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Abstract: Numerous nutraceuticals and botanical food supplements are used with the intention of
modulating body weight. A recent review examined the main food supplements used in weight loss,
dividing them according to the main effects for which they were investigated. The direct or indirect
effects exerted on the intestinal microbiota can also contribute to the effectiveness of these substances.
The aim of this review is to evaluate whether any prebiotic effects, which could help to explain
their efficacy or ineffectiveness, are documented in the recent literature for the main nutraceuticals
and herbal food supplements used for weight loss management. Several prebiotic effects have
been reported for various nutraceutical substances, which have shown activity on Bifidobacterium
spp., Lactobacillus spp., Akkermansia muciniphila, Faecalibacterium prausnitzi, Roseburia spp., and the
Firmicutes/Bacteroidetes ratio. Different prebiotics have beneficial effects on weight and the related
metabolic profile, in some cases even acting on the microbiota with mechanisms that are completely
independent from those nutraceuticals for which certain products are normally used. Further studies
are necessary to clarify the different levels at which a nutraceutical substance can exert its action.

Keywords: microbiota; prebiotic; weight loss; food supplements; botanicals

1. Introduction

Overweight and obesity are related pathological conditions with a significant impact
at the cardiovascular, metabolic, musculoskeletal, and oncological levels, representing
a significant global public health problem [1]. The traditionally proposed therapeutic
approaches act at the nutritional, psychological, lifestyle (abolishing sedentary lifestyle
and promoting physical exercise), and pharmacological levels, in combination with the
consumption of food supplements [2]. Watanabe et al. recently identified and examined
33 food supplements most used for weight loss, dividing them according to the main effect
and depending on the primary impact on nutrient absorption, appetite regulation, energy
expenditure modulation, and fat and carbohydrate metabolism [2]. Substances considered
prebiotic, which specifically stimulate components of the microbiota capable of providing
positive effects, such as increasing immune function and protection from pathogens, im-
prove host metabolism and nutrient absorption [3]. This can have a significant impact on
the metabolism of various substances used as food supplements. Based on these aspects,
the aim of this review is to evaluate the role of prebiotics in the weight loss activity of the
main natural products identified, which has been increasingly investigated and reported
recently in the scientific literature.
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2. Materials and Methods

The literature search was carried out until July 2021. MEDLINE, Cochrane library, and
Google Scholar were consulted using the following keywords: “nutraceuticals” or “herbal
food supplements” or “natural products” and “weight loss” and “prebiotic”, “microbiota”,
“metagenomic”, and “gut flora”. The analysis included data derived from the following
types of studies: prospective observational studies, retrospective studies, and random-
ized clinical studies. In vitro and in vivo studies were only taken into account regarding
substances investigated in clinical trials.

3. Results

The retrieved data indicated that many different food supplements, both herbal and
not, have been investigated in humans for their prebiotic effect and their capacity to
modulate gut microbiota. (Table 1). In detail, we found robust data for the following:

1. Supplements with the main goal of nutrient absorption (green tea, ginseng, chitosan,
β-glucans, psyllium, guar gum, and inulin);

2. Supplements with the main goal of appetite regulation (whey proteins and chlorogenic acid);
3. Supplements with the main goal of energy expenditure modulation (curcumin and

L-carnitine);
4. Supplements with the main goal of fat metabolism (resveratrol and flaxseed).

Moreover, for each substance, we reported data related to effects on weight loss
through the microbiota modulation in animal models, considering that results obtained in
animal models do not always reflect observations in humans.

3.1. Food Supplements with the Main Goal of Nutrient Absorption
3.1.1. Green Tea

Green tea (Camellia sinensis Kuntze) is a herb whose preparations have been extensively
used in the traditional Chinese medicinal system. It possesses several positive health effects
due to polyphenols, which are its most bioactive compounds that have demonstrated many
properties, such as antioxidant, antiaging, and anti-inflammatory action [4]. In humans,
using 16S rRNA sequencing, it was found that green tea consumption increased the relative
abundance of Firmicutes and Actinobacteria, and decreased the concentration of phylum
Bacteroidetes. In addition, short chain fatty acid (SCFA)-producing bacteria, such as Rose-
buria spp., Faecalibacterium spp., Eubacterium rectale group, Blautia spp., Coprococcus spp.,
and Bifidobacterium longum, were increased by green tea, while other species within the
genus Prevotella were decreased [5]. Barcena et al. observed that green tea polyphenols
were able to increase the concentration of Faecalibacterium prausnitzii in a mouse model.
The modulation of this gut microbiota species seems to be correlated with the alleviation
of high fat diet (HFD)-induced weight gain and associated with intestinal and liver in-
flammatory response in HFD mice [6,7]. In HFD-fed mice supplemented with green tea
extract, an increase in Bacteroidetes and Oscillospira spp. families and a reduction in Pep-
tostreptococcaceae concentration was observed. Additionally, the Firmicutes/Bacteroidetes
ratio was reduced by green tea polyphenols and Akkermansia muciniphila was positively
regulated [8,9]. Many in vitro studies have examined the plausible prebiotic role exerted by
green tea; in particular, the ability of green tea polyphenols to modulate gut microbiota has
been demonstrated. Investigations on Caco2 intestinal cells showed that the abundance of
some pathogenic bacteria, such as Clostridium perfringens, Clostridium difficile, and Bacteroides
spp., was significantly lower, while the levels of commensal bacteria, such as Lactobacillus
and Bifidobacterium spp., were increased by green tea polyphenols [10,11]. Considering the
evidence, green tea may have a potential antiobesity activity by modulating gut microbiota.

3.1.2. Ginseng

Ginseng consists of the dried roots of Panax ginseng C.A. Meyer. The main phyto-
chemicals compounds of ginseng are triterpenic saponins, called ginsenosides and polysac-
charides. The most well-known is Asian ginseng. On the other hand, Panax quinquefolius
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L. is better known as American ginseng; it mainly differs from Asian ginseng for the
quali-quantitative profile of different ginsenosides [12]. Both American and Asian ginseng
have been investigated in animal models and in clinical trials for their role in weight loss
and gluco-lipidemic profile improvement [13]. Even most clinical trials fail to address a
clear effectiveness of ginseng due to the variability of administered preparations, herbal
combinations, and dosages [14]; recent investigations have remarked the high potential
of ginseng in body weight control through the modulation of gut microbiota. A clinical
exploratory study that enrolled 10 obese women aged 40–60 years showed that 8 g/day of
a chemically characterized P. ginseng extract administered for 8 weeks exerted a weight loss
effect and modest modifications of gut microbiota species compared to untreated healthy
obese participants. The antiobesity effectiveness of the treatment was related to the differ-
ent gut microbiota structure before the administration of ginseng. Differences in bacterial
communities before and after ginseng administration in both groups exhibited how Teneri-
cutes, Bacteroidetes, and Firmicutes were more represented in women who underwent a
more evident biological effect prior to ginseng administration. The relative composition
of Actinobacteria and Proteobacteria showed significantly lower abundances [15]. In an
in vivo study, the aqueous extracts of two different Asian ginseng preparations, white and
red ginseng (oven dried and steam processed and then oven dried, respectively) were
administered to obese mice for 10 weeks. Both white and red ginseng were found to be
effective as antiobesity agents, but white ginseng, characterized by a lower ginsenosides
level, high levels of glucose residues, and a higher content of di- and trisaccharides, exhib-
ited a stronger activity in ameliorating fat accumulation and metabolic and gut microbiota
dysregulation. In particular, white ginseng restored the phyla Firmicutes/Bacteroidetes
ratio [16]. The prebiotic effect of ginseng polysaccharides has been investigated to elu-
cidate the biotransformation and consequent biological activities of ginsenosides under
different physio-pathological conditions. The ginsenosides, together with saccharides,
positively regulate gut microbiota by acting as an energy substrate for specific intestinal
bacteria. Moreover, they are able to reshape the gut microbial environment, triggering
several molecular and cellular signaling pathways, which determines their therapeutic
effects. The exposure to ginseng polysaccharides enhanced the microbial deglycosylation
and intestinal absorption of ginsenoside Rb1 [17,18]. The synergistic effect of polysaccha-
rides and ginsenosides recovered the gut microbiota composition and increased several
beneficial mucosa-associated bacterial taxa such as Clostridiales, Bifidobacterium, and Lach-
nospiraceae, but decreased harmful bacteria Escherichia-Shigella and Peptococcaceae. This
association may be used as immunostimulants targeting the microbiome–metabolomics
axis under immunosuppressive and intestinal damage conditions [19,20]. Overall, the
analyzed data suggest that the effect of the ginseng phytocomplex is significantly related
to the activity on and of the intestinal microbiota.

3.1.3. Chitosan

Chitosan and chitosan oligosaccharide (COS) are two derivates of the polysaccharide
chitin, a common component of exoskeletons of arthropods and insects and a component
of fungi cell walls. Chitosan is a deacetylated polymer of N-acetyl glucosamine derived
from chitin. COS is an oligomer of β-(1→4)-linked d-glucosamine and represents the
most studied and easily obtained derivate from chitin. COS is widely water soluble and
readily absorbed through the human intestine, so it has been recently studied as an enteric
coating for cells, drug and DNA delivery enhancement, and as a nutraceutical. In vivo,
chitosan has shown lipid-binding properties, thus reducing their gastrointestinal uptake,
and lowering serum cholesterol. Indeed, COS and its derivatives have shown interesting
biological activities interacting with many pathways, thus inhibiting nuclear factor kappa
B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, and the activation
of AMP-activated protein kinase (AMPK) [21,22]. Whether these beneficial properties of
chitosan and COS are obtained through a variation of microbiota is still debated. This
observation was partially confirmed in human trials: a meta-analysis study on overweight
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or obese adults suggested a significant weight loss and a decrease in total cholesterol
levels following chitosan treatment compared to placebo [23]. Another study, involving
10 healthy volunteers after 4 weeks of chitosan supplementation, displayed considerable
variations in the composition of microbial patterns among different persons, highlighting
the high complexity and individuality for each subject. A raised level of fecal Bacteroides
spp. in response to chitosan intake was found in all samples, while the Bifidobacterium spp.
level increased or was unchanged [24]. A clinical trial performed considering COS sup-
plementation in Chinese coronary heart disease patients [25] highlighted that 1–2 g/day
of COS consumption for 6 months decreased the number of Faecalibacterium, Alistipes,
and Escherichia spp. and significantly increased the Bacteroides, Megasphaera, Roseburia,
and Prevotella populations and Bifidobacterium spp. Additionally, COS consumption in-
creased Lactobacillus, Lactococcus, and Phascolarctobacterium spp., which have been reported
to be associated with antioxidant properties and lipid balance [26]. A chitosan derivate,
carboxymethyl chitosan, also showed an antibiotic effect in a mouse model: a colon mi-
crobiota analysis after treatment showed a significant decrease in the OTU number and
relative species abundance, with a severe disbalance caused by a rise in Enterobacteriaceae,
Lachnospiraceae, and several other bacteria. These variations were observed alongside a
worsening of glucose and lipids homeostasis [27]. An exploratory study on the fermen-
tation of COS in vitro and COS supplementation in a mouse model indicated that COS
reduced genus Lactobacillus and Bifidobacterium and impaired Desulfovibrio, with an increase
in the Akkermansia population [28]; the same increase in Akkermansia spp. was observed
after COS treatment in a model of diabetic mice [29]. COS showed a protective effect against
colorectal cancer (CRC) in a model of obese mice by reversing the imbalance of bacteria
and fungi, specifically, by reducing the abundance of Escherichia-Shigella, Enterococcus, and
Turicibacter spp., and increasing the levels of Akkermansia spp. as well as butyrate-producing
bacteria and Cladosporium spp. [30]. The increase in Akermansia muciniphila corroborated
the effect observed in HFD-fed mice where two kinds of low-molecular-weight chitosan
oligosaccharides (LMW) significantly decreased inflammatory bacteria such as Erysipela-
toclostridium and Alistipes spp., while Akkermansia and Gammaproteobacteria, which are
considered beneficial, increased significantly [31]. An in vitro study on human colon cells
showed how chitosan derivatives with a high number of deacetylated units impaired many
bacterial populations, such as Bifidobacterium spp., Eubacterium rectale/Clostridium coccoides,
C. Histolyticum, and Bacteroides/Prevotella spp. [32]. The large number of studies on different
models highlighted a beneficial impact of Akkermansia muciniphila treatment on obesity.
A. muciniphila has been characterized as a beneficial player in the body metabolism, and it
has been proposed for the treatment of metabolic disorders associated with obesity, as well
as being considered among next-generation therapeutic agents.

3.1.4. β-Glucans

β-glucans are glucose polymers present in the cell walls of fungi, yeast, and ce-
reals. They are widely found in common foods, such as oats, barley, sea weeds, and
mushrooms. Several properties have been attributed to beta-glucans, such as anticancer,
antidiabetic, anti-inflammatory, and immune-modulating effects [33–35]. The prebiotic ef-
fect of β-glucans was demonstrated in several clinical trials on 52 healthy subjects. Indeed,
a β glucan-enriched diet was able to increase the levels of Roseburia hominis, Clostridiaceae
(Clostridium orbiscindens and Clostridium spp.), and Ruminococcus spp. and to reduce the
levels of Firmicutes and Fusobacteria. The results also showed a marked increase in levels
of the main SCFAs, such as 2-methyl-propanoic, acetic, butyric, and propionic acids [36].
Furthermore, many in vivo and in vitro studies have shown that β-glucans have a sig-
nificant prebiotic effect due to their ability to modulate gut microbiota; in particular, the
consumption of β-glucans was associated with a growth of lactobacilli and Biphobacteria
and with a significant increase in the levels of SCFA, which is useful for gut integrity and
functionality. The results of the mouse model also suggested that high doses are more
effective than lower ones and that oats-derived β-glucans are more effective in comparison
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to barley β-glucans [37–39]. This evidence suggests that β-glucans have a positive impact
on gut microbiota and improve the lipid and glycaemic profile, proposing an excellent
adjuvant to hypocaloric diets [40].

3.1.5. Psyllium

Psyllium is a water-soluble fiber, derived from the husks of seeds of Plantago ovata
Forsk.fr, and able to form a viscous gel. It is used for managing intestinal regularity;
reducing appetite; and interfering with the absorption of carbohydrates, lipids, and bile
salt [2]. Its consumption in healthy subjects and patients with constipation highlighted
small but significant effects on the microbiota; in healthy subjects, it causes an increase in
Veillonella and a decrease in Subdoligranulum spp., while in constipated patients, an increase
in Lachnospira, Faecalibacterium, Phascolarctobacterium, Veillonella, and Sutterella spp. and
a decrease in Coriobacteria and Christensenella spp. have been observed, related to the
modification of the fecal levels of acetate and propionate [41]. Further studies confirm
the benefit of psyllium on the frequency of the hive, on the microbiota level, and on the
concentration of SCFA [42]. By evaluating the impact on bifidobacteria, it was shown that
the administration of psyllium in healthy women significantly affects the levels of these
bacteria, despite the increase in the overall fecal bacterial burden. In vitro investigations
have clarified how the psyllium fiber exerts prebiotic effects on bifidobacteria through
partial hydrolysis, exhibiting effective bifidogenic activity only in the case of low levels of
fecal bifidobacteria before treatment [43].

3.1.6. Guar Gum

Guar gum is a fiber derived from the seed of Indian leguminous plant Cyamopsis
tetragonolobus (L.) Taub. Chemically, it is a polymer of D-galactose and D-mannose called
galactomannan [2]. Guar gum intake in healthy volunteers was correlated with an increase
in Ruminococcus, Fusicatenibacter, Faecalibacterium, and Bacteroides spp. and a reduction in
Roseburia, Lachnospiracea, and Blautia spp., associated with an improvement in defecation
frequency; stool consistency; and the abundance of metabolites, including butyrate, ac-
etate, and amino acids [44]. Data were partially confirmed by evaluations of a larger scale
of samples, where in one case, the consumption of guar gum enhanced the increase in
Bifidobacterium, Ruminococcus, and Megasphaera spp. and inhibited Bacteroides and Phasco-
larctobacterium spp. growth. This effect influenced the stool consistency without altering
the frequency of the hive [45]. Furthermore, the administration of a guar gum-enriched diet
has shown noteworthy effects: a transitory ability to favor the development of bifidobacte-
ria [46]. In particular, effects of considerable interest were highlighted. The administration
of guar gum in 13 children suffering from autism spectrum disorder, with concomitant
dysbiosis and constipation, was able to modify the relative abundance of genus Blautia
and increased Acidaminococcus spp., also reducing genera Streptococcus, Odoribacter and
Eubacterium [47]. Consumption in 15 hemodialysis patients with concomitant constipation
was correlated with an increase in bifidobacteria, Bacteroides spp., and lactobacilli and a
reduction in the Clostridium XVIII cluster [48].

3.1.7. Inulin

Inulin is a polysaccharide extracted principally from chicory and produced by many
plants. From a chemical point of view, it belongs to the inulin-type fructans family
(ITFs), which covers β-(2←1) linear fructose polymers, such as oligofructose and fructo-
olygosaccharides (FOS), as well as inulin itself [2]. In a clinical study including 44 healthy
adults with mild constipation, the intake of inulin 12 g/day was correlated with specific
changes in the relative amount of Anaerostipes, Bilophila, and Bifidobacterium spp., associated
with gut function improvement, in the absence of significant differences in the uniformity
or diversity of the microbiota [49]. Results were partially confirmed by a subsequent
evaluation carried out on 26 healthy individuals, where the administration of 9 g/die of
inulin was associated with a greater proportion of the genus Bifidobacterium, a reduced
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level of non-classified Clostridiales, and the decreasing tendency of Oxalobacteraceae.
Microbial effects were accompanied by greater satiety and a reduced desire to eat sweet,
salty, and fatty foods; these changes were transient and tended to disappear 3 weeks after
the cessation of administration [50]. The prebiotic effect of inulin depends on the high
or low consumption of fiber. Subjects with a higher consumption of fiber showed an
increase in Bifidobacterium and Faecalibacterium spp. and a decrease in Coprococcus, Dorea,
and Ruminococcus spp., whereas in subjects with a reduced intake of fiber, an increase
in Bifidobacterium spp. occurred, highlighting that subjects with a regular intake of fiber
experience the greatest benefit from the prebiotic effect of inulin [51]. These effects could
be advantageous in the case of overweight and obesity: the administration of 16 g/day
of inulin plus oligofructose in obese women resulted in an increase in Bifidobacterium asp.
and Faecalibacterium prausnitzii contextually to a reduction in Bacteroides intestinalis, Bac-
teroides vulgatus, and Propionibacterium spp. Moreover, a weak decrease in the fat mass and
plasma levels of lactate and phosphatidylcholine was observed [52]. A similar evaluation
in 12 overweight adults showed that the administration of 20 g/day of inulin-propionate
ester caused changes at the class level, with an increase in Actinobacteria and a decrease in
Clostridia at the order level, and a decrease in the proportion of Clostridiales, and at the
species level, greater proportions of Anaerostipes hadrus, Bifidobacterium faecale, Bacteroides
caccae, Bacteroides uniformis, Bacteroides xylanisolvens, and Fusicatenibacter saccharivorans
and a lower percentage of Blautia obeumin, Blautia lutea, Bacillius fluminis, Blautia obeum,
Eubacterium ruminantium, Anaerostipes hadrus, and Prevotella copri were detected [53]. An
investigation in 12-year-old overweight subjects also revealed significant changes in the
microbiota with an increase in the species of the genus Bifidobacterium and a decrease in Bac-
teroides vulgatus and Faecalibacterium prausnitzii [54]. The use of inulin and similar fructans
proved to be of considerable interest due to the possibility of intervention at the microbiota
level, in the management of gastroenterological disorders that are likely associated with
both overweight and obesity.

3.2. Food Supplements with the Main Goal of Appetite Regulation
3.2.1. Whey Protein

Whey protein (WP), due to its high content in branched chain amino acids, can stim-
ulate a higher level of muscle protein synthesis than other proteins, such as casein and
soy [2,55]. For this reason, the consumption or supplementation of WP is used to sup-
port the gain of muscle mass and to optimize body composition in athletes. In addition,
WP exerts several health benefits, and it could represent a valuable tool against obesity,
modulating appetite and the plasma levels of satiety hormones, such as insulin, ghre-
lin, cholecystokinin, and glucagon-like peptide 1 [56]. In a randomized pilot study in
cross-country runners whose diets were supplemented with WP (20 g isolated WP + 10 g
hydrolyzed WP) for 10 weeks, the increased abundance of Bacteroidetes phylum and the
reduced presence of health-related taxa, including Roseburia, Blautia spp., and Bifidobac-
terium longum, were reported. These results suggested that long-term WP supplementation
may negatively affect gut microbiota [57]. In contrast, an in vivo study showed that the
10-week supplementation of WP in 5-week-old mice fed with a HFD was able to reduce
weight gain and modulate gut microbiota by increasing the portion of murine lactobacilli.
These changes were detectable only in mice that started dietary intervention after 5 weeks,
without prior consumption of WP, thus suggesting that the effect of whey protein on the
body composition and gut microbiota of mice depends on diet duration and stage of life
during which the diet is provided [58]. Another study conducted on a mouse model
showed that the 21-week treatment of WP in HFD-fed mice could increase the portion of
Lactobacillaceae/Lactobacillus and decrease Clostridiaceae/Clostridium [56]. Furthermore,
in vitro studies performed using a gastrointestinal digestion model, showed that WP can
lead to an increase in Bifidobacteriaceae and Lactobacillaceae, and Bifidobacterium and
Lactobacillus spp. [59]. The current evidence shows controversial effects exercised by WP



Microorganisms 2021, 9, 2427 7 of 19

on gut microbiota, suggesting that further studies on the putative prebiotic action of WP
are needed.

3.2.2. Chlorogenic Acid

Chlorogenic acid (CGA), one of the most common dietary polyphenols, is a major
component of coffee and some other plant species. CGA shares antioxidant and anti-
inflammatory capabilities with other polyphenols; however, other properties have recently
been reported in basic and clinical research studies, with alleged reduced risk of a variety of
diseases [2]. Mainly based on animal studies, it has been observed that CGA exerts pivotal
roles on glucose and lipid metabolism regulation, which has an impact on related disorders
such as diabetes and obesity, with consequent reduced risks of cardiovascular diseases,
cancer, and fatty liver disease [60]. The contribution of microbiota to these effects has been
alleged in many studies, but no microbiota variation pattern following CGA supplementa-
tion has been identified. A pilot clinical trial conducted on 26 patients with diabetes and
non-alcoholic fatty liver disease (NAFLD) indicated a significant decrease in body weight
after the consumption of 200 mg caffeine plus 200 mg chlorogenic acid supplementation for
3 months in comparison to patients who consumed only chlorogenic acid or caffeine supple-
mentation [61]. As noted in preclinical studies, gut Bifidobacteria increased in the caffeine
plus chlorogenic acid group; however, there were no statistically significant differences
within and between the groups in any of the bacteria numbers. Instead, in vivo studies
showed contrasting results; CGA supplementation in obese mice models inhibited the
growth of Desulfovibrionaceae, Ruminococcaceae, Lachnospiraceae, Erysipelotrichaceae and Oscil-
lospiraceae genera and increased the growth of Bacteroidaceae and Lactobacillaceae [62,63],
but CGA was also able to inhibit bacteria belonging to the genera Blautia, Sutterella, and
Akkermansia and increase butyric acid levels, mainly due to Ruminococcus [64]. Similar
to observations in other studies, an increase in the population of Lactobacillus and Bifi-
dobacterium spp. and a decrease in the population of Escherichia coli were observed in
an animal model fed with a CGA-enriched diet; this effect was proportional to the CGA
supplementation dose [65]. In vitro studies conducted on human colon cells showed how
the fermentation of coffee polyphenols such as CGA could lead to the proliferation of
bifidobacteria [66,67]. Several functions have been attributed to bifidobacterial presence
after CGA supplementation, such as the lysis of indigestible carbohydrates, defense from
pathogens, vitamin B production, antioxidation, and immune system stimulation. Further-
more, reciprocal interactions between bifidobacteria and butyrate-producing colon bacteria,
mainly Faecalibacterium prausnitzii and Roseburia spp., are suggested [68]. These interactions
can favor the co-existence of bifidobacterial strains with butyrate-producing colon bacteria
in the human colon, finally resulting in SCFA production, which can beneficially modulate
adipose tissue, skeletal muscle, and liver tissue function, and improve glucose homeostasis
and insulin sensitivity [69].

3.3. Food Supplements with the Main Goal of Energy Expenditure Modulation
3.3.1. Curcumin

Curcumin is a natural phenolic component derived from Curcuma longa L. It can be
used in several different fields, such as the food, textiles, and pharmaceutical industries. Al-
though curcumin has a wide range of therapeutic impacts, it shows extremely low bioavail-
ability, which requires the use of pharmaceutical technologies to increase its bioavailability.
There is abundant evidence on the beneficial use of curcumin in several conditions, such as
cancer, diabetes, autoimmune diseases, and neurodegenerative diseases [2,70–72]. Many
studies have shown that curcumin is able to positively modify gut microbiota composition.
A human randomized placebo-controlled trial showed that curcumin oral supplementation
(curcumin 1000 mg plus piperine extract 1.25 mg every tablet—3 times/day) significantly
changed the gut microbiota composition differently in subjects, with a significantly higher
overall reduction in bacterial species than the placebo group. Although the modifications
varied individually, it was found that curcumin supplementation generally promoted
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an increase in Clostridium, Bacteroides., Citrobacter, Cronobacter, Enterobacter, Enterococcus,
Klebsiella, Parabacteroides, and Pseudomonas spp. and decreased the abundance of Blautia and
Ruminococcus spp. [73]. In HFD-fed rats, curcumin significantly altered the gut microbiota
composition, counteracting the HFD-induced abundance of Ruminococcus spp., which is
described as being associated with diabetes and inflammation [74]. In addition, in rats,
curcumin supplementation for 15 days (100 mg/kg) decreased the abundance of Prevotel-
laceae, Bacteroidaceae, and Rikenellaceae, which are families associated with the onset
of systemic diseases, and increased the amount of bifidobacteria and lactobacilli, which
have been shown to possess antitumoral functions [75–77]. Moreover, in a colorectal cancer
mouse model, curcumin treatment decreased the microbial concentration of Prevotella
and Ruminococcus spp., a cancer-related species [73,78]. The current evidence suggests
a protective effect of curcumin due to its ability to generate a shift from pathogenic to
beneficial bacteria strains in the gut.

3.3.2. L-Carnitine

L-Carnitine (L-C) is an amino-acid derivative produced from the amino-acids ly-
sine and methionine and is widely present in animal tissues [2]. Numerous studies have
taken into consideration the role of L-Carnitine in the elevation of endogenous levels of
trimethylamine-N-oxide (TMAO), a factor correlated with a significant increase in cardio-
vascular risk. Studies in human and animal models have suggested that several bacteria,
such as Deferribacteraceae, Enterobacteriaceae, Anaeroplasmataceae, Prevotellaceae, Ru-
minococcaceae, and Lachnospiraceae, are engaged in TMAO production or the TMAO
level [79–85], including the presence of specific genera, such as Mitsuokella, Fusobacterium,
Desulfovibrio, and Methanobrevibacter smithii [85]. Evaluating the phenomenon from the
point of view of enterotypes, the enterotype characterized by Prevotella was associated with
higher plasma levels of TMAO than the Bacteroides enterotype [86]. In some studies, the
Emergencia timonensis species has been identified as the main actor of the transformation
of γ-butyrobetaine to TMAO; however, its presence was not highlighted as the prevalent
causal element of this process in a study performed in elderly women, confirming the
role also played by other described bacteria [87]. On the other hand, L-Carnitine sup-
plementation provided a beneficial effect in patients undergoing hemodialysis, where it
improved muscle discomfort, gastrointestinal disorders, and microbiota with a decrease
in the abundance of genus Clostridium subcluster 4 [88]. A further evaluation of a similar
model reported that the oral supplementation of L-Carnitine was associated with increased
TMAO levels and might be ascribed partially to its inhibitory actions on glycation end
products (AGE) [89]. In a mouse model, a high intake of L-carnitine induced an increase in
Coriobacteriaceae, Anaerobiospirillum spp., Akkermansia_muciniphila and Helicobacter pylori,
resulting in an increased TMAO metabolism [90]. The interaction between L-Carnitine and
microbiota in most studies has been investigated as a fundamental element of the negative
effects on human health related to the production of TMAO. However, in particular clinical
conditions, such as those related to hemodialysis, it could have positive effects. Future
studies will be necessary to definitively clarify any fields of application and real potential.

3.4. Food Supplements with the Main Goal of Fat Metabolism
3.4.1. Resveratrol

Resveratrol (RSV) is a polyphenolic compound belonging to the stilbenoid family; it
is widely found in its trans-isomer form in various plants, such as Polygonum cuspidatum
Siebold & Zucc.; fruits, including grapes and berries, peanuts, and red wine. Due to the ex-
tensive glucuronidation in the liver and intestine and sulfation in the liver, its bioavailability
is very low [2,91]. The effects of RSV supplementation have been studied in both animals
and clinical trials. Several health benefits seem to be associated with RSV, including the
prevention of cancer [92], obesity, and type 2 diabetes [93]; antiaging effects [94]; and the
promotion of cardiovascular health [95]. A randomized, double-blind, placebo-controlled
trial demonstrated that the supplementation of epigallocatechin-3-gallate and RSV (282 and
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80 mg/day, respectively, for 12 weeks) reduced the abundance of Bacteroidetes phylum
in men but not in women, increasing fat oxidation and skeletal muscle mitochondrial
oxidative capacity [96]. Recent in vivo studies have shown that RSV induces changes in
gut microbiota, which could lead to lower body weight and body fat and improve glucose
homeostasis and obesity-related parameters [93]. In mice, high intakes (200 mg/kg/day)
of RSV provided an increase in Lactobacillius and Bifidobacterium spp. [97]. Meanwhile,
RSV decreased TMAO levels by inhibiting commensal microbial trimethylamine (TMA)
production via gut microbiota remodeling in ApoE−/− mice, thus reducing arteriosclero-
sis risk [98]. Furthermore, RSV supplementation (450 mg/kg/day for 2 weeks) resulted
in a reduction in the Bacteriodetes/Firmicutes ratio and Lachnospiraceae and an increase
in Parabacteroides, Bilophila, and Akkermansia spp. in HFD-fed mice, improving skeletal
muscle insulin sensitivity, glucose utilization, and metabolic rate [99]. Conversely, the Fir-
micutes/Proteobacteria ratio was increased in hypertensive rats supplemented for 90 days
with a drink containing 50 mg/L of resveratrol, restoring systolic and diastolic blood pres-
sure [100]. Other variations in the gut microbiota have been observed following RSV and
the supplementation of some of its active metabolites, such as a reduction in Lactococcus,
Clostridium, Oscillibacter, Hydrogenoanaerobacterium spp. (200 mg/kg/day for 8 weeks) [101],
Parabacteroides jonsonii DMS 18315, Alistipes putredinis DMS 17216, Bacteroides vulgatus ATCC
8482 (60 mg/kg/day for 5 weeks), and Enterococcus faecalis (200 mg/kg/day for 12 weeks),
resulting in improved body weight and glucose and lipid profiles [97,102]. Piceatannol,
derived from the CYP450 metabolism of RSV, shows similar effects on gut microbiota to
those described above in mouse models [103]. Based on the evidence, RSV can lead to
health benefits modulating gut microbiota.

3.4.2. Flaxseed

Linum usitatissimum L. is a widely known medicinal plant worldwide, as well as a
textile fiber source and a dietary source. For medical applications, the part of interest
of the plant is represented by the seed (semen) (flaxseed), which is rich in oil (consist-
ing of polyunsaturated fatty acids (PUFAs), particularly w-3); lignans such as linustatin,
neolinustatin, and linamarin; and soluble and insoluble complex polysaccharides (EMA
assessment). According to the WHO and EMA monographs, flaxseed is used mainly for
the treatment of constipation and gastrointestinal discomfort relief [2,104]. Flaxseed has
been investigated in weight loss and some clinical trials have reported a beneficial effect of
its oil and milled seed. The daily consumption of 30 g of brown milled flaxseed associated
with lifestyle intervention was found to be more effective than only lifestyle changes in
reducing body weight and metabolic markers in patients with metabolic syndrome [105].
The prebiotic effect of flaxseed constituents has been considered and deeply investigated.
A high-quality clinical trial showed the importance of gut metabolization on the biological
effect of flaxseed in obesity [106]. Fifty-eight obese post-menopausal women were enrolled
and divided into three groups in a 6-week trial with parallel group intervention, which
was single-blinded: Lactobacillus paracasei F19, flaxseed mucilage (10 g), or placebo groups
were considered. Flaxseed intake over 6 weeks, to a higher extent compared to the placebo,
improved insulin sensitivity in terms of serum C-peptide reduction and enhanced insulin
response. Lipid metabolism and inflammatory markers were decreased after a 6-week
intervention with flaxseed, but differences compared to placebo groups were not signifi-
cant. The probiotic supplementation did not modify considered parameters. Microbiota
structure comparison at time zero and after intervention showed that the placebo and
L. paracasei only exerted slight alterations in the fecal abundance of bacterial strains. In
contrast, flaxseed mucilage produced a marked change in the stool abundance of bacterial
genes belonging to thirty-three gut bacterial species; twenty-four decreased species were
identified, such as the Faecalibacterium genus, and eight increased, such as the Clostridium
genus. Authors concluded that the effects on microbiota alterations and insulin sensitivity
exerted by flaxseed were not likely to be interconnected. In vivo studies confirmed the pre-
biotic effect of soluble polysaccharides of L. usitatissimum seed and, interestingly, the effect
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on the restoration of SCFA production (such as propionic and butyric acid) by intestinal
bacteria in a population of high-fat diet-fed mice [107]. Experiments in animal models also
showed that flaxseed supplementation reduced the Akkermansia muciniphila abundance
provoked by linseed inclusion in the diet [108,109]. Gut microbial metabolization has been
described for flaxseed fiber but also for other compounds, such as flaxseed fatty oil and
lignans. In an analysis of the fecal material of subjects who took flaxseed, the presence
of substances such as enterolactone, enterodiol, and matairesinol was found, which were
identifiable as products of bacterial metabolism [110,111]. Enterolactone and enterodiol
have been considered as the result of the microbial degradation of secoisolariciresinol diglu-
coside, likely conducted by Clostridium saccharogumia, Eggerthella lenta, Blautia producta,
and Lactonifactor longoviformis [112]. The metabolization of secoisolariciresinol diglucoside
was also associated with the presence of some Bacteroides spp. [113] and Bifidobacterium
spp. [114]. The colonic complex pathway of lignan metabolization was accurately reviewed
by Thumann et al. [108]. As regards flaxseed oil, an in vivo study conducted on mice
observed levels of gut metabolites derived from a supplementation with sunflower oil rich
in ω-6 and flaxseed oil rich in ω-3; the conjugated linolenic acid level was higher after
flaxseed oil supplementation [115].

Table 1. Summary of clinical trials reporting prebiotic effects of these natural substances and their impact on gut microflora.

Substance Subjects Intervention Clinical Outcome Gut Microflora
Modifications

Substances with Evidence of Weight Loss Associated with Modifications of the Microbiota

Chlorogenic Acid [61]
26 patients with diabetes and

non-alcoholic fatty liver
disease (NAFLD)

3 months of 200 mg caffeine
plus 200 mg chlorogenic

acid supplementation

Significant decrease in
body weight

Non-significative bifidobacteria
increase in the caffeine plus

chlorogenic acid group

Inulin [49–54]

44 healthy adults with
mild constipation 12 g/day inulin intake Gut function improvement

Changes in relative abundances of
Anaerostipes, Bilophila, and

Bifidobacterium spp.

26 healthy individuals 9 g/die inulin intake Greater satiety

Greater proportions of the genus
Bifidobacterium, a reduced level of
non-classified Clostridiales. and a

tendency to decrease
Oxalobacteraceae

30 obese women Inulin/oligofructose 50/50
mix 16 g/day for 3 months

Slight decrease in fat mass
and plasma levels of lactate

and phosphatidylcholine

Bifidobacterium spp. and
Faecalibacterium prausnitzii increase

and Bacteroides intestinalis,
Bacteroides vulgatus. and

Propionibacterium spp. reduction

12 overweight adults 20 g/day of
inulin-propionate ester

Increase in Actinobacteria,
decrease in Clostridia; decrease in

the proportion of Clostridiales
order. Anaerostipes hadrus,

Bifidobacterium faecale. Bacteroides
caccae, Bacteroides uniformis,

Bacteroides xylanisolvens, and
Fusicatenibacter saccharivorans

higher percentage and a lower
percentage of Blautia obeumin,

Blautia lutea and Bacillius fluminis,
Blautia obeum, Eubacterium

ruminantium, Anaerostipes hadrus,
and Prevotella copri

42 12-year-old
overweight subjects

8 g/day of oligofructose
enriched inulin for 16 weeks

Significant decreases in body
weight and

serum triglycerides

Bifidobacterium spp. increase and
decrease in Bacteroides vulgatus
and Faecalibacterium prausnitzii

P. ginseng [15] 10 obese women 8 g dry extract for 8 weeks
Weight loss effect and slight

modifications of
gut microbiota

In effective weight loss group,
change in levels of Blautia,

Faecalibacterium spp. In ineffective
weight loss group, change in

levels of Bifidobacterium, Blautia,
and Clostridium at the genus level

Substances with Evidence of Metabolic Modifications Potentially Favorable to Weight Loss Associated with Modifications of the Microbiota

Resveratrol (RSV) [96] 37 overweight and obese men
and women

Supplementation of
epigallocatechin-3-gallate and

RSV (282 and 80 mg/day,
respectively, for 12 weeks)

Increased fat oxidation and
skeletal muscle mitochondrial

oxidative capacity

Reduced abundance of
Bacteroidetes phylum in men but

not in women

Flaxseed [106] 58 obese
postmenopausal women

Flaxseed mucilage (10 g) for
6 weeks

Improved insulin sensitivity
related to the decrease in the

serum C-peptide and
insulin response

24 decreased species in
Faecalibacterium genus and 8

increased species in
Clostridium genus



Microorganisms 2021, 9, 2427 11 of 19

Table 1. Cont.

Substance Subjects Intervention Clinical Outcome Gut Microflora
Modifications

Substances with Evidence of Changes in the Microbiota Associated with Other Effects (Which in the Animal Model are Associated with Weight Loss)

β-glucans [36] 26 healthy subjects 2 months of 3 g/day of barley
β-glucans

Marked increase in levels of
the main SCFA

Increased levels of Roseburia
hominis, Clostridiaceae

(Clostridium orbiscindens and
other Clostridium spp.),
Ruminococcus spp. and
reduced abundance of

Firmicutes and Fusobacteria

Chitosan and COS [24,26]

10 healthy volunteers 3 g chitosan/day before meal
for 28-day supplement period

Increased level of
Bacteroides spp.

120 Chinese coronary heart
disease patients

COS consumption of
1-2 g/day for 6 months

Improved blood urea
nitrogen and serum

creatinine. Higher circulating
antioxidant levels.

Increased SOD and GSH
serum levels. Reduced levels
of ALT and AST. Improved

lipid profiles

Decreased Faecalibacterium,
Alistipes, and Escherichia spp.

abundance. Bacteroides,
Megasphaera, Roseburia,

Prevotella, and Bifidobac-terium
spp., increased abundance of
Lactobacillus, Lactococcus, and

Phascolarctobacterium spp.

Curcumin [73] 30 healthy subjects
(14 analyzed)

1000 mg curcumin plus
1.25 mg extract of piperine
every tablet—3 times/day

Increase in Clostridium,
Bacteroides., Citrobacter,

Cronobacter, Enterobacter,
Enterococcus, Klebsiella,

Parabacteroides, and
Pseudomonas spp. and

decreased abundance of
Blautia and Ruminococcus spp.

Green Tea [5] Healthy subjects: 8 males,
4 females 400 mL per day for two weeks

Elevation in SCFA, and
reduction in bacterial LPS

synthesis in feces

Increased Firmicutes to
Bacteroidetes ratio, reduced

fecal levels of
Fusobacterium spp.

Guar Gum [44–48]

20 healthy volunteers 5 g of guar gum three
times/day for 3 weeks

Improvement in defecation
frequency; stool consistency;
and abundance of butyrate,

acetate, and amino acids

Increase in Ruminococcus,
Fusicatenibacter,

Faecalibacterium, and
Bacteroides spp. and a
reduction in Roseburia,

Lachnospiracea, and
Blautia spp.

44 healthy volunteers 5 g/day guar gum for
3 months Altered stool consistency

Bifidobacterium, Ruminococcus,
and Megasphaera spp. increase

and Bacteroides and
Phascolarctobacterium spp.

inhibited growth

31 healthy volunteers 3.4 g/day guar gum for
21 days

Transitory bifidobacterial
increase

13 children suffering from
autism spectrum disorder

with concomitant dysbiosis
and constipation

6 g/day guar gum
Increased defecation

frequency and
reduced irritability

Increased Acidaminococcus
spp. and reduced genera

Streptococcus, Odoribacter, and
Eubacterium spp.

15 hemodialysis patients with
concomitant constipation

5.1 g/day guar gum for
4 weeks

Improved the individual stool
form and decreased

the constipation

Increase in bifidobacteria,
Bacteroides spp. and

lactobacilli and reduction in
the Clostridium XVIII cluster

L-carnitine [88] 15 Japanese patients receiving
hemodialysis

L-carnitine
tablets (900 mg) for 3 months

Improved muscle discomfort,
gastrointestinal disorders

Decrease in the abundance of
genus Clostridia subcluster 4

Whey Proteins [57] 24 cross-country runners 10 weeks 20 g isolated
WP + 10 g hydrolyzed WP

Increased abundance of
Bacteroidetes phylum;
decreased presence of

health-related taxa, including
Roseburia, Blautia spp., and

Bifidobacterium longum

Psyllium [41] 8 healthy volunteers and 16
constipated patients 7 days of 7 g/day psyllium

Increased acetate, propionate,
and butyrate, correlated with

increased fecal water

Healthy adults increased
Veillonella and decreased
Subdoligranulum spp. In

constipated subjects,
increased levels of

Lachnospira, Faecalibacterium,
Phascolarctobacterium,

Veillonella, and Sutterella spp.,
decreased uncultured

Coriobacteria and
Christensenella spp.
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4. Discussion

The evaluation of the effectiveness and related biological mechanisms of natural
products mainly used in the management of overweight depicts different targets and
underlined mechanisms, including carbohydrate and fat metabolism and/or increased
energy expenditure. Interestingly, current evidence suggests that the modulation of gut
microflora provided by some nutraceuticals and herbal food supplements may play a
relevant role in intestinal homeostasis. The analysis performed in this review underlines
the effect on overweight and related pathological conditions exerted by nutraceuticals
and herbal food supplements intervening in the gut microbiota structure and their reshap-
ing abilities. In particular, this work highlights the complexity of specific modifications
of the microbial environment produced by natural products. It is worth noting that in
a recent review, which comprehensively took into account the most used food supple-
ments for the management of overweight [2], all natural products with a demonstrated
prebiotic effect were included. In vivo and in vitro studies have evidenced a prebiotic
effect of top selling food supplements, such as white kidney bean, glucomannan, agar,
caralluma, spirulina, coffee/caffeine/guaranà, bitter orange, capsaicin, capsaicinoids and
capsinoids, pyruvate, dyacilglycerol, liquorice, conjugated linoleic acid, aloe vera, grape-
fruit, mangosteen, chromium and lipoic acid, whereas more sound data could be retrieved
for some natural products investigated in clinical trials. This review depicts the up-to-date
state of the art of the fascinating complexity of gut microbiota modulation exerted by
nutraceuticals and herbal food supplements investigated in clinical trials. Some of these
substances have been shown to be able to act on Bifidobacterium; Lactobacillus; Akkermansia;
and productive butyrate species, such as Faecalibacterium and Roseburia spp. The ability to
favor the development of bifidobacteria is considerably relevant for a series of different
effects, including the immuno-modulation processes and protection against pathogens;
cross-talk with the butyrate producers, such as Faecalibacterium prausnitzii and Roseburia
spp.; and the ability to intervene in the metabolism of macro- and micronutrients with lysis
of indigestible carbohydrates, vitamin B group synthesis and antioxidants substances [68].
Furthermore, the ability to positively modulate butyrate-producing bacteria potentially
confers other metabolic benefits, favoring the modulation of adipose organ function, liver
and skeletal muscle function, with the amelioration of glucose levels and improved insulin
sensitivity [69]. The upregulation of Lactobacillus spp. is a potentially favorable element
in the management of various conditions, such as the health maintenance of reproduc-
tive [116] and urological [117] systems. Crovesy et al. also described numerous benefits
in relation to weight control for different Lactobacillus spp., both taken individually and
combined with other nutraceutical products. [118]. Several nutraceuticals show the ability
to favor the modulation of Akkermansia muciniphila, a strain actively investigated in recent
years. Akkermansia muciniphila is related to a series of extremely favorable effects in the
context of weight control, reduction in body fat, and the management of many of metabolic
problems. Everard et. al. reported that Akkermansia muciniphila can act by increasing
endocannabinoids gut levels, which play a relevant role in inflammation, gut barrier and
gut peptide secretion, reverting fat-mass gain, adipose tissue inflammation, insulin resis-
tance, and metabolic endotoxemia [119]. Xu et al. proposed that Akkermansia muciniphila
also intervenes favorably in the modulation of liver and metabolic disorders related to
lipid metabolism, modifying the metabolic pathways present in an obesity condition [24].
Abuqwider et. al, starting from the analysis of 804 studies, focused on 10 randomized
controlled trials that showed that Akkermansia muciniphila balances the dynamics of energy
management, favoring a better balance of carbohydrate metabolism with a consequent re-
duction in low-grade inflammatory processes, and contributed to weight management and
to the improvement of the metabolic parameters related to obesity [120]. Faecalibacterium
prausnitzii and Rosaeburia spp. are described as being the main producer of butyrate [121],
an essential short chain fatty acid for maintaining gut homeostasis and intestinal barrier
function. Their presence is correlated with a better management of inflammatory processes
and immune tolerance, especially in allergy-based disorders [122]. Most nutraceuticals
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and herbal food supplements considered in this review specifically have a prebiotic effect
on these bacteria, suggesting a potential role in body weight modulation and in other
conditions where butyrate production may provide an effective clinical advantage. The
effects of considered nutraceuticals on selected bacterial species are summarized in Table 2.

Table 2. Nutraceuticals that exert prebiotic effects on Bifidobacterium spp., Lactobacillus spp., Akkermansia mucciniphila,
Faecalibacterium prausnitzii, and Roseburia spp.

Bifidobacterium spp. Lactobacillus spp. Akkermansia
muciniphila

Faecalibacterium
prausnitzii Roseburia spp.

Green Tea X X X X X

Chitosan X X X X X

Beta Glucans X

Psyllium X

Guar Gum X X

Inulin X

Whey Protein X X X

Chlorogenic Acid X X X X X

L-Carnitine X

Curcumin X

Resveratrol X X

Flaxseed X X X

How some nutraceuticals could exert health beneficial effects by modulating the
Firmicutes/Bacteroidetes ratio, a factor of considerable interest as its alteration with the
reduction in Bacteroidetes is related to obesity phenotypes, is yet to be elucidated [123].
Studies in human and animal models have highlighted that nutraceuticals such as β-
glucans, spirulina, chlorogenic acid, resveratrol, conjugated linoleic acid, grapefruit, and
mangosteen are described as being able to downgrade the Firmicutes/Bacteroidetes ratio.
In the case of herbal food supplements, such as green tea and ginseng, the effects of the
normalization of the Firmicutes/Bacteroidetes ratio are still debated.

5. Conclusions

This review shows that some natural products that are widely used as food supple-
ments and nutraceuticals can exert a prebiotic effect contributing (1) to weight loss together
with other described mechanisms, (2) to potentiating the functional effects of weight loss,
and (3) to other physiological effects that are not associated with weight loss in humans.
This review indicates the importance of investigating both the systemic and prebiotic
mechanisms of all substances that target nutrient absorption and metabolism, suggesting
that more clinical trials may increase the knowledge on this intricate topic.
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