141]. Magnetically responsive
materials such as ferro- and paramagnetic nanoparticles
(MNPs) can induce changes in the magnetic field force for
controlled drug release [142, 143]. The combination of
Fe3O4 nanoparticles and a polyethylene glycol/agar hydro-
gel network to construct a magnetically responsive drug
delivery system provides a non-invasive treatment plan for
clinical soft tissue injury treatment [143]. Magnetic hydro-
gels provide diverse choices for 4D bioprinting materials
due to their good rheological properties [144, 145]. pH-
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responsive materials are generally biologically active fac-
tors attached to the surface of biological materials that
contain chemical groups such as carboxyl, pyridine, sulfo-
nic acid or phosphate that can release or accept protons with
pH changes to cause the material to swell and change with
pH changes [146].

4.3.4 The clinical application prospects of 4D bioprinting
technology

A series of 4D bioprinting strategies allow science and tech-
nology to solve the problems of the in vivo transplantation of
large-scale engineered bone graft substitutes and promote the
regeneration of the microvascular system and neural network
system [147–149]. Existing studies have combined mouse
MSCs with methacrylate, alginate and hyaluronic acid mixed
hydrogels and used 4D bioprinting technology to create hollow
self-folding tubes that are active and equivalent in diameter to
the smallest blood vessel [150]. 4D bioprinting technology that
combines AM technology with the development of new
materials and modern technology can directly print bioactive
artificial bone tissue. The breakthrough of this technology is
not far away. This technology can not only meet unresolved
clinical medical needs but also completely change traditional
material preparation methods. This emerging technology will
provide enlightenment for the applications of spinal implant
bone tissue engineering.

5 Conclusions

This article reviews the effects of spinal implant materials
on the biological response of bone tissue in vivo and
in vitro. From the current research and literature review, it is
obvious that simple changes in the physical properties of the
surface of the endophyte material or changes in the che-
mical properties of the material can cause significant
changes in the cellular response. With the advancement of
science, the expectation is for continuous optimization and
improvement in endophytes to promote future research and
development in this field. Researchers have gradually
developed methods that more directly couple biological
reactions to the surfaces of metal materials. For this reason,
the creation and development of 4D bioprinting technology
that uses 3D printing technology to personalize customized-
collective material surface modification technology-
bioactive material coupling is expected to regenerate com-
plex physiological functions after the implants are implan-
ted into the body. A series of step-by-step 4D printing
strategies have been proposed as new research and devel-
opment directions for implants in the spine, but it is still
challenging to print existing stimulus-responsive biomater-
ials and convert them into optimized bioinks, and further

improvements in shape conversion are needed, including
precise time-space controlled release and printing resolu-
tion. Undoubtedly, this new technology will provide a
reliable scientific theoretical and technical basis for the
research and clinical applications of biological functionali-
zation of implants in the spine.
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