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Abstract: Epileptic seizures are temporary episodes of convulsions, where approximately 70 percent
of the diagnosed population can successfully manage their condition with proper medication and
lead a normal life. Over 50 million people worldwide are affected by some form of epileptic seizures,
and their accurate detection can help millions in the proper management of this condition. Increasing
research in machine learning has made a great impact on biomedical signal processing and especially
in electroencephalogram (EEG) data analysis. The availability of various feature extraction techniques
and classification methods makes it difficult to choose the most suitable combination for resource-
efficient and correct detection. This paper intends to review the relevant studies of wavelet and
empirical mode decomposition-based feature extraction techniques used for seizure detection in
epileptic EEG data. The articles were chosen for review based on their Journal Citation Report,
feature selection methods, and classifiers used. The high-dimensional EEG data falls under the
category of ‘3N’ biosignals—nonstationary, nonlinear, and noisy; hence, two popular classifiers,
namely random forest and support vector machine, were taken for review, as they are capable of
handling high-dimensional data and have a low risk of over-fitting. The main metrics used are
sensitivity, specificity, and accuracy; hence, some papers reviewed were excluded due to insufficient
metrics. To evaluate the overall performances of the reviewed papers, a simple mean value of all
metrics was used. This review indicates that the system that used a Stockwell transform wavelet
variant as a feature extractor and SVM classifiers led to a potentially better result.

Keywords: electroencephalogram; wavelet; empirical mode decomposition; random forest; support
vector machine

1. Introduction

Epilepsy is a neurological disorder that affects nearly 50 million people worldwide [1].
The detection of the onset of an epileptic seizure is an important parameter in reducing
the work hazards and other related risks for seizure patients by allowing the relevant
drugs to be administered quickly. The detection and diagnosis of epileptic seizures often
require that the patient’s electroencephalogram (EEG) signals are monitored for a long
duration of time. However, the manual visual inspection process for these long-duration
signals, in addition to physiological and non-physiological artifacts, makes interpretation
a daunting and challenging task. Automated systems are available that utilize machine
learning algorithms to learn EEG patterns to identify brain neuronal activities that could
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lead to potential seizures. These include events of interest from background patterns,
which could be based on time, frequency, time-frequency, or nonlinear methods [2].

A part of the ongoing research in the field of EEG-based epilepsy detection using
machine learning focuses on the training of recognizable seizure activity by the machine
learning model and its deployment thereafter. For this, the system uses non-invasive
brain electrodes placed on the human brain. One common method reported for detecting
seizures is based on the recognition of relevant changes in power and frequencies and
the emergence or disappearance of signal modes [3]. This is needed to identify if the
seizure type is a general or focal seizure. Thus, it is important to give proper placement of
the brain electrode on the patient. The papers used in this study are based on the 10–20
system of electrode placement for EEG recording, as shown in Figure 1 [4]. With this,
seizure detection using machine learning does not only recognize seizure events, but also
their locations.
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Figure 1. The international 10–20 system of the electrode [4]. Seen from (A) left and (B) above the
head. A: earlobe, C: central, Pg: nasopharyngeal, P: parietal, F: frontal, Fp: frontal polar, O: occipital.

Figure 2 shows the basic process of EEG-based epileptic seizure data classification.
Seven of the studies [1,5–10] discussed in this paper followed the block diagram in Figure 2,
where the papers [1,5,8–10] are used for comparison. Another six studies [10–15] did not use
the feature reduction block of Figure 2. Papers [12,16,17] had pre-processing features in the
extraction block, in which decomposed signals were pre-processed first before the features
were extracted. Papers [18–21] mentioned here did not have a signal decomposition block.
In addition, one paper [21] classified its signals using segmentation statistics and not
machine learning classifiers.
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Figure 2. The process of epileptic seizure data classification.

In this paper, 19 articles are reviewed and compared for their performance, but only
10 of them provide the full set of sensitivity, specificity, and accuracy. Thus, these metrics
are used for comparative study in this review. Table A1 in Appendix A has been provided
for further information on all papers used in this review.
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1.1. EEG Databases and EEG Recording Techniques

This study involved the investigation of several databases used in extracting EEG
information. Ten of the studies used the database from the Epilepsy Center of the Bonn
University Hospital of Freiburg in Germany. Five studies used the CHB MIT database,
available online: https://paperswithcode.com/dataset/chb-mit (accessed on 1 December
2021). The rest of the databases were used in only one of the studies, including the
Toronto Western Hospital Epilepsy Monitoring Unit, the University Hospital of Rennes in
France, the Mount Sinai Epilepsy Center, Xi’an Jiaotong University, and a dataset from the
Mayo Clinic (website). Table A2 has been provided in Appendix B to reflect the different
techniques involved in EEG recordings.

The CHB-MIT database contains non-invasive extracranial scalp EEG data collected
from 24 patients with 9–42 recordings for each patient. Each recording was collected at
a sampling rate of 256 Hz and lasted around 1 h. All 24 patients provided their age and
gender [1,7,10,12,21].

The Epilepsy Center of the Bonn University Hospital has a database that consists
of five subsets of EEG signals, denoted as Set Z, O, N, F, and S. Each one of the subsets
contains 100 single-channel EEG recordings, where each segment in a set has a 23.6 s
duration collected at a sampling frequency of 173.61 Hz. [6,9,11–14,16,17,20,22].

The Toronto Western Hospital Epilepsy Monitoring Unit patient recordings were
collected from 12 subjects. All of them underwent pre-surgical evaluation. Patients were
selected based on the availability of interictal and clinical seizures records, which are
separated on an hourly basis. A total of 23 seizure events were recorded for six patients for
the training phase, while the testing phase was executed for 12 patients with a record of
33 seizure events [5].

The Mount Sinai Epilepsy Center dataset contained 86 scalp EEG recordings. All of the
recordings are continuous EEG studies that were obtained from 28 patients with epilepsy.
The recordings were made with 22 inputs and a 256 Hz sampling rate. The monitoring
duration lasted anywhere between 2 and 8 days [7].

The Institutional Review Boards of Xi’an Jiaotong University provided a dataset of
ten patients with medically intractable partial epilepsy. The recorded EEG signals were
sampled at 200 Hz. They used 19 channel electrodes that were placed according to the
standard international 10–20 system [8].

The dataset from the Neurology Department of the University Hospital of Rennes in
France contains intracranial EEG (iEEG) signal recordings. They come from five patients
suffering from drug-resistant epilepsy. They used a recording system with a sampling rate
of 2048 Hz [15].

The dataset from the Mayo Clinic website was obtained from a continuous stream of
iEEG recordings, available at the website (www.kaggle.com/c/seizure-prediction/data,
accessed on 1 December 2021 ). This is the only study that used measurements from six
dogs. They were recorded from 16 channels of raw iEEG data sampled at 400 Hz. All dogs
that were studied suffered at least seven seizure episodes on record, where only one had
just three leading seizures [19].

1.2. EEG Decomposition Methods

The raw EEG signal is based on a time series, time-varying signal that contains com-
ponents that vary in amplitude, frequency, and phase along the time axis. To process
such signals for feature extraction or classification, they need to be decomposed into their
constituent amplitude and frequency components. Only then will the relevant feature
vectors be extracted from the decomposed components. Any combinations of the three
components mentioned here can be used for extraction. The two main decomposition
methods discussed in this study use the many different variants of the wavelet trans-
form and empirical mode decomposition (EMD). As shown in Figure 3, the wavelet is
a time-frequency domain-based transformation, while the EMD is a time series-based
transformation method.

https://paperswithcode.com/dataset/chb-mit
www.kaggle.com/c/seizure-prediction/data
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The wavelet transform is an engineering solution for processing signals that are not
constant in frequency. Frequency-based signals cannot be processed effectively by simple
methods, such as fast Fourier transform, as it gives the frequency content information only
if the signal is stationary, which seldom occurs in nature. The next improvement was the
short-time Fourier transform, which gives frequency information as well as information
on the time at which the signal’s frequency occurs. The drawback of this method is that
the windowing used to extract this information is not robust. This creates a resolution
problem. Thus, with the next improvement comes the wavelet transform. It is able to give
information on both the signal’s frequency and magnitude. It can also provide the timing
information for the occurrences of the signal’s events.

Wavelet [23] was used in six studies in this review for time-series events, and the
analysis usually involves a spectrogram. The following formula illustrates a basic use of
the wavelet transform [5]:

W(s, τ) =
∫

t
x(t) ∗ φ∗s,t(t)dt where φ∗s,t(t)=

1√
s

φo

(
t− τ

s

)
(1)

The equation on the left is the wavelet function and the equation on the right is called
the mother wavelet (Morlet in the case of [6]), which is convolved with the signal to obtain
the transformed time-frequency analytical signal. The variants used in these studies were
the empirical wavelet transform [1], continuous wavelet transform (CWT) with Morlet [5],
tunable Q wavelet transform [6], and wavelet decomposition [18].

Figure 4 is an example of a discrete wavelet transform output obtained from Matlab®.
It was obtained by using a sample signal supplied by Matlab 6.1 and can be decomposed by
anyone with access to the software. Figure 4A shows how a signal is decomposed into its
high-pass output of approximate coefficients and its low-pass output of detail coefficients.
At every stage, both filter outputs are downsampled by a factor of two before going through
the process again on several levels. Figure 4B shows such a process, where the output of
five levels of detail coefficients is obtained, which is relevant for decomposition. Figure 4C
shows a comparison of the original signal and the signal after going through the fifth level
of filtering. All the detail coefficients are further used for frequency analysis.

Table 1 is a list of the types of wavelets used in the first six papers, reviewed on the
basis of the wavelet decomposition methods used. The other decomposition method used
was the empirical mode decomposition variant [11,16,17]. This is an algorithm that is
data-dependent and functions to produce a group of intrinsic mode functions (IMFs) for
a time-series signal. The IMFs can characterize the frequencies of the time-series signal
by decomposing the signal into its constituent frequencies, from the highest to the lowest.
The instantaneous time-series frequencies can then be obtained from each IMF. A popular
method to do this is to process them using Hilbert transform, which separates each IMF
into its complex components and transforms it for the frequency information.

The formula for EMD is very intuitional and there is diversity in terms of its variants.
The general equation is:

x(t) = ∑M
m = 1 Cm(t) + r(t), where m = 1, 2, ..., M, (2)
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where M is the number of IMFs, and Cm(t) and r(t) are the mth IMF and the decomposition
residue, respectively. The complete ensemble EMD with adaptive noise [11] and the
variational mode decomposition [16] are referenced in this study.

Figure 5 shows the decomposed IMF of a sample EEG signal of one electrode. After
obtaining the IMF, its instantaneous frequency information is obtained by using the Hilbert
transform, as shown in Figure 5B. The amplitude or frequency changes obtained here can
be used for further feature extraction.
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Table 1. Wavelet transforms used in the selected papers reviewed.

Paper Wavelet Transform Involved Characteristics

Bhattacharyya A, Pachori
R [1]

Littlewood–Paley and Meyer
wavelet

Filters based on these
wavelets are adaptive in the

sense that they have a
compact frequency support
and are centered around a

specific frequency.

Jacobs D., Hilton T., Del
Campo M., et al. [5] Complex Morlet wavelet

Complex wavelet transform is
less oscillatory and is

advantageous in detecting
and tracking instantaneous

frequencies.

Shivnarayan Patidar and
Trilochan Panigrahi [6]

Daubechies filter with two
vanishing moments

Filters with lower vanishing
moments can be used if the

filters are purposely limited in
their ability to decompose

signal information adequately
without using many

resources.

Wang D, Ren D, Li K, et al. [8]
Daubechies order 4 wavelet
Decomposition used up to

fifth level

Fifth level decomposition
ensures adequate signal

decomposition if the user
needs an output of five

sub-bands with good resource
trade-offs.

Hashem Kalbkhani and
Mahrokh G. Shayesteh [9]

N-point discrete Fourier
transform derivative

This derivative is the basis of
the Stockwell transform used

by the author. It provides
good resolution of time and

frequency.

Muhd Kaleem, Aziz
Guergachi, and Sridhar

Krishnan [10]

Level 5 Daubechies db6
wavelet is used as the mother

wavelet with six vanishing
moments

The higher number of
vanishing moments is used

here since it shows more
similarity with the recorded

EEG signals.

Mingyang Li, Wanzhong
Chen, and Tao Zhang [13]

Dual-tree complex wavelet
transform (DT-CWT)

Compared to Discrete Wavelet
Transform (DWT), the
dual-tree types have

approximate shift-invariance
and preferable anti-aliasing.

1.3. EEG Pre-Processing Techniques and EEG Artifacts/Data Cleaning

The process of decomposition breaks down a non-stationary signal into its separate
frequency and amplitude components. However, some decomposition techniques produce
output that needs pre-processing, as it cannot be used for extraction immediately. There
are various reasons why this happens, as outlined in the studies of Section 2.2 [16,17]
and Section 2.3 [12] which used pre-processing features. Figure A1 has been provided in
Appendix C to highlight the different techniques used.

In [12], a pre-processing block was used to remove any brain pattern noise of the
acquired EEG signal before it was treated by a decomposition process. This was per-
formed using elliptic band-pass filters, which efficiently keep the signals to a frequency
limit between 0.5 Hz and 60 Hz. Only then were the signals decomposed using discrete
wavelet transform.
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In [16], Zhang, Chen, and Li used the variational mode decomposition method. It
functions to process the raw EEG signal and separate it into 15 sets of band limited intrinsic
mode functions (BLIMFs). Since the amplitude fluctuates violently for each BLIMF, each
BLIMF undergoes a mathematical operation (logarithmic in nature) to reduce the effects
of volatility, then new BLIMFs are generated (after which they are known as nBLIMFs).
The equation for the logarithmic operation can be stated as: nBLIMF = sgn(BLIMF) • log
α(1 + |BLIMF|).

In [17], Mutlu used Hilbert vibration decomposition in his technique. However, for
this study, the intended decomposition output consisted of symmetric quasi-harmonic
oscillations where the signals of different modes, called mono-components, were embedded
inside it. Three iterative processes were required for the mono-components to be computed.
First, the mono-component with the largest energy was estimated for the first instantaneous
frequency. Then, the signal was low-pass filtered by a 4th order Butterworth filter before
synchronous detection was used to obtain the signal’s envelope. This preprocessing was
completed so as to ensure a 4 Hz bandwidth between each mono-component. Finally, the
estimated initial time series mono-component was subtracted before the extraction process
could begin.

1.4. Feature Extraction Methods Used in This Review

Feature extraction methods are unique to all the studies. Though each study chose
a novel feature for their papers, invariably all papers reviewed here will fall into three
major extraction technique categories. The categories are based on energy, basic statistics,
or a distribution/histogram. There is also one last sub-section that discusses papers that
combine the techniques mentioned.
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1.4.1. Extraction Based on Energy

Parvez and Paul [18] first divided the EEG signals into smaller epochs before utilizing
two major features. One was the undulated global feature (UGF) while the other was
the undulated local feature (ULF). For the UGF, phase correlation was used to detect
the relative variation between the current and successive epoch of EEG signals. The
Fast Fourier Transform (FFT) was first applied to the signals and then followed up by
phase correlation, which is determined using Inverse FFT (IFFT) and shift FFT functions.
Detections were performed for ictal or non-ictal signals. All frequency components were
found after the minimum mean square error (MSE) between both epochs was calculated and
passed through the discrete cosine transform (DCT). Finally, the mean energy concentration
ration (MECR) was calculated and used as the UGF. The undulated local feature (ULF)
was extracted using the fluctuation and deviation of EEG signals within the epoch. A
fluctuation function (f ) was calculated for each shifted epoch. The epochs used were 10 s
long with the amount of shifted sample at 128 samples. The final feature used was a cost
function, which is called the energy function of cost function and deviation (ECFD).

Jrad et al. [15] decomposed their EEG signals using Gabor atoms that provided events
of interest (EOI), consisting of four types of high-frequency oscillations (HFOs). From
here, the features were extracted using an energy ratio called the Gabor root mean square
(RMS) [16–18] and a temporal feature. The Gabor RMS is used to empirically compute
a cumulative distribution function (CDF) of the entire signal. Its formula is shown in
Equation (3) below, where c is the Gabor transform of raw iEEG signals and wN is the
sliding rectangular window of width N. An optimized threshold, λ, which denotes the
percentile of the CDF, was set as a discriminator between the high-frequency oscillations
and false alarms. Finally, five discriminant feature vectors were processed from the EOI to
form vectors ‘7’, ‘H7’, ‘Rs’, ‘FRs’, and ‘ART/IES’ and to be processed by the classifier.

Gabor RMS Energy εj(t) =

√
1
N ∑i

(
c
(

i; f (j)
0 , σ(j)

))2
wN (i− t), (3)

Kaleem, Guergachi, and Krishnan [10] provided four frequency bands (δ, θ, α, and β)
for feature extraction. Each band contributed three features (12 features per channel per
signal). The energy feature (Ei) was directly extracted from the decomposed band. The
other features were processed using fast Fourier transform and extraction was completed
from its frequency domain representation; these are the sparsity of amplitude spectrum
(Sp f̂ i) and the sum of derivative of amplitude spectrum (D ĵi). Both equations are shown in
Equations (4) and (5), where M is the length of f̂i.

Sparsity of Amplitude Spectrum Sp f̂i =

√
M –

(
∑M

m = 1 f̂ i[m]
)

/
√

∑M
m = 1 f̂ 2

i [m]
√

M− 1
, (4)

Sum of Derivative of Amplitude Spectrum D ĵi = ∑M−1
m = 1

ˆ́
if [m]2, (5)

Goksu [22] used a much simpler energy-based extraction technique, which was sup-
plied after the EEG signal was decomposed by wavelet packet decomposition. The three
energy-based feature vectors used here were the log energy entropy, norm entropy, and
energy, as shown in Equations (6)–(8) below.

Log Energy Entropy E = ∑n log
(

wn2
j,k

)
, (6)

Norm Entropy E = ∑n

∣∣∣wn
j,k

∣∣∣p, (7)

Energy E = ∑n

(
wn2

j,k

)
, (8)
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Tsiouris et al. [21] used the short-time Fourier transform (STFT) to extract the energy
distribution of an EEG signal. Energy information from each channel was accumulated as
a spectrum of the total brain activity distribution for each 1 h epoch. Finally, the energy
contents of the δ, θ, and α frequency bands were separated. The focus was to detect high
activity rhythms. However, this work did not use the machine learning method; instead,
the next process of classification used the segment selection method.

Ali [17] used the Hilbert vibration decomposition (HVD) to extract the mono-components
which had the necessary time-frequency information in feature extraction. This paper
estimated the largest energy for the mono-component and its instantaneous frequency.
Using synchronous detection, its envelope was obtained and was fed to the classifier. The
estimated mono-component was then subtracted from the initial time series.

1.4.2. Extraction Fully Based on Statistics

Basic statistics, for example, the mean, variance, standard deviation, and kurtosis [24]
can be used in the extraction phase, and their formulae are provided below. Note that
the standard deviation, σ, is just the square root of the variance, σ2. Additionally, the
denominator for kurtosis, K, is the squared value of the variance [25]. These are the general
equations that were used in the following four papers that used the statistical-based feature
extraction technique.

Mean (µ) =
1
N ∑N

t = 1 x(t), (9)

Variance (σ)2 =
1
N ∑N

t = 1 (x(t)− µx)
2, (10)

Kurtosis (k) = N ∑N
t = 1(x(t)− µx)

4

∑N
t = 1

(
(x(t)− µx)

2
)2 − 3, (11)

Bhattacharyya and Pachori [1] used an information entropy-based method to firstly
reduce the number of EEG signals to be processed based on amplitude fluctuation in
EEG signal, before decomposing it into its sub-bands using empirically chosen wavelet
transform. Each sub-band was extracted into their individual MODES which, when
decomposed further, reveal their amplitude and frequency components. The individual
instantaneous amplitude was joint and its feature was later extracted using a statistical
process. The three features used here were the joint instantaneous amplitude (µ), mean
monotonic absolute AM change (v), and variance of monotonic AM change (σ). This was
be obtained for each MODE. Finally, each of these features was combined for each mode to
form the joint feature vector before classification.

Zhang, Chen, and Li [16] used an auto-regression (AR)-based quadratic feature extrac-
tion process that uses heavy statistics. It relies on two parameters, which are a maximum
likelihood estimation function and Burg’s method, designed to minimize the prediction
error power. The AR model was used to calculate the AR reflection coefficient as shown in
Equation (12), where m is the order of the AR model. This model was processed further by
four other statistical-based criteria to optimize the AR model; these were the final prediction
error (FPE) criterion, Akaike information criterion (AIC), Bayesian information criterion
(BIC), and criterion autoregressive transfer (CAT). Since the AR coefficient data was diverse
in terms of dimensions, another eight statistical parameters of the AR coefficients were
extracted as secondary measures and fused together as feature vectors of the EEG sequence.
These parameters were the energy, length, maximum, minimum, mean, variance, skewness,
and kurtosis of the coefficients of the best AR model.

AR coefficients am̂,i=

{
am−1̂,i + k̂ma∗

m−1̂,m−i
, i = 1, 2, . . . , m− 1

k̂m, i = p
(12)

Li, Chen, and Zhang [14] applied envelope analysis using Hilbert transform to their
decomposed EEG signal to start the extraction process. The envelope contained valuable
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information on different scales. Extraction was very straightforward with the following
statistical extraction methods, which were affected on each sub-band of the envelope
spectrum. These were the mean, energy, standard deviation, and maximum value. Together,
they form a 20-dimension vector.

Jia, Goparaju, and Song [11] made use of 2D and 3D phase state representation of EEG
signals, which have been used in the past to measure the uncertainty of signals such as
an epileptic seizure or non-seizure. A Euclidean distance function was used to measure
the spread of data in the state space between adjacent points to calculate a growth curve.
Finally, five spectral moment-based features were extracted from each IMF, including the
spectral decrease, spectral centroid, spectral spread, spectral flatness, and spectral slope.
All equations are as shown below.

Spectral decrease SD=
∑M−1

q = 1
1

q (|Y(q)−Y(0)|)

∑M−1
q = 1 |(Y(q)|

, (13)

Spectral flatness SF=
∏M−1

q = 0 |Y(q)|
1
M

1
M ∑M−1

q = 0 |(Y(q)|
, (14)

Spectral centroid SC=
∑M−1

q = 0 q |(Y(q)|

∑M−1
q = 0 |(Y(q)|

, (15)

Spectral spread SS=
∑M−1

q = 1(q− SC)2 |Y(q)|

∑M−1
q = 0 |(Y(q)|

, (16)

Spectral slope SSL=
M ∑M−1

q = 0 f m |(Y(q)| −∑M−1
q = 0 f m . ∑M−1

q = 0 |(Y(q)|

∑M−1
q = 0 f 2

m −
(

∑M−1
q = 0 |(Y(q)|

)2 , (17)

1.4.3. Extraction Based on Distribution and Histogram

Khan et al. [7] used three features: the pre-ictal, ictal, and interictal periods. A
wavelet transform converted the brain signals into tensors, which were then fed into a
convolutional neural network (CNN). This was used primarily to extract all three features
by differentiating between them. With the true pre-ictal period being an unknown value, it
must be guessed together with the best prediction horizon. Since this study’s main aim
was to use the pre-ictal period to predict an oncoming seizure, it became an important
parameter, (parameter l), which became the assumed pre-ictal length. Parameter l was
used to label all periods before and after the seizure onset time, and its analysis included
calculating two distributions from the periods. These were the interictal-only periods,
which were approximated by a multivariate Gaussian with mean, µ0, and co-variance, ∑0.
The other distribution was around a time point, t, also with mean, µ1, and co-variance, ∑1.
A Kullback–Leibler divergence between both the distributions can detect shifts between
them, which signals a 10 min warning before seizure onset.

Jacobs et al. [5] utilized the Morlet-based continuous wavelet transform that produced
a spectrogram with a 2 s epoch for two frequency ranges: high frequency (fL) and low
frequency (fH). The CWT supplies a complex-valued coefficient matrix that can derive
an amplitude envelope time series A(t,fH) and phase time series ϕ (t,fL) used for feature
extraction. The normalized mean of the amplitude envelope time series was calculated
to represent a discrete probability density value, pj. This in turn was used to calculate a
normalized entropy measure, called the index of cross-frequency coupling (IcFc), which
measures the coupling between both time series, A, and phase series, ϕ. The IcFc gives a
global measure of the cross frequency and results in a 131× 91 co-modulogram. This results
in a probability distribution which can eventually be used for classification purposes.
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Jaiswal and Banka [20] made use of the unique patterns available in an EEG signal
when there are signal abnormalities involved. They used each bit wide representation of
the signal and processed them using the local neighbor descriptive pattern (LNDP) and one-
dimensional local gradient pattern (1D-LGP). EEG signals have neighborhood relationship
pattern properties, and their structures are maintained by the LNDP transformation. The
1D-LGP has also been previously shown to maintain this structure when it was used for
EEG epileptic signal classification. These output of these transformations was condensed
codes for classification. All transformation codes were then used to form a histogram,
which forms the feature vector to be fed to the classifier.

Kalbkhani and Shayesteh [9] obtained five sub-bands from each EEG signal using
the Stockwell transform. They then calculated the amplitude distribution of each sub-
band, namely delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ). A histogram that
was normalized in relation to the histogram bins (Nb) was then formed. Each bin was
considered as one feature for each sub-band. The variation and feature vector dimension
of the EEG signals varied according to the histogram bin (Nb), thus an increase in Nb was
followed up by feature reduction processes.

1.4.4. Extraction Based on Other Combination Techniques

Wang et al. [8] worked with normalized EEG segments, which were subtracted from
the mean and divided by the variance. This was used to establish a multivariate auto
regressive model (MVAR). A directed transfer function (DTF) algorithm was used to detect
information flow intensities that signified brain activity. Thus, this technique is one that
detects information entropy. The coefficients of the third order MVAR models were used
here. The equation related to the DTF is shown below, where Hij(f) is the element in the
ith row of jth column of the transfer matrix H(f), and hi(f) is a column I of the transfer
matrix H(f).

DTFij( f ) =
Hij( f )√

hT
i ( f )hi( f )

, (18)

Patidar and Panigrahi [6] used an entropy-based simple feature extractor. After
decomposition, a low-pass and high-pass sub-band signal were obtained. They used the
Kraskov entropy shown in Equation (19), which is an actual measurement of the Shannon
entropy or the differential statistical entropy of signals. It uses the k-nearest neighbors’
sample with some distance measure, such as Euclidean distance, Hamming, or any other
suitable distance measure.

Hk = φ(n)−φ(k) + log(Cd) +
d
n ∑n

i = 1 log
(

ξk
i

)
(19)

Li, Chen, and Zhang [13] used a combination of entropy and permutation as feature
extractors. After signal decomposition, the EEG signals were extracted using three methods.
The Hurst exponent (H) is used to statistically measure the correlation between data points.
Fractal dimension (FD) is a complexity measure tool designed to indicate how much fractal
space it appears to fill. The last extractor is the permutation entropy (PE), which is effective
for optimizing complex parameters and is widely used for processing large data sets.

Ibrahim, Djemal, and Alsuwailem [12] used a combination of entropy, statistics, and
power to extract features. After decomposition by the discrete wavelet transform, they
used the nonlinear methods Shannon entropy (SE) and largest Lyapunov exponent (LLE),
which is a complexity measure of an EEG recording. In addition, they used the signal’s
standard deviation and band power to extract relevant features.

Shiao et al. [19] is the sole paper in this review that used only power for feature
extraction. After EEG signal decomposition into six Berger frequency bands, all outputs
were squared to get the power for all 16 channels. This gave a 96-dimensional vector. This
power was approximated by the use of the fast Fourier transform in each Berger frequency.
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Finally, the cross-channel correlation (XCORR) was calculated as a measure of similarity.
This gave another 120-dimensional feature vector.

1.5. Machine Learning Algorithms Used for Review

The classification methods used in these studies rely heavily on machine learning
techniques. Machine learning is a field of study that gives computers the ability to learn
without being explicitly programmed [26]. The classification methods discussed in this
review paper are mostly based on the random forest (RF) and support vector machine
(SVM), as they are capable of handling high dimensional data [27] and have a low risk of
overfitting [28].

Bhattacharyya and Pachori [1] used a seizure detection method using six classifiers
for comparison. These were the functional tree, C4.5, random forest, Bayes-net, K-nearest
neighbors, and naïve Bayes classifiers. The results indicated that the RF performed with the
best accuracy at 99.41%. All classifications were applied using 10-fold cross-validation tech-
niques.

In [5], the classification of a pre-clinical seizure state used a multi-stage state classifier
(MSC), which contains 3 RF classifiers. Their system was assessed using a 5-fold receiver-
operating characteristic (ROC) analysis, where they compared the performance under
two conditions. For the system where the MSC received training, the accuracy was (95%),
while for the system without training, it was (79.9%), thus proving that the RF classifier
improves accuracy.

The study described in [29] is a good example of the simultaneous use of both ran-
dom forest and SVM in a single paper. The authors used an optimized model, called the
identification of sub-Golgi protein types (isGPT), to identify sub-Golgi protein types by
use of equipment called the Golgi apparatus (GA). This application is found in medicine
to prevent human disease, where any GA protein anomaly can result in congenital gly-
cosylation disorders. After the feature extraction process, the random forest (RF) model
was first used to give an important scoring to the features. It was then further used to rank
the features based on these scores. Finally, the support vector machine (SVM) was used
to classify the features of the top-ranked sub-Golgi proteins. Using this combination of
machine learning techniques achieved an accuracy of 95.9%, 95.3%, and 95.4% for the leave
one out cross-validation, independent testing, and 10-fold cross-validation, respectively.

Raghu and Sriraam [30] used several classifiers to categorize either focal or non-focal
EEG signals, namely K-nearest neighbor (K-NN), SVM, adaptive boosting, and random
forest. Cubic kernel-based SVM showed the highest accuracy at 96.1%. The other lower-
performing classifiers were also based on SVM. However, RF still maintained the position
of fourth-best classifier.

Based on these papers that used several classifiers, it is clear that in the cases where
RF or SVM were used, they outperformed other machine learning techniques; hence, these
classifiers appear ideal to be chosen for this review. The RF classifier was used by four stud-
ies, which were all used for result comparison, and support vector machine (SVM) variants
were used by eight studies, where only five studies were used for result comparison.

Random forest (RF) is a fast machine learning classifier that is highly accurate and
demonstrates resistance to noise artifacts [31]. It combines random feature selection and
bagging. The random vector’s values, which are sampled separately, influence every tree
in the forest. They also have an identical distribution to any other tree. RF consists of
a massive number of decision trees. The trees select their separating features from the
bootstrap training set Si, where ‘i’ represents the ith internal node. The classification and
regression tree (CART) method is used to grow the trees without pruning. Studies that used
the RF classifiers also utilized the empirical wavelet transform [1], CWT with Morlet [5],
the CEEMDAN [11], and the variational mode decomposition [16]. Figure 6 shows one
such RF technique, which is based on the ensemble decision tree. Out of all six trees, a
majority of four predicted an output of 1. Thus, the prediction is taken as “1”.
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Support vector machine (SVM) is a machine learning technique that found its niche
in applications that require regression-type analysis or classification. Another area that
has seen its use is prediction-related activities, such as estimation or forecasting. SVM’s
concept is the creation of a hyperplane that separates data as much as possible into two
classes. The intention is to minimize the training set error by maximizing the boundary
from the hyperplane. SVM works using kernel functions, among others, such as the RBF,
polynomial or normalized polynomial kernel function [31]. The feature extraction methods
most often used with the SVM are the three feature encoding [7], the undulated global
and local feature [8], the DT-CWT [13], and the wavelet decomposition db4 method [18].
Figure 7 shows an example hyperplane of an SVM classifier. The hyperplane is calculated
so as to separate the two classes of data (in blue and red) as much as possible.
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2. State of the Art: ML-Based Epileptic Seizure Detection

Most of the 19 articles that will be reviewed here completely followed the classifica-
tion process of Figure 2. However, eight papers followed the same process without the
feature reduction block, and four of the papers did not use the signal decomposition block.
This review takes the approach of comparing the performed of seven epileptic detection
systems that use wavelet variants as a decomposition method. Further, the three system
performance will also be reviewed based on the EMD variant decomposition method.
These 10 systems will be reviewed again based on their machine learning classifiers. The
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performances of the four systems that used RF-based classifiers will be compared first,
followed by another five systems that used the SVM classifiers. Section 2.1 will discuss the
systems that are based on the wavelet decomposition systems, while Section 2.2 will discuss
that with EMD as its decomposition system. Section 2.3 will discuss other systems which
also use either the decomposition system or classifiers mentioned in Sections 2.1 and 2.2,
but could not be used in this review due to differences in the metrics used. Table A1 in
Appendix A provides further information on all papers used in this review.

2.1. Wavelet-Based Decomposition Systems with Conventional Performance Metrics Parameters

Bhattacharyya and Pachori [1] employed the empirical wavelet transform (EWT),
which from the Fourier point of view is a construction set of bandpass filters [32]. They
utilized the Littlewood–Paley and Meyer wavelet for decomposition, using a novel tech-
nique of choosing only five EEG input channels for processing [33]. Their previous studies
indicated that, in the long run, EEG detection only focuses on uni-variate analysis, which
does not consider the cross-channel interdependence of the input’s multivariate data. Thus,
their research minimized this input to five channels by using mutual information (MI),
which measures similarity or interdependency among all channels. After decomposing
these channels using EWT, they used the Hilbert transform to find the instantaneous ampli-
tude and frequency information from the EEG signals. This information was used to form
the multivariate time-frequency coefficients. The instantaneous amplitude information
alone was used to derive three feature vectors which were processed by another feature
processing stage. The vectors went through a moving average filter, which was used to
enhance the magnitude corresponding to seizure segments. However, since this filter also
enhances features in seizure-free segments and therefore introduces more false detection
of epileptic seizures, all features were processed by the Hadamard transform to remove
bias. In addition, this reduced over-fitting for the classifier’s input by enhancing seizure
segments and reducing seizure-free segments. The database used in this article was from
CHB-MIT and only 1.6% of the total EEG time belonged to seizure segments, which led
to class imbalance problems. Three iterations of the synthetic minority oversampling
technique (SMOTE) were used to correct the imbalance problem. The features were tested
with RF, naïve Bayes, functional tree, k-NN classifiers, and Bayes-net. The best result came
from the RF classifier using 10-fold cross-validation with a sensitivity of 97.91%, specificity
of 99.57%, and accuracy of 99.41%.

In the research performed by Jacobs et al. [5], the focus was to detect seizures using
features that can be generalized across patient datasets while still providing a low rate of
false alarms and detecting seizures as early as possible. This is a challenge even though
patient-specific algorithms have been used in combination with classifiers, including
SVM, recurrent neural network, and logic-based algorithms. The authors used a Morlet
continuous wave transform for signal decomposition and a novel method called cross-
frequency coupling index (IcFc) for feature extraction [34]. The Tort modulation index was
selected as the cross-frequency coupling CFC measure, as it assesses the coupling between
an amplitude envelope-time series and an instantaneous phase-time series [35]. The IcFc
produced a 131 × 91 co-modulogram which produced 11,921 feature vectors. Then, they
were put through a binary threshold to reduce the feature vector while preserving the
high-frequency contents above 60 Hz.

Figure 8 shows a multi-stage classifier, which is a state machine-based 3RF classifier
with a basic logical decision threshold governing internal state transitions. It uses multi-
iteration five-fold receiver operating characteristics (ROC) based on the cross-validation
technique. The throc threshold’s exact value is determined from each RF classifier within
the multi-stage classifier (MSC). The initial IcFc is first passed through the state machine
at state 1 (S1). Each state analyzes the input based on a set throc and the ROC. For each
iteration where the alarm is activated, the state is reset, and a new throc value is applied to
all the states. During this training phase, after parameter optimization, the thcfc value was
found to be in the 94th, 95th, and 53rd quantiles for the I1S1, I1S2, and S1S2, respectively,
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while the new calculated IcFc obtained from the new throc value was used for thresholding.
This reduces the feature vectors for the next iteration of MSC classification.
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Using this system, the authors reported a sensitivity of 87.9%, both specificity and
accuracy of 82.4%, and area-under-the-ROC curve (AUC) of 93.4%. In addition, the alarm
produced was 45 s to 16 s in advance of clinical seizure onset across seizures from the
12 patients.

Patidar and Panigrahi [6] used a multi-stage tunable Q wavelet transform-based de-
composition (TQWD) technique using the Daubechies filter with two vanishing moments.
Their epileptic seizure analysis strategy was based on the use of linear prediction and
fractional linear prediction methods [36]. The construction of Tunable Q-Factor Wavelet
Transform (TQWT) filters is easier to implement in the frequency domain since they are
based on non-rational transfer functions. The block diagram of the decomposition filter
is reproduced in Figure 9. Here, two-band filter banks were attached repeatedly to the
low-pass sub-bands signals. At each decomposition level, the input s[n] was converted
into its low-pass and high-pass sub-band. Each filter was used by the TQWT, which is an
empirically-chosen power complementary function with 2π periodic timing. They were se-
lected as the frequency response for the Daubechies filter that had two vanishing moments.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 34 
 

 

Figure 8 shows a multi-stage classifier, which is a state machine-based 3RF classifier 
with a basic logical decision threshold governing internal state transitions. It uses multi-
iteration five-fold receiver operating characteristics (ROC) based on the cross-validation 
technique. The throc threshold’s exact value is determined from each RF classifier within 
the multi-stage classifier (MSC). The initial IcFc is first passed through the state machine 
at state 1 (S1). Each state analyzes the input based on a set throc and the ROC. For each 
iteration where the alarm is activated, the state is reset, and a new throc value is applied to 
all the states. During this training phase, after parameter optimization, the thcfc value was 
found to be in the 94th, 95th, and 53rd quantiles for the I1S1, I1S2, and S1S2, respectively, 
while the new calculated IcFc obtained from the new throc value was used for thresholding. 
This reduces the feature vectors for the next iteration of MSC classification. 

 

 

Figure 8. The 3RF classifier-based state machine. The throc value is determined at each stage of the 
state machine. 

Using this system, the authors reported a sensitivity of 87.9%, both specificity and 
accuracy of 82.4%, and area-under-the-ROC curve (AUC) of 93.4%. In addition, the alarm 
produced was 45 s to 16 s in advance of clinical seizure onset across seizures from the 12 pa-
tients. 

Patidar and Panigrahi [6] used a multi-stage tunable Q wavelet transform-based de-
composition (TQWD) technique using the Daubechies filter with two vanishing moments. 
Their epileptic seizure analysis strategy was based on the use of linear prediction and 
fractional linear prediction methods [36]. The construction of Tunable Q-Factor Wavelet 
Transform (TQWT) filters is easier to implement in the frequency domain since they are 
based on non-rational transfer functions. The block diagram of the decomposition filter is 
reproduced in Figure 9. Here, two-band filter banks were attached repeatedly to the low-
pass sub-bands signals. At each decomposition level, the input s[n] was converted into its 
low-pass and high-pass sub-band. Each filter was used by the TQWT, which is an empir-
ically-chosen power complementary function with 2π periodic timing. They were selected 
as the frequency response for the Daubechies filter that had two vanishing moments. 

 
Figure 9. TQWT based N-level decomposition adapted from [6]. Figure 9. TQWT based N-level decomposition adapted from [6].

For the feature extraction process, the novel Kraskov entropy measures were used
since they can characterize non-linearities. By using the k-nearest neighbor’s sample with
some distance, Kraskov entropy measures the Shannon entropy, or differential statistical
entropy, of the signals. Distance measures that can be used are the Euclidean distance,
Hamming, etc. [37]. This contributes to a probability distribution function used for feature
extraction. Before being put through the classification process, the proposed feature set’s
performance in discriminating seizure and seizure-free segments had to be evaluated by
applying the Kruskal–Wallis statistical test. The LS-SVM with RBF kernel functions using
10-fold cross-validation resulted in a sensitivity of 97.00%, specificity of 99.00%, accuracy
of 97.75%, and Matthew’s correlation coefficient of 96.00%.
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Wang et al. [8] used the level 5 Daubechies order 4 wavelet-based decomposition
followed by a novel wavelet directed transfer function technique for feature extraction.
Their research aimed to solve the imbalance problem with EEG ictal signal lengths, which
are less than interictal signals and can undermine detection performance and produce low
selectivity. Furthermore, the large number of interictal EEG segments can also be mistakenly
identified as ictal segments. Their approach was to use coefficients of multivariate auto
regressive models [38], which in turn were used by the directed transfer function algorithm
for feature extraction [39]. These features were used to measure the intensity flow between
two channels. This produced a 19 × 19 feature matrix per segment; however, it was
reduced to a 19 × 1 matrix per segment before being processed by the classifier. Using
an RBF-SVM-based classifier with five-fold cross-validation, this method resulted in high
accuracy with a value of 99.4%, a selectivity of 91.1%, sensitivity of 92.1%, specificity of
99.5%, and a detection rate of 95.8%.

Kalbkhani and Shayesteh [9] used the Stockwell transform (ST) to find frequency
information in five sub-bands. The normal transforms, such as STFT or DWT transforms,
cannot expose the amplitude content associated with each frequency, which is why the ST
was used [40]. At lower frequencies, ST provides excellent time resolution, while for higher
frequencies it gives high time resolution. There is also no need for any digital filter to find
all the frequency components in the time-frequency domain. The author’s investigation of
the ST EEG signal’s amplitude distributions in multiple sub-bands revealed five feature
vectors, one for each sub-band obtained.

Earlier, the normal PCA [41] was used to reduce the dimensions of data without much
loss of information. However, since PCA is linear, it is not suitable for processing EEG
signals. It is said to have a complicated structure of higher-dimensional features and cannot
represent the nonlinear relationship between features; thus, it is disadvantageous if used
for feature reduction processes [42]. This paper used kernel principal component analysis
(KPCA) to achieve feature reduction. Using the non-linear kernel principal component
analysis method, the author’s extracted the information component from the feature vectors
and used the nearest neighbor classifier with five-fold cross-validation. This paper used
different dissimilarity distance measures between the sample test set and the data set for
training before classification. The training sample class, with a minimum dissimilarity
distance from the test set, had the test sample assigned to it. The author’s reported their
performance results for three cases as follows: For the case of healthy signals, the sensitivity
was 99.61%, the specificity was 99.83%, and the accuracy was 99.73%. In the case of
interictal signals, the sensitivity was 99.53%, the specificity was 99.54%, and the accuracy
was 99.32%. Finally, for ictal signals, the sensitivity was 99.42%, the specificity was 99.89%,
and the accuracy was 99.73%. The ictal values are those used for the comparison between
reviewed studies in this paper.

Kaleem, Guergachi, and Krishnan [10] employed a wavelet decomposition method
using a level 5 Daubechies db6 mother wavelet with six vanishing moments [43]. Their
investigation focused on the significant mixing of the EEG seizure/non-seizure states for
epilepsy patients, since obtaining multiple recordings of multi-channel scalp EEG data is a
challenging task [44]. This method did not require any feature processing for obtaining the
seizure detection results. The authors used a three feature extraction technique, where one
feature was the energy (Ei) directly contributed by the decomposed components. The other
two features were extracted using the FFT from the decomposed components’ frequency
domain representation. During the classification phase, there were two approaches used.
In the first approach, seizure detection results were obtained by averaging all 23 channel
classification results for each patient. The second approach involved choosing the channel
with the highest value of the receiver operating curve (AUC) for each patient. This was
achieved by using the area under the AUC of each channel as a performance measure. The
second approach is novel since, for each patient, only one channel was used for seizure
detection. This was achieved without having to fuse multiple channels post-classification
or having to select the channel’s pre-classification results. A Student’s t-test was also



Sensors 2021, 21, 8485 17 of 34

designed as a feature ranking scheme used for further feature reduction. The study
reported a sensitivity of 99.4%, specificity of 99.4%, and accuracy of 99.6%, with k-NN and
SVM classifiers.

Li, Chen, and Zhang [13] tried to solve the unreal frequency component problem
that occurs due to alternate sampling, where the traditional wavelet transforms cause
halfway band separation. The disadvantage here is that it limits the information extraction
capability of the features. The authors used the dual-tree complex wavelet transform
(DT-CWT) because of its ability to use a dual-tree of wavelet filters and obtain the real and
imaginary parts by generating complex coefficients. Features were extracted using the
secondary method of the fractal dimension (FD), Hurst exponent (H), and permutation
entropy (PE). The Wilcoxon test was used to test significance. The best result came from
the support vector machine (SVM) near-symmetric 13/19 tap filters (NS 13/19) and Q-shift
14/14 tap filters (QS 14/14) classifiers. The authors reported an accuracy of 98%, sensitivity
of 98%, and specificity of 100%.

2.2. EMD-Based Decomposition Systems with Conventional Performance Metrics Parameters

Jia et al. [11] used the complete ensemble empirical mode decomposition with adap-
tive noise (CEEMDAN) for extracting features from EEG signals [45]. Their study focused
on the apparent mode mixing problem in EMD and wavelet-based decomposition tech-
niques. CEEMDAN provides a better spectral separation of the modes and also permits
accurate reconstruction using the IMFs and their residuals. The authors’ novel technique
involved the use of the growth curve of the data in two-dimensional and three-dimensional
phase space representation (PSR) to extract five spectral moment-based features [46]. The
probability density function (PDF) of the symmetric normal inverse Gaussian (NIG) was
used to fit the distribution of the data in the growth curve. After using an RF classifier
with 10-fold cross-validation and a Kruskal–Wallis ANOVA to test significance, the authors
reported their results for two conditions. One condition used sets S and (F, N), where
the accuracy was 99%, the sensitivity was 99.5%, and the specificity was 100%. The other
condition was for sets S and (F), where the accuracy was 98%, the sensitivity was 100%,
and the specificity was 99%.

Zhang, Chen, and Li [16] used variational mode decomposition (VMD) which outputs
band-limited intrinsic mode functions (BLIMFs). They found that, unlike STFT and WT,
the EMD that is a data-dependent time-frequency analysis algorithm is able to recursively
decompose an arbitrary signal into a series of subcomponents [47]. These are the intrinsic
mode functions (IMFs). However, the IMFs are highly dependent on the methods of
extrema point finding, the interpolation of extrema points into carrier envelopes, and the
stopping criteria imposed. In addition, the resulting IMFs have mode mixing problems and
limited mathematical understanding, which are the greatest challenges of EMD [48]. VMD
can decompose a multi-component signal into a number of band-limited intrinsic mode
functions (BLIMFs) non-recursively and synchronously [49]. VMD focuses on the variation
problem and the solution of using augmented Lagrangian. The main strengths of VMD
are that it possesses a more convincing mathematical theory and a rigorous derivation
process, and it has the capacity to separate two harmonic signals with similar frequencies.
After the process of decomposition using BLIMFs, a base-α logarithmic operation was
imposed on each BLIMF to reduce fluctuation. Four different criteria were used to estimate
the optimal autoregressive (AR) order, followed by calculation of the coefficients of the
optimal AR model for the logarithmic scale of BLIMFs. The autoregression (AR)-based
quadratic feature extraction was used together with a secondary measure to yield eight
statistical parameters of AR coefficients, which were fused together as feature vectors of
EEG sequence. The AR models were built using Burg’s method. A random forest classifier
with 10-fold cross-validation was used with a resulting accuracy of 97.352%.

Mutlu [17] employed the Hilbert vibration decomposition (HVD) for EEG signal
processing. The author investigated disadvantages involving EMD for EEG signals, specifi-
cally how it extracts IMFs only from a wide-band time series due to its lower frequency
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resolution. EMD is also computationally expensive [50]. HVD was used as it is effec-
tive at decomposing both narrow-band and wide-band signals. It can also detect signal
components oscillating at desired or specified frequencies. Hilbert transform was used to
obtain the analytic signal and instantaneous frequency for the decomposition of signals
consisting of symmetric quasi-harmonic oscillations, using three iterative steps for the com-
putation of mono-components [51]. These were signals that had distinctive time-varying
amplitudes and instantaneous frequencies from non-stationary signals. First, the instanta-
neous frequency of the mono-component with the largest energy was estimated. Then, the
signal’s envelope was obtained using synchronous detection. Finally, the estimated mono-
component was subtracted from the initial time series. The HVD was used to construct an
extracted feature set. Using a fourth-order Butterworth low-pass filter iteratively with a
bandwidth of 4 Hz, each mono-component was ensured to have a maximum bandwidth
of 4 Hz, thus extracting the EEG sub-band components. After using an LS-SVM classifier
with a Mann–Whitney U test at a 5% significance level, the resulting accuracy from the RBF
kernel function was 97.33% to 97.66%.

2.3. Wavelet-Based Detection Systems with Other Performance Metrics Parameters

The following section contains seizure detection systems that also used a wavelet-
based decomposition method; however, they could not be used in this review since they
have different metrics. However, their results are still interesting for further interpretation.

Khan et al. [7] presented a robust baseline model that did not have too many false-
positive results. The decomposition technique used the continuous wavelet transform with
the Mexican mother wavelet, which was applied to each EEG channel to yield tensors
of wavelet coefficients in three modes (time, scale, and channel) [52]. Feature extraction
was performed using a convolutional neural network. After processing the features using
the SMOTE technique to solve the balance problem, the training was carried out using a
deep-CNN classifier [53]. The classifier was trained with the cross-entropy loss function
over three classes. The results were shown for two datasets: The Mount Sinai Medical
Center dataset showed a pre-ictal length of 8 min and a false positive rate (FPr) of 0.128/h.
The CHB MIT dataset gave a pre-ictal length of 6 min and a FPr of 0.147/hr.

Ibrahim, Djemal, and Alsuwailem [12] researched the diagnosis epilepsy and autism
spectrum disorder (ASD) by investigating the different feature extraction and EEG clas-
sification techniques. They used a six-level DWT using Db4 EEG signal decomposition
used in conjunction with largest Lyapunov exponent (Rosenstein’s algorithm) and Shan-
non entropy. They then combined the statistical method of standard deviation (SD) and
band power (BP) for feature extraction. The cross-correlation approach was also used for
extraction, where it was used to determine how well EEG channels were synchronized
with each other. Altogether, six synchronization values formed the feature vector obtained.
The classifiers they used were as follows: ANN with a log-sigmoid transfer function, con-
taining one input layer, a five nodes hidden layer, and a soft-max normalized exponential
transfer function output layer; the K-NN classifier used with majority voting; and finally,
the linear SVM and LDA. The authors used a 10-fold cross-validation and obtained a result
of 100% accuracy

Li, Chen, and Zhang [14] introduced a novel method of using the wavelet-based
envelope analysis with a neural network ensemble to reveal hard-to-detect yet critical
changes in the EEG signal. They used a level 5 Daubechies 4th order discrete wavelet
transform that they configured with envelope analysis demodulated with Hilbert transform
(HT) as feature extractors [54]. The characteristic features, which contain both valuable
envelope and multi-scale information, were extracted from the envelope curves of the sub-
bands. Then, 20-dimensional vectors were extracted. The authors used a neural network
ensemble composed of three groups of networks, with five sub-nets in each group. They
reported the accuracy of the system at 98.78%.

Jrad et al., [15] used the diversity of high-frequency oscillations (HFOs) in EEG signals
to design a versatile detector [55]. They used a novel method that employed the convolution
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of the Gabor atom function with Fourier transform. This later decomposes into event of
interest (EOI) signals, which are high-frequency oscillations. Since the energy ratio called
the Gabor RMS feature and the temporal feature exist, their combination was used for the
extraction of feature vectors. A radial basis function support vector machine (RBF-SVM)
with five-fold cross-validation was used as a classifier. The EOIs provided the discriminant
features and were used as the inputs to the classifier. There are four different types of
HFOs. The classifier was used to classify detected events and label them as a HFO or a
high-frequency artifact (ART/IES). The result was specified for ripples signal (Rs) and fast
ripples (FRs). The sensitivity was 91.7% for Rs and 72.8% for FRs, while Sp was 73.8% for
Rs and 93.3% for FRs.

Goksu [22] used the wavelet packet analysis method for the decomposition of EEG
signals (WPD). WPD has better high-frequency resolution than wavelet analysis and
better time representation than Fourier analysis. The classifier used was the multilayer
perceptron (MLP) with back propagation learning. The input and output layers of the MLP
used linear activation functions, while the hidden layer(s) used the hyperbolic tangent
sigmoid activation function. The reported accuracy was 100% for the following sets of
input, in the case where they used energy, WPD, log energy and norm entropy on normal
vs. interictal vs. ictal signals. The authors also reported 100% accuracy in the case where
they used WPD and norm entropy on the non-seizure vs. ictal signals.

2.4. Other Statistical and Segmentation-Based Detection Systems

The following studies present a good example of how detection systems can be
designed without a decomposition method, but instead rely on statistical measures for
feature extraction and classification.

Parvez and Paul [18] aimed to achieve a good balance between better accuracy for
advanced prediction and a low false positive rate. They used a novel undulated global
feature (UGF) from a different epoch and an undulated local feature (ULF) from within the
same epoch. The UGF extraction process involved the EEG signal being divided into small
epochs and the relative change being estimated between the current and successive epoch
using phase correlation [56]. This detects signal type change for the ictal/non-ictal period.
The UGF was used to calculate the mean energy concentration ratio (MECR). Meanwhile,
the ULF extraction involved calculations using a 10 s epoch with 128 shifted samples and
the fluctuation function (f) for each shifted epoch. Then, a cost function was calculated,
which became the energy cost function of fluctuation and deviation (ECFD) [57]. Both
MECR and ECFD were used as feature vectors for classification. The LS-SVM classifier
with 10-fold cross-validation was coupled with a windowing regularization technique. A
high prediction accuracy of 95.4% with a low FPr = 0.36/h was reported.

Shiao et al. [19] designed a new SVM-based system for seizure prediction, with the
aim of choosing design choices and performance metrics that are closely correlated with
clinical objectives [58]. They extracted iEEG data by using a novel three feature encodings
technique. They employed a 20 s labeled window, which was processed as the method
involved the use of a six Butterworth bandpass filter bank that estimated signal power
for all channels. Secondly, the FFT was applied to obtain the frequency spectrum of all
channels, also estimating power for all 6 frequency bands. Finally, the cross-channel
correlation of all channels was measured by considering only two channels each time.
All three features produced 96 feature vectors, except for cross-channel correlation which
produced 120 vectors and was used separately. The feature went through SVM classifiers
(20 s) where labeled windows were used for training and prediction. This study reported a
sensitivity of almost 90–100%, with a false-positive rate of almost 0–0.3 times per day.

Jaiswal and Banka [20] aimed to reduce the computation cost of using wavelet or
EMD-based decomposition methods. They used two algorithms that have been used in
image processing: the local neighbor descriptive pattern [LNDP] and the one-dimensional
local gradient pattern [1D-LGP]) [59]. In the first phase, EEG signals were first transformed
into the local pattern, where the technique was used to have the same transformation code
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for all the similar patterns or structural properties. The second phase was where these
transformation codes were used to form the histogram. This is carried out because the
distribution of these codes is a convenient form for representing these signal structures.
The structural distribution is summarized graphically in two-dimensional spaces by the
histogram. The feature vector of the corresponding EEG signal is thus represented by the
histogram. Using 10-fold cross-validation ANN, the LNDP and 1D-LGP feature extraction
techniques achieved accuracies of 99.82% and 99.80%, respectively.

Kostas et al. [21] used a novel seizure detection technique that avoided complex
decision-making processes, training, or empirical boundaries by using rule-based seizure
detection logic. This is due to the use of some machine learning techniques that require
pre-annotated EEG data or a variant of a priori information during the training process.
They utilized EEG segments that contained a high probability of epileptic activity and were
automatically isolated for visual inspection and validation. This was achieved without
requiring any external intervention and a-priori information. The segments were isolated
according to some pre-conditioned criteria. After processing these segments using STFT,
the extraction of its EEG signal relative energy distribution among the three energy bands
was performed. This method of detecting seizure activation is also another novelty. Instead
of using classifiers, signal segments were identified by a clinician according to determined
criteria and labeled as segment selection method (SSMx). Only 5%, 3%, or 7% of the
prioritized segments were reviewed by a clinician, which means that at least 59% of the
data deemed irrelevant was discarded. The results were then reported for the sensitivity
and false positive rate of each SSM, for the case of each 5%, 3%, and 7% data discard: The
SSM1 had a mean sensitivity of 57%, 69%, and 73% and FPr of 3.1 FP/h, 5.8 FP/h, and
8.4 FP/h, respectively. The SSM II had an improved mean sensitivity of 76%, 80%, and
83%, while the FPr rates reached 4.4 FP/h, 7.3 FP/h, and 10.5 FP/h, respectively. SSM III
had a mean sensitivity of 64%, 69%, and 74%, while its FPr rates were 3.9 FP/h, 7.4FP/h,
and 10.6 FP/h, respectively. Finally, SSM IV had a mean sensitivity of 84%, 88%, and 92%,
while the FPr rate was 4.9 FP/h, 8.1 FP/h, and 12.9 FP/h, respectively.

3. Performance Analysis of ML-Based Epileptic Seizure Detection Methods
3.1. Performance Evaluation Criteria

In this study, a total of 19 papers were chosen based on their choice of the decompo-
sition and classification methods used to detect seizure signals from EEG. Based on the
metrics used, three metrics were chosen for a comparison of the overall performance of the
detection system. These are the system’s sensitivity, specificity, and accuracy [37]. Based
on these metrics, 10 of the papers were selected since they provided the full metrics while
nine papers were rejected. Table A1 in Appendix A provides information for all 19 papers.

The 10 papers were selected to make comparisons between two popular decompo-
sition methods; the wavelet and EMD-based. Out of the ten papers, nine papers were
again chosen to make comparisons between the two machine learning classifiers used in
these studies, which were the SVM and RF. The EEG signals are usually segmented before
being processed by the classifiers. The segments depend on the validation used by the
study. Papers that used 10-fold cross-validation used 10 segments of the EEG signals, while
five-fold cross-validation used only five segments. These are the labels that indicate if the
segments are ictal (seizure), non-ictal (non-seizure), or interictal (the period preceding a
seizure segment). The segment’s identifications are labeled as TP, TN, FP, and FN values.

TP: true positive is the identified number of true seizure epochs segments by both algorithm
and doctor.
TN: true negative is the identified number of true non-seizure epochs segments by both
algorithm and doctor.
FN: false negative is the number of misclassified seizure epochs segments by algorithms,
which are recognized as non-seizures, but are actually seizures.
FP: false positive is the number of misclassified seizure epochs segments by algorithms,
which are recognized as seizures, but are actually non-seizures.
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These parameters are used to calculate the actual parameters used in these studies,
shown in the formula below:

Sensitivity =
TP

TP + FN
× 100 (20)

Specificity =
TN

TN + FP
× 100 (21)

Selectivity =
TP

TP + FP
× 100 (22)

Accuracy =
TP + TN

TN + FP + TP + FN
× 100 (23)

By using a simple parameter, such as the mean of all specifications, the overall perfor-
mance can be evaluated. The evaluation will cover systems that use the popular wavelet
and EMD-based decomposition techniques, and another comparison can be made with
systems that use the popular RF and SVM-based classifiers.

3.2. Wavelet Decomposition Based Seizure Detection

From the 10 studies with full metrics that were selected for comparison, seven of them
contained studies that used variants of wavelet-based decomposition of EEG signals, which
are displayed in Table 2. Five of the studies used in Table 2 provide a high value of the
mean parametric results (above 97%), except for the paper by Jacobs et al. [5] for reasons
discussed in the next section. The mean parametric value indicates that the method using
the Stockwell transform [9] provided a higher level of system quality in terms of seizure
detections at 99.68%. The system’s accuracy was 99.73%, which is also close to the study
described in [6]. However, the Stockwell transform’s higher sensitivity value contributes to
its better performance. This result was processed using the dataset from The University
of Bonn, Germany. For this study, there were three reported results for all parameters;
however, the ones mentioned here (i.e., for the ictal state) are the most significant.

Table 2. Performance comparison of wavelet-based epileptic seizure detection.

Decomposition
Method

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Mean
Parametric
Value (%)

Classifiers CV

Empirical wavelet
transform [1] 97.91 99.57 99.41 98.96 RF 10

CWT with
Morlet [5] 87.90 82.40 82.40 84.23 3RF 5

Tunable Q wavelet
transform [6] 97.00 99.00 97.75 97.92 LS_SVM 10

Wavelet
decomposition

(5L-db4) [8]
92.10 99.50 99.40 97.00 RBF_SVM 5

Stockwell
transform—ictal [9] 99.42 99.89 99.73 99.68 k-NN 5

Wavelet
decomposition
(5L-db6) [10]

99.40 99.90 99.60 99.63 SVM 5

Dual-tree complex
wavelet transform

(DT-CWT) [13]
98.0 100 98 98.6 SVM 10
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It was also observed that the wavelet decomposition method used by Kaleem, Guer-
gachi, and Krishnan [10] also indicated a high level of performance, since all three metrics
had higher values by a slight margin. This study used the dataset from CHB-MIT [60]. Both
methods used in [9] and [10] employed the k-nearest neighbor for classification; however,
in [10] the classifier also used support vector machine together with kNN. Their result was
obtained using only 5-fold cross-validation, which also potentially saves processing time.
Due to a lack of metrics, it is unfortunate that the quality of some systems could not be
evaluated in its entirety, such as the studies described in [12,22] that both had 100% system
accuracy but could not be included in this section.

3.3. Empirical Mode Decomposition-Based Seizure Detection

From the 10 studies mentioned in Section 3.1, a remainder of three studies provided
the mean performance values of the EMD-based seizure detection methods, as shown in
Table 3. There were only three studies that were sufficient in the metrics provided to be used
in this review. The HVD-based study gave two separate parametric results. However, the
HVD-based study [17] stated their parameters by using a range, which makes comparison
difficult. Thus, the ranges were separated into their maximum value and minimum values.
Their mean parametric performance was at best 98.56% and at worst 96.94%. The study
using CEEMDAN [11] also produced two results, because two combinations of all five
signals from the dataset were used. Furthermore, the VMD method used in [16] was left out
of the comparison table due to the lack of main parameters reported in the study. However,
its accuracy of 97.35% was still a good result. It is noteworthy that for the EMD-based
decomposition, the classifiers used were restricted to either RF or LS_SVM-based classifiers.
All three studies used 10-fold cross-validation on the University of Bonn Dataset from
Germany. The comparison indicates that the CEEMDAN decomposition method provides
higher system quality. This is for both measurements, which used Set S and (F, N) and Set
S and (F) EEG signals at 99.50% and 99% mean parametric value, respectively.

Table 3. Performance comparison of EMD-based seizure detection method for epileptic seizure.

Decomposition Method Sensitivity% Specificity % Accuracy % Mean Parametric
Value (%) Classifiers CV

Complete ensemble
empirical mode

decomposition with
adaptive noise [11]-sets S

and (F)

100 99 98 99 RF 10

Complete ensemble
empirical mode

decomposition with
adaptive noise [11]-sets S

and (F, N)

99.50 100.00 99.00 99.50 RF 10

Variational mode
decomposition [16] - - 97.35 - RF 10

Hilbert vibration
decomposition [17]

96 97.5 97.33 96.94 LS_SVM 10

99 99 97.67 98.56 LS_SVM 10

3.4. RF Classifier-Based Seizure Detection

From the entire list of 10 eligible papers from Section 3.1, four were used with the same
metrics, this time to give a performance comparison of all seizure detection systems that
use only RF-based classifiers, as shown in Table 4. Only four studies used the RF classifier
and also used different methods of decomposition. Study [11] is presented here with two
results due to the combinatorial usage of datasets. Studies [1,5] used the wavelet-based
decomposition, while the remaining study [16] used the EMD variant. The VMD method
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was also left out of the evaluation here due to the lack of the main parameters provided.
Table 4 indicates that the CEEMDAN [11] is still the method that provides better overall
system performance for seizure detections using the same sets as Table 3.

Table 4. Performance comparison of seizure detection method using random forest classifiers.

Decomposition Method Sensitivity % Specificity % Accuracy % Mean Parametric
Value CV

Empirical wavelet transform [1] 97.91 99.57 99.41 98.96 10

CWT with Morlet [5] 87.9 82.4 82.4 84.23 5

Complete ensemble EMD
with adaptive noise [11]

S and (F, N) 99.5 100 99 99.50 10

S and (F) 100 99 98 99.00 10

Variational mode decomposition [16] - - 97.532 - 10

3.5. SVM Classifier-Based Seizure Detection

Five studies with full metrics were chosen from the 10 selected papers for performance
comparison of seizure detection methods; however, one which only used SVM classifiers,
as shown in Table 5. Five studies are used here with each using the wavelet-based de-
composition method, except for [17] which was EMD-based. As explained in Section 3.3,
study [17] used the minimum-maximum result, thus giving two results. Considering all
studies, the study in paper [10] that used the SVM classifiers and five-fold cross-validation
gave an overall performance result of 99.63%. This also means that its metrics are slightly
higher than all the other systems in Table 5, except for its specificity which is lower than
paper [13]. Coincidentally, both these systems used the wavelet decomposition technique
but with a different depth level and order. The other studies in this review either lacked
the metrics needed or had metrics which were specified in ranges; thus, they could not be
included here.

Table 5. Performance comparison of seizure detection method using SVM-based classifiers.

Decomposition Method Sensitivity % Specificity % Accuracy % Mean Parametric
Value Classifiers CV

Tunable Q wavelet
transform [6] 97 99 97.75 97.92 LS_SVM 10

Wavelet decomposition
(5L-db4) [8] 92.1 99.5 99.4 97.00 RBF_SVM 5

Wavelet decomposition
(5L-db6) [10] 99.4 99.9 99.6 99.63 SVM 5

Dual-tree complex wavelet
transform (DT-CWT) [13] 98.0 100 98 98.6 SVM 10

Hilbert vibration
decomposition [17] 99 99 97.67 98.56 LS_SVM (RBF

Kernel) 10

Hilbert vibration
decomposition [17] 96 97.5 97.33 96.94 LS_SVM (RBF

Kernel) 10

4. Discussion

After the review of 19 articles, 10 papers were used for comparison of their detec-
tion of seizure-related signals by EEG. The complete seizure detection system contains
multiple-step methods, which are broadly categorized into pre-processing, decomposi-
tion, feature extraction, classification, and post-processing. Two prominent decomposition
methods used are the wavelet and EMD-based decomposition. Some of the papers used
various statistical approaches to decompose the signal. Others used segmentation, such
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as the method used in [30]. Numerous techniques utilized entropy to detect changes in
information power, and/or used it for feature extraction, such as in [61].

Bhattacharyya and Pachori [1] achieved good results in all metrics. Their decomposi-
tion method was able to decompose a signal into sub-band frequency while satisfying IMF
definitions by the use of an empirical filter. Filters based on these wavelets are adaptive in
the sense that they have compact frequency support and are centered around a specific
frequency. Dimensions are kept small by employing strategies such as considering the
cross-channel interdependence of multivariate data by making use of mutual information,
thus reducing the EEG electrodes needed for processing to only three. The best results
were obtained using the RF classifier. Further improvements can be made using the naïve
Bayes classifier, as it has a “Zero Frequency” problem where if its categorical variable is
contained in the test dataset but not in the training dataset, then the model will assign a
‘0’ probability. Some simple smoothing techniques, such as the Laplacian estimation, can
be used.

Paper [5] has the advantage of using the complex Morlet wavelet for decomposition,
as these types of transform are less oscillatory and are better at detecting and tracking
instantaneous frequencies. Another benefit of using this transformed signal includes re-
vealing multiscale frequency information at each time point and isolating noise; in addition,
complex Morlet is effective for signal reconstruction. However, its feature extraction tech-
nique, called the cross-frequency coupling (IcFc), is based on the concept of thresholding
and might be dimensionally burdensome. This method might not be precise as it depends
on an RF classifier-based state machine, and could instead be used with other statistical
techniques, such as Hjort transform.

Patidar and Panigrahi [6] used a wavelet based on the Daubechies filter with two
vanishing moments. Its tunable Q wavelet transform is a filter that is empirical in nature
and could provide better time-frequency resolutions. Filters with lower vanishing moments
can also be used if they are purposely limited in their ability to decompose signal infor-
mation adequately without using many resources. This system’s feature extraction stage,
which is the Kraskov entropy, uses the Shannon entropy that utilizes a distance function.
It is suggested that other distance functions may also be used, such as the Mahalanobis
distance function, for improvement together with a two-class discrimination test, such as
the Wilcoxon rank test.

The study by Wang et al. [8] used a fifth level wavelet decomposition, which can ensure
adequate signal decomposition if five sub-bands are needed with good resource trade-offs.
Its dimensions are also kept low at five dimensions. The use of WDTF also improves the
selectivity compared to different sub-bands of EEG signals. Its feature extraction method
produces a huge vector of 19 × 19 dimensions. By taking the directed transfer function,
this dimension is reduced to 19 × 1. Since this dimension calculation is related to energy,
using entropies, such as Shannon’s entropy, could improve reduction. Additionally, the
use of an elliptic bandpass filter could provide better frequency separation before signal
decomposition.

Kalbkhani and Shayesteh [9] used an N-point discrete Fourier transform derivative,
which becomes the basis of the Stockwell transform. It provides good resolution in time
and frequency. Their use of the nearest neighbor classifier can be further improved with
the use of other distance functions, such as the Hausdorff or Mahalanobis.

In the study by Kaleem, Guergachi, and Krishnan [10], the decomposition stage used
the level 5 Daubechies db6 wavelet as the mother wavelet with six vanishing moments.
A higher number of vanishing moments was used here since it shows more similarity
with the recorded EEG signals. However, using the db6 wavelet means more resources
are used. The db4 wavelet might characterize the EEG signal without losing information
while saving resources for hardware implementation. The use of the dual-tree complex
wavelet transform (DT-CWT) by Li, Chen, and Zhang [13] in the decomposition phase is
advantageous as it reduces the problem of unreal frequencies, which leads to halfway band
separation. They could further improve their system by using the better LS_SVM classifier.
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In [11], the authors used a feature extraction stage that had statistical techniques using
spectral moments. This technique can be easier to implement on hardware; moreover, it
also has better mode mixing separation. In some studies, the authors had a very well-
grounded decomposition technique. For example, the main strength of the paper by Zhang,
Chen, and Li [16] is in their use of the VMD-based decomposition, which has the capacity
to separate two harmonic signals of similar frequency.

Mutlu [17] used the Hilbert vibration decomposition (HVD), which is effective at
decomposing both narrow-band and wide-band signals. The use of the LS-SVM classifier
is also effective, due to its inequality type constraints. Its pre-processing stage contained
a Butterworth low-pass filter that could be replaced with better digital filters, such as
the elliptic filters. Parvez and Paul’s [18] use of the undulated global and local feature
detection system works on basis of epochs; thus, it has the advantage of being able to
process the decomposition more efficiently. For example, its use of phase correlation works
by providing shifting information between two correlated signals via Fourier transform. In
this method, there is no special decomposition block. However, the window regularization
process is complex and could instead be replaced with simpler methods, such as the
Hadamard transform. Conversion of time-domain into frequency-domain can also be
achieved with other techniques, for example using the Hilbert transform instead of the
discrete cosine transform used here.

The study by Ibrahim, Djemal, and Alsuwailem [12] achieved an accuracy of 100%
using the discrete wavelet transform with a Rosenstein algorithm that is known to make
systems more robust to noise. This system’s next step could be future testing with larger
datasets. Khan et al. [7] used a system with only two dimensions and a decomposition
technique based on the Mexican hat mother wavelet. Their system has the advantage of a
reduction in the trained parameter used in the neural network by using weight sharing.
For further improvements, we suggest that other wavelets, such as Coiflet, be used for
decomposition as its vanishing point can be fine-tuned. Aside from this, it is also a
compactly supported orthogonal wavelet.

Shiao et al.’s paper [19] has a strength where the design choices and performance
metrics are closely correlated with clinical objectives. However, their choice of using
all channels for feature extraction is costly in terms of resources, since they generated
large dimensions for feature extraction (almost 96 to 120 dimensions) despite the fact that
they used cross-channel correlation. Techniques such as the various methods of principal
component analysis (PCA) can be used for feature dimensions. One such example is the
kernel principal component analysis.

Jrad et al. [15] used a seizure detection system where the decomposition of non-
stationary signals was precise when dealing with high-frequency oscillation (HFO) signals.
Its time-frequency localization was also optimized. The use of Gabor atoms was also
advantageous as it was tuned to decompose signals in the physiological band. This
system’s classifier could be improved by the use of LS-SVM, since the current RBF kernel
used in the SVM classifier has the C parameter that must be properly determined. In their
paper, Li, Chen, and Zhang [14] used a wavelet-based envelope analysis (EA) to detect the
envelope that was demodulated with Hilbert transform (HT) and to calculate envelope
spectrum at each band. Their system was able to reveal the subtle but critical changes
contained in EEG signals. Their feature extraction also used a simple statistical measure
with low dimensions.

There are also papers with systems that have an advantage in their feature extraction
stage. The system from the paper by Jaiswal and Banka [20] has a computationally simple
feature extraction that uses a segmentation technique, which means there was better use of
resources in the implementation phase. Its use of the ANN classifier is effective; however,
the deep CNN is a better classifier. The system described by Tsiouris et al. [21] has the
advantage that it uses an unsupervised machine learning classifier that does not require a
priori information. In addition, it has an energy-based feature extraction stage, which is
easy on hardware resource usage for implementation.
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The paper by Goksu [22] is a good example of using a suitable wavelet order for a
system. High accuracy is achieved even though only three levels of wavelet decomposition
are used, thus saving resources. The entropy used for its feature extraction stage is also
simple and allows for extraction of useful information.

5. Conclusions

This review attempted to compare and narrow down a large number of available
techniques for EEG-based seizure detection and classification based on their superiority
of performance. This review focused on the relevant studies on wavelet and empirical
mode decomposition-based feature extraction techniques for seizure detection in epileptic
EEG data.

The purpose of this review was to compare the seizure detection methods reported
recently in several articles. Comparisons of different methods are easily performed when
all the standard performance metrics parameters are provided (i.e., sensitivity, specificity,
and accuracy). A large number of papers reviewed only gave the accuracy or the false
prediction rate, thus limiting the number of papers chosen for full comparison. In this
article, the focus is kept on studies that offer full performance metrics.

From the first two comparisons between the systems with wavelet and EMD-based
decompositions, it can be concluded that both feature extraction techniques are close
contenders; however, the wavelet variant Stockwell transform offers a better detection
result in EEG signal-based detection. Almost all extraction techniques compared in this
review that delivered good results used five-fold cross-validation classifiers. In conclusion,
further research should employ a system using wavelet-based feature extraction technique
and five-fold cross-validation technique.

In the last two comparisons, two machine learning classifiers (RF and SVM) were
compared on the EEG systems, and it was found that both classifiers had good perfor-
mance. However, it is noteworthy that the system’s performance also depends on the
decomposition method used. This review indicates that the RF classifier works well with
EMD-based systems, while the SVM classifier works well on wavelet-based systems.

This review was able to identify the need to choose the relevant combination of
decomposition method and classifiers. For future research, this review implies that the
correct system combination should be chosen before parameter tuning is performed on
any of the classifiers mentioned here for better performance.
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Appendix A

Table A1. List of articles used in this review.

Authors/Dataset
Used Year Decomposition/Features

Used Classification Result Inclusion Criteria

Bhattacharyya A,
Pachori R. [1]

Dataset:
CHB_MIT

2017

• Empirical
wavelet
transform (EWT)

• Then Hadamard
transform
removes
bias/overfitting
to classifiers.

• Output will be
the joint feature
vectors.

• SMOTE
technique used
to correct
imbalance bias.

• RF classifier

• Max average
sensitivity = 97.91%

• Max average
specificity = 99.57%

• Max average
accuracy = 99.41%

Included due to full
result specification.

Jacobs D., Hilton T.,
Del Campo M. et al.

[5]
Dataset:

Toronto Western
Hospital Epilepsy
Monitoring Unit

2018

• IcFc:
cross-frequency
coupling (CFC)
index with a
Morlet
continuous wave
transform

• Multi-stage
state classifier
(MSC) based on
three random
forest
classifiers.

• Sensitivity = 87.9%
• Specificity and

accuracy = 82.4%,
• Area-under-the-ROC (AUC)

curve = 93.4%.

Included due to full
result specification.

Shivnarayan
Patidar. and

Trilochan Panigrahi
[6]

Dataset: University
of Bonn Germany

2017

• Multi-stage
TQWT based
decomposition
(TQWD)

• The Kraskov
entropy measures
and characterizes
non-linearities

• LS-SVM with
RBF kernel
functions.

• Average accuracy = 97.75%
• Sensitivity = 97.00%
• Specificity = 99.00%
• Matthew’s correlation

coefficient = 96.00%.

Included due to full
result specification.

Wang D, Ren D, Li
K, et al. [8]

Dataset:
Xi’an Jiaotong

University

2018

• Wavelet
decomposition
used with level 5
Daubechies order
4

• Directed transfer
function

• RBF_SVM

• Average accuracy = 99.4%,
• Average selectivity = 91.1%,
• Average sensitivity = 92.1%
• Average specificity = 99.5%
• Average detection rate of

95.8%.

Included due to full
result specification.

Hashem Kalbkhani
and Mahrokh G.

Shayesteh [9]
Public Bonn

Epilepsy EEG
Dataset

2017

• Stockwell
transform

• Kernel principal
component
analysis (KPCA)

• Nearest
neighbor
classifier (kNN)

Ictal (Set E)

• Sensitivity = 99.42%
• Specificity = 99.89%
• Accuracy = 99.73 %

Included due to full
result specification.

MuhdKaleem, Aziz
Guergachi and

Sridhar Krishnan.
[10]

Dataset: CHB MIT

2017

• Level 5
Daubechies db6
wavelet is used as
the mother
wavelet with six
vanishing
moments.

• Adaptive
synthetic
sampling
(ADASYN) for
imbalance
problem.

Uses kNN and SVM

• Sensitivity = 99.8%
• Specificity = 99.6%
• Accuracy = 99.6%

Included due to full
result specification.

Mingyang Li,
Wanzhong Chen

and TaoZhang, [13]
Public Bonn

Epilepsy EEG
Dataset

2017

• Dual-tree
complex wavelet
trans-form
(DT-CWT)

• Wilcoxon test
for significance.

• Support vector
machine (SVM)

• Accuracy = 98%
• Sensitivity = 98%
• Specificity = 100%

Included due to full
result specification.
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Table A1. Cont.

Authors/Dataset
Used Year Decomposition/Features

Used Classification Result Inclusion Criteria

JianJia, Balaji
Goparaju,

JiangLing Song,
et al. [11]

Public Bonn
Epilepsy EEG

Dataset

2017

• Complete
ensemble
empirical mode
decomposition
with adaptive
noise
(CEEMDAN)

• Random forest
classifier

• Kruskal–Wallis
ANOVA

Sets S and (F, N)

• Accuracy = 99%
• Sensitivity = 99.5%
• Specificity = 100%

Sets S and (F)

• Accuracy = 98%
• Sensitivity =100%
• Specificity = 99%
• Cohen’s Kappa

statistics = 0.977

Included due to full
result specification.

Tao Zhang,
Wanzhong Chen
and Mingyang Li.

[16]
Public Bonn

Epilepsy EEG
Dataset

2017

• Variational mode
decomposition
(VMD) outputs
some
band-limited
intrinsic mode
functions
(BLIMFs).

• Random forest
classifier • Highest accuracy is 97.352

Included due to very
few papers using

EMD-based
extraction method,
even though no full

results.

Ali Yener Mutlu
[17]

Public Bonn
Epilepsy EEG

Dataset

2018
• Hilbert vibration

decomposition
(HVD)

• (LS-SVM)
tested with
linear,
polynomial and
RBF kernel
with 10-fold
cross-
validation

Kernel function/statistical
parameters/classification
performance (min–max)

SPC 95.00–96.50
RBF (= 0.4)

ACC 97.33–97.66
SEN 96.00–98.00
SPC 97.5–98.00

Included due to full
result specification.

Parvez M, Paul M
[18]

Dataset:
Epilepsy Centre of

the University
Hospital of

Freiburg, Germany

2017

• Undulated global
feature (UGF)
and undulated
local feature
(ULF)

• Energy function
of CFD (ECFD)
and minimum
mean energy
concentration
ratio (MECR)
used as feature
vector for
classification

• Least
square-SVM
classifier with
RBF kernel

High prediction accuracy (i.e.,
95.4%)

FPR = 0.36
Average early prediction time is

22.16 s

Excluded due to no
parameter on

sensitivity and
specificity

Sutrisno Ibrahim,
Ridha Djemal and

Abdullah
Alsuwailem. [12]
Dataset: Public

Bonn Epilepsy EEG
And CHB MIT

2018

• Level 6 DWT
Daubechies 4
(Db4)

• Shannon entropy
and largest
Lyapunov
exponent
(Rosenstein’s
algorithm).

• Another two
conventional
methods, which
are standard
deviation and
band power, were
also used.

• DWT, Shannon
entropy, and
k-nearest
neighbor
(KNN)
techniques is
used.

• K-NN used
with majority
vote, K = 3

• Linear SVM
and LDA

Accuracy = 100%

Excluded due to no
parameter on

sensitivity and
specificity
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Table A1. Cont.

Authors/Dataset
Used Year Decomposition/Features

Used Classification Result Inclusion Criteria

Khan H, Marcuse L,
Fields M, et al. [7]

Dataset:
The Mount Sinai
Epilepsy Center
And CHB MIT

2018

• Continuous
wavelet
transform with
Mexican mother
wavelet.

• Pre-ictal period
and prediction
horizon as feature
vector.
Convolutional
neural network
used

• Deep
convolutional
neural network
used.
(stochastic
gradient
descent with
adaptive
learning rate).

• Cross entropy
loss function
over three
classes.

MSSM result
Pre-ictal Length = 8 min

FPr = 0.128/h
CHB MIT result

Pre-ictal Length = 6 min
FPr = 0.147/h

Excluded due to no
parameter on

accuracy, sensitivity
and specificity

Shiao H,
Cherkassky V, Lee

J, et al. [19]
Dataset:

Mayo Clinic

2017

• Three feature
encodings for
iEEG data:
Butterworth
bandpass filter
bank, FFT, and
cross-channel
correlation of two
channels.

• Binary SVM
classification

Sensitivity = ~ 90–100%,
false-positive rate =~ 0–0.3 times

per day.

Excluded due to no
parameter on
accuracy and

specificity

Nisrine Jrad,
Kachenoura A,

Merlet I et al., [15]
Dataset:

University
Hospital of Rennes

in France

2016

• Convolution of
Gabor atom
function

• Gabor root mean
square and
temporal features

• Event of interest
signals obtained
from Gabor RMS

• Used RBF-
SVM,

• Receiver
operating
Characteristic
(ROC) curves.

• Sensitivity was 0.917 (0.008)
for ripples and 0.728 (0.111)
for fast ripples while

• Specificity was 0.738 (0.159)
for ripples and 0.933 (0.094)
for fast ripples.

Excluded due to no
parameter on

accuracy

MingyangLi,
Wanzhong Chen

and TaoZhang. [14]
Dataset:

Department of
Epileptology,

University of Bonn

2017

• Level 5
Daubechies 4th
order discrete
wavelet
transform.

• Envelope analysis
demodulated
with Hilbert
transform (HT)
for the following
extractions:

o For the envelope
spectrum in each
sub-band: mean,
energy, standard
deviation, and
max value.

o The mean,
energy, standard
deviation, and
max value of the
raw EEG signals.

• Neural network
ensemble
composed of
three groups of
networks: five
sub-nets in
each group

• Recognition accuracy
(RA) = 98.78%

Excluded due to no
parameter on

sensitivity and
specificity
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Table A1. Cont.

Authors/Dataset
Used Year Decomposition/Features

Used Classification Result Inclusion Criteria

Abeg Kumar
Jaiswal, Haider

Banka. [20]
Dataset:Public

Bonn Epilepsy EEG

2017

• Local neighbor
descriptive
Pattern (LNDP)

• One-dimensional
Local Gradient
Pattern (1D-LGP)

• Artificial neural
network
classifiers

• Average classification
accuracy of 99.82% and
99.80%, respectively

Excluded due to no
parameter on

sensitivity and
specificity

Kostas M. Tsiouris,
Sofia Markoula,

Spiros Konitsiotis
et al. [21]
CHB MIT

2018

• Four novel
seizure detection
conditions are
proposed to
isolate EEG
segments called
Condition I to
Condition IV.

• The short-time
Fourier
Transform extract
EEG energy
distribution.

• Signal segment
used for
classifications.

• All metrics
reported here
for the case of
3%, 5% and 7%
of total visual
inspection
values
respectively.

SSM4

• Sensitivity = 84%, 88% and
92%

• FPr = 4.9 FP/h, 8.1 FP/h
and 12.9 FP/h

Excluded due to no
parameter on
accuracy and

specificity

HüseyinGöksu.
[22]

Public Bonn
Epilepsy EEG

Dataset

2018

• Wavelet packet
decomposition.

• Log energy
entropy, norm
entropy and
energy

• Multi-layer
perceptron with
back
propagation

Accuracy = 100%

Excluded due to no
parameter on

sensitivity and
specificity

Appendix B

Table A2. EEG databases and EEG recording techniques.

Paper Dataset Used Patients Recording Sampling Frequency
(Hz)/Resolution (Bit) Characteristics

1, 7, 10,
12, 21 CHB-MIT 23 9 to 42 records for

each patient. 256

Papers using this dataset have
used all patient data except
paper 7, which used only 22
patients’ data. Only paper 1
and 10 reported using 16-bit
resolution in their sampling.

6, 9,
11–14,
16–17,
20, 22

Epilepsy Center of
the Bonn

University
Hospital

5 sets

• 100 single
channel EEG
record per
subset.

• 23.6 s each
segment.

173.61

5 patient records are available
labelled A, B, C, D, and E.

However the studies used the
following sets:

6,11,17—subset C, D, and E
9,16,20, and 22—used all sets

13 and 14—subset A, D, and E
Study 12—subset A vs E

Only paper 11 reported using
12-bit resolution in its

sampling
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Table A2. Cont.

Paper Dataset Used Patients Recording Sampling Frequency
(Hz)/Resolution (Bit) Characteristics

5
Toronto Western

Hospital Epilepsy
Monitoring

12

All patient data were used in
this paper; however, the
sampling frequency is as

below:
500 Hz (5 patients),
512 Hz(3 patients),

1000 Hz (3 patients) and
1024 Hz (1 patients)

7 Mount Sinai
Epilepsy Center 28 86 scalp EEG

recordings. 256 Only one study used this
dataset

8

Institutional
Review Boards of

Xi’an Jiaotong
University

10 200 samples/second Only one study used this
dataset

15

Neurology
Department of the

University
Hospital of Rennes

5 2048 Only one study used this
dataset

19 Mayo Clinic 6 (dogs) 400 Only one study used this
dataset
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Figure A1. EEG pre-processing techniques and EEG artifacts/data cleaning used in this review. (a) The first five processes
of epileptic seizure data classification as in Figure 2. (b) The epileptic filter used to bandpass the frequency from 0.5 Hz to
60 Hz in study [12]. (c) The logarithmic operation applied to each BLIMF after decomposition in study [16]. (d) The 4th
order Butterworth low-pass filter embedded in the decomposition phase in study [17].
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